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Neuroscience Machine learning
models, theories, 

testable hypotheses

novel ideas, insight

Exciting methodological advances

record thousands of neurons simultaneously

→ bridge the cellular and network level

Neural networks that perceive the world 

and act back upon it

understand how

the brain learns
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Zador et al., arXiv 2022

Saxe et al., Nat. Rev. Neurosci. 2021

Richards et al., Nat. Neurosci. 2019

Hassabis et al., Neuron 2017



Outline

‒ Credit assignment in artificial and biological neural networks

‒ Assigning credit by backpropagation-of-error

‒ Assigning credit by controlling a neural dynamics

‒ Theory & experimental results

‒ Connections to probabilistic modeling and free-energy minimization
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Neural networks

Fig. adapted from Yamins & DiCarlo, Nat. Neurosci. 2016

‒ Information processing done by in parallel by a network of basic computational units

‒ Output of each unit determined by its parameters

‒ Parameters determined from data (the learning process; plasticity)

‒ System is not fully hand-engineered, complex behavior emerges from interaction with data

4



The credit assignment problem

Fig. adapted from Yamins & DiCarlo, Nat. Neurosci. 2016

A change in early layers of processing affects the output

of the network in a complicated way

very large number of parameters
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Backpropagation

‒ Scalable approach

‒ Unreasonably effective?

‒ Underlies great advances in supervised, 
unsupervised and reinforcement learning

Richards et al., Nat. Neurosci. 2019

almost always: computed by backpropagation-of-error

Bryson, Harvard Symposium 1961

Rumelhart et al., Nature 1986

𝜃𝑡+1 = 𝜃𝑡 + 𝜂 ∇𝐹(𝜃𝑡)

Learning by gradient ascent

Adjust synapses 𝜃 to maximize objective function F

by taking steps along its gradient:
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Credit assignment in the brain

Sensory

input

Motor output

‒ The human brain has ~1015 synaptic connections, majority is plastic
‒ How does synaptic change eventually lead to improved behavior?
‒ Determining credit/blame with a parallel, distributed processing algorithm
‒ Does cortical feedback play a role in this process?

Cortical feedback

Fig. adapted from Roelfsema & Holtmaat, Nat. Rev. Neurosci. 2018 7



Backpropagation in the brain?

‒ Weight transport problem (non-local learning rule): the change of a given 
synapse depends on the precise values of all others downstream of it

‒ Clocked two-phase algorithm: prediction followed by error computation

‒ Backpropagated errors instruct synaptic change, but do not change activity

‒ Restricted to acyclic computational graphs (but see Almeida-Pineda algorithm)

‒ Assumption of differentiability
○ But most neurons communicate with “spikes”, essentially binary events
○ Highly nonlinear dynamics can lead to vanishing/exploding derivatives
○ Model average (“firing rate”) activity? Use surrogate functions?
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Outline

‒ Credit assignment in artificial and biological neural networks

‒ Assigning credit by backpropagation-of-error

‒ Assigning credit by controlling a neural dynamics

‒ Theory & experimental results

‒ Connections to probabilistic modeling and free-energy minimization
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Desiderata for our theory

1. Gradient-based learning

2. Use feedback to embed credit assignment information in the neural activity

3. Local, activity-dependent learning rules

4. Single-phase learning

5. Ability to learn a recurrent dynamics (go beyond feedforward networks)
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Going beyond feedforward networks

Key simplifying assumption:

dynamics reaches a fixed point

In this talk, we will focus on

neural networks of firing rate neurons

external input 

equilibrium state
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Learning at equilibrium

loss at equilibrium

selects output neurons

L defined on a subset of 𝜙

Almeida, Neural Computers 1989

Pineda, Neural Computation 1989

Bai et al., NeurIPS 2019

Standard method:

Compute             using the Almeida-Pineda 

(recurrent backpropagation) algorithm

Critique of conventional backpropagation applies
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Learning by minimizing control
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Controlling neural activity

…

…

Continuous-time feedforward neural network

Feedforward neural network
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Sussillo & Abbott, Neuron 2009

Gilra & Gerstner, eLife 2017

Alemi et al., AAAI 2018

Podlaski & Machens, NeurIPS 2020

Meulemans et al., NeurIPS 2021

Meulemans et al., ICML 2022



Controlling neural activity

…

…

Controlled feedforward neural network

network becomes recurrent due to feedback control

Controlled equilibrium

Degeneracy: for our neural networks there are typically infinitely many 

configurations of the activity for which the output is at the desired target
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Sussillo & Abbott, Neuron 2009

Gilra & Gerstner, eLife 2017

Alemi et al., AAAI 2018

Podlaski & Machens, NeurIPS 2020

Meulemans et al., NeurIPS 2021

Meulemans et al., ICML 2022



Least-control states

…

…

Controlled feedforward neural network

network becomes recurrent due to feedback control

Controlled equilibrium

Least-control states: reach           with the minimal amount of control

Learning: decrease the amount of control needed to reach target
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Learning by minimizing control
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Least-control states: reach           with the minimal amount of control

Learning: decrease the amount of control needed to reach target



Formalizing the least-control principle

We want to minimize the amount of control while

‒ the loss is minimized at this equilibrium

‒ the controlled dynamics are at equilibrium

the least-control principle
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Solving least-control problems
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Solving least-control problems

Step 1: find an optimal control

The minimal amount of control 

possible for the current parameter 

setting
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Solving least-control problems

Step 2: parameter update

Take a gradient step w.r.t.

Step 1: find an optimal control

The minimal amount of control 

possible for the current parameter 

setting
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Solving least-control problems

Step 2: parameter update

Take a gradient step w.r.t.

Step 1: find an optimal control

The minimal amount of control 

possible for the current parameter 

setting

local (in space and time) “Hebbian” learning rule

neural network

model
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Learning rule for the general case

‒ Single-phase, activity-dependent, gradient-based learning

‒ How does optimizing for least-control relate to the original learning problem?

‒ How do we find the optimal control?

least-control state,

optimal control

learning objective

objective gradient (needs some technical assumptions

to ensure existence of implicit functions)
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Linking learning objectives
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Linking learning objectives
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Linking learning objectives
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Linking learning objectives

If we minimize the amount of control            to zero, the original objective is solved  
28

beginning of training after training



Formal propositions

original problem

least-control objective

Condition met in the overparameterized regime:
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Computing the optimal control:

I. Output control
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integral output controller

output error

enforces constraint

on the network output

?

should enforce minimum norm constraint on the activity



Computing the optimal control:

II. Conditions for hidden control at equilibrium
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Feedforward network:

Abuse of partials

Recurrent network:

Generalized weight alignment conditions

(recall weight transport problem)



Central idea: combine network dynamics and controller 

dynamics to settle down to an optimally controlled state

Computing the optimal control:

III. Neural control circuits

Direct linear feedback Dynamic inversion Energy-based dynamics
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Approach 1: direct linear feedback
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Feedforward network

Lillicrap et al., Nat. Comm. 2016; Nokland NeurIPS 2016; 

Meulemans et al. NeurIPS 2021, ‘22; Akrout et al. NeurIPS 2019

Central idea: Take the simplest feedback 

controller architecture, and train Q to 

approximately satisfy optimal control conditions

design applies to

recurrent networks as well
‒ Learn feedback weights Q with the help of noise

‒ Approximate control for nonlinear networks



Approach 2: dynamic inversion
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Feedforward neural network

Central idea: combine network dynamics  

and controller dynamics     to jointly 

converge to an optimal control

‒ Compare to backpropagation

‒ Feedback weights can be learned too

‒ Exact optimal control



Approach 2: dynamic inversion
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Recurrent neural network

‒ Compare to recurrent backpropagation

‒ Feedback weights can be learned too

‒ Exact optimal control

Central idea: combine network dynamics  

and controller dynamics     to jointly 

converge to an optimal control



Canonical microcircuits of the cortex
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Douglas et al., Neural Comput. 1989

Bastos et al., Neuron 2012

Keller & Mrsic-Flogel, Neuron 2018

Sacramento et al., NeurIPS 2018

Whittington & Bogacz, Trends Cogn. Sci. 2019

Payeur et al., Nat. Neurosci. 2021

‒ Flexible control conditions suggest new feedback circuits

‒ Compatible with previous microcircuit “motifs”

‒ Feedback can now strongly influence neural activity



Interim summary

We have:

‒ Embedded credit information within a dynamics as an optimal control

○ Control brings network towards a minimal-loss equilibrium state

‒ Reformulated learning as minimizing the amount of control at equilibrium

‒ Shown that (minimum-norm) least-control states enjoy desirable properties:
○ Yield local gradient-based learning rule for adapting parameters

○ Allow for flexible design of neural control circuits

○ Admit optimal parameters that also solve the original learning problem
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Competitive performance in practice
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Feedforward (test accuracy, %) Recurrent (test accuracy, %)

MNIST CIFAR-10 MNIST CIFAR-10

LCP (linear feedback) 97.73 ± 0.07 / 97.70 ± 0.11 /

LCP (dynamic inversion) 98.11 ± 0.07 77.28 ± 0.10 97.58 ± 0.16 80.26 ± 0.17

LCP (dynamic inversion 

+ learned feedback)

98.14 ± 0.09 77.16 ± 0.10 97.75 ± 0.11 /

(R)BP 98.29 ± 0.14 77.58 ± 0.14 97.87 ± 0.19 80.14 ± 0.20

fully-connected 

equilibrium RNN

convolutional 

equilibrium RNN

convolutional 

network

2-hidden-layer

feedforward 

network Bai et al., NeurIPS 2020



Outline

‒ Credit assignment in artificial and biological neural networks

‒ Assigning credit by backpropagation-of-error

‒ Assigning credit by controlling a neural dynamics

‒ Theory & experimental results

‒ Connections to probabilistic modeling and free-energy minimization
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Connection to energy-based learning
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the least-control principle

Substituting the first constraint into the objective, we get, for feedforward neural networks:

Letting                 we retrieve the least-control objective

augmented energy

‒ Solving a least-control problem is equivalent to free-energy minimization

‒ Gradient flow on the free-energy yields a least-control state

‒ New results for classical hierarchical predictive coding models

Rao & Ballard, Nat. Neurosci. 1999

Friston, Trends Cogn. Sci. 2009

Whittington & Bogacz, Trends Cogn. Sci. 2019

variational expectation maximization

under a conditional Gaussian probabilistic model=



Least-control principle

Unifying the spectrum
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Equilibrium propagation Augmented energy

Weak nudging Perfect control

augmented energy

Scellier & Bengio

Front. Comput. Neurosci. 2017



Conclusions

‒ Local learning rules by embedding credit assignment information within a 

neural dynamics

‒ Credit assignment results from controlling dynamics; no weak perturbations

‒ Flexible conditions for designing control circuits

‒ Strong performance on standard supervised learning benchmarks

‒ Dynamics at equilibrium generalize feedforward networks.

Learning away from equilibrium?
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