The least-control principle for learning at equilibrium

João Sacramento

with Alexander Meulemans*, Nicolas Zucchet*, Seijin Kobayashi*, Johannes von Oswald

IST Seminar in Mathematics, Physics and Machine Learning

Exciting methodological advances

record thousands of neurons simultaneously \rightarrow bridge the cellular and network level

Zador et al., arXiv 2022 Saxe et al., *Nat. Rev. Neurosci.*Richards et al., *Nat. Neurosci.*Hassabis et al., *Neuron* Neural networks that perceive the world and act back upon it

Outline

- Credit assignment in artificial and biological neural networks
- Assigning credit by backpropagation-of-error
- Assigning credit by controlling a neural dynamics
- Theory & experimental results
- Connections to probabilistic modeling and free-energy minimization

Neural networks

- Information processing done by in parallel by a network of basic computational units
- Output of each unit determined by its parameters
- Parameters determined from data (the learning process; plasticity)
- System is not fully hand-engineered, complex behavior emerges from interaction with data

The credit assignment problem

A change in early layers of processing affects the output of the network in a complicated way

Backpropagation

Learning by gradient ascent

Adjust synapses θ to maximize objective function *F* by taking steps along its gradient:

$$\theta_{t+1} = \theta_t + \eta \, \nabla F(\theta_t)$$

almost always: computed by backpropagation-of-error Bryson, *Harvard Symposium* 1961 Rumelhart et al., *Nature* 1986

- Scalable approach
- Unreasonably effective?
- Underlies great advances in supervised, unsupervised and reinforcement learning

Credit assignment in the brain

- The human brain has $\sim 10^{15}$ synaptic connections, majority is plastic
- How does synaptic change eventually lead to improved behavior?
- Determining credit/blame with a parallel, distributed processing algorithm
- Does cortical feedback play a role in this process?

Backpropagation in the brain?

- Weight transport problem (non-local learning rule): the change of a given synapse depends on the precise values of all others downstream of it
- Clocked two-phase algorithm: prediction followed by error computation
- Backpropagated errors instruct synaptic change, but **do not change activity**
- Restricted to acyclic computational graphs (but see Almeida-Pineda algorithm)
- Assumption of differentiability
 - But most neurons communicate with "spikes", essentially binary events
 - Highly nonlinear dynamics can lead to vanishing/exploding derivatives
 - Model average ("firing rate") activity? Use surrogate functions?

Grossberg, *Cogn. Sci.* 1987 Crick, *Nature* 1989 Lillicrap et al., *Nat. Rev. Neurosci.* 2020

Backpropagation in the brain?

- Weight transport problem (non-local learning rule): the change of a given synapse depends on the precise values of all others downstream of it
- Clocked **two-phase** algorithm: prediction followed by error computation
- Backpropagated errors instruct synaptic change, but **do not change activity**
- Restricted to acyclic computational graphs (but see Almeida-Pineda algorithm)
- Assumption of differentiability
 - But most neurons communicate with "spikes", essentially binary events
 - Highly nonlinear dynamics can lead to vanishing/exploding derivatives
 - Model average ("firing rate") activity? Use surrogate functions?

Grossberg, *Cogn. Sci.* 1987 Crick, *Nature* 1989 Lillicrap et al., *Nat. Rev. Neurosci.* 2020

Outline

- Credit assignment in artificial and biological neural networks
- Assigning credit by backpropagation-of-error
- Assigning credit by controlling a neural dynamics
- Theory & experimental results
- Connections to probabilistic modeling and free-energy minimization

Desiderata for our theory

- 1. Gradient-based learning
- 2. Use feedback to embed credit assignment information in the neural activity
- 3. Local, activity-dependent learning rules
- 4. Single-phase learning
- 5. Ability to learn a recurrent dynamics (go beyond feedforward networks)

Going beyond feedforward networks

Key simplifying assumption:

dynamics reaches a fixed point

$$\dot{\phi}(t) = f_{\theta}(\phi(t), x)$$
$$0 = f_{\theta}(\phi^*, x)$$

$$\begin{split} \dot{\phi}(t) &= -\phi(t) + W\sigma(\phi(t)) + Ux \\ \phi^* &= W\sigma(\phi^*) + Ux \\ \theta &= \{W, U\} \end{split}$$

In this talk, we will focus on neural networks of firing rate neurons

Learning at equilibrium

*

 $\phi(\phi_{ heta}^{*})$ loss at equilibrium

L defined on a subset of ϕ

$$\phi^* = W\sigma(\phi^*) + Ux$$
$$L(\theta) = \|y^{\text{target}} - \underline{S_y}\phi_{\theta}^*\|^2$$
selects output neurons

Standard method:

Compute $\nabla_{\theta} L(\phi_{\theta}^*)$ using the Almeida-Pineda (recurrent backpropagation) algorithm

Critique of conventional backpropagation applies

Almeida, *Neural Computers* 1989 Pineda, *Neural Computation* 1989 Bai et al., *NeurIPS* 2019

 \mathcal{X}

Learning by minimizing control

Controlling neural activity

Sussillo & Abbott, *Neuron*Gilra & Gerstner, *eLife*Alemi et al., *AAAI*Podlaski & Machens, *NeurIPS*Meulemans et al., *NeurIPS*Meulemans et al., *ICML* Feedforward neural network

$$\phi_l^* = W_l \sigma(\phi_{l-1}^*)$$

Continuous-time feedforward neural network

$$\dot{\phi}_l(t) = -\phi_l(t) + W_l \sigma(\phi_{l-1}(t))$$

Controlling neural activity

Controlled feedforward neural network

$$\dot{\phi}_l(t) = -\phi_l(t) + W_l \sigma(\phi_{l-1}(t)) + \psi_l(t)$$

network becomes recurrent due to feedback control

Controlled equilibrium

$$\phi_{l,*} = W_l \sigma(\phi_{l-1,*}) + \psi_{l,*}$$

Degeneracy: for our neural networks there are typically infinitely many configurations of the activity for which the output is at the desired target

Sussillo & Abbott, *Neuron*Gilra & Gerstner, *eLife*Alemi et al., *AAAI*Podlaski & Machens, *NeurIPS*Meulemans et al., *NeurIPS*Meulemans et al., *ICML*

Least-control states

Controlled feedforward neural network

$$\dot{\phi}_l(t) = -\phi_l(t) + W_l \sigma(\phi_{l-1}(t)) + \psi_l(t)$$

network becomes recurrent due to feedback control

Controlled equilibrium

$$\phi_{l,*} = W_l \sigma(\phi_{l-1,*}) + \psi_{l,*}$$

Least-control states: reach y^{target} with the minimal amount of control

Learning: decrease the amount of control needed to reach target

Learning by minimizing control

Least-control states: reach y^{target} with the minimal amount of control

Learning: decrease the amount of control needed to reach target

Formalizing the least-control principle

We want to minimize the amount of control while

- the controlled dynamics are at equilibrium
- the loss is minimized at this equilibrium

$$\lim \|\psi\|$$
$$0 = f_{\theta}(\phi, x) + \psi$$

$$0 = \nabla_{\phi} L(\phi)$$

 $min ||_{cl} ||_2$

$$\min_{\phi,\psi,\theta} \frac{1}{2} \|\psi\|^2 \quad \text{s.t.} \quad f_{\theta}(\phi, x) + \psi = 0, \quad \nabla_{\phi} L(\phi) = 0$$

the least-control principle

$$\min_{\phi,\psi,\theta} \frac{1}{2} \|\psi\|^2 \quad \text{s.t.} \quad f_{\theta}(\phi, x) + \psi = 0, \quad \nabla_{\phi} L(\phi) = 0$$

$$\min_{\boldsymbol{\phi}, \boldsymbol{\psi}, \boldsymbol{\theta}} \frac{1}{2} \|\boldsymbol{\psi}\|^2 \quad \text{s.t.} \quad f_{\boldsymbol{\theta}}(\boldsymbol{\phi}, \boldsymbol{x}) + \boldsymbol{\psi} = 0, \quad \nabla_{\boldsymbol{\phi}} L(\boldsymbol{\phi}) = 0$$

Step 1: find an optimal control

The minimal amount of control possible for the current parameter setting

$$\min_{\phi,\psi,\theta} \frac{1}{2} \|\psi\|^2 \quad \text{s.t.} \quad f_{\theta}(\phi, x) + \psi = 0, \quad \nabla_{\phi} L(\phi) = 0$$

Step 1: find an optimal control

The minimal amount of control possible for the current parameter setting

Step 2: parameter update

Take a gradient step w.r.t. θ

$$\min_{\phi,\psi,\theta} \frac{1}{2} \|\psi\|^2 \quad \text{s.t.} \quad -\phi + W\sigma(\phi) + Ux + \psi = 0, \quad \nabla_{\phi} L(\phi) = 0 \quad \begin{array}{c} \text{neural network} \\ \text{model} \end{array}$$

Step 1: find an optimal control

The minimal amount of control possible for the current parameter setting

Step 2: parameter update

Take a gradient step w.r.t. θ

 $\Delta W = \psi_* \sigma(\phi_*)^\top$

local (in space and time) "Hebbian" learning rule

Learning rule for the general case

$$\begin{array}{ll} \text{least-control state,} & (\phi_{\star},\psi_{\star}) = \mathop{\arg\min}_{\phi,\psi} \left\{ \frac{1}{2} \|\psi\|^2 \quad \text{s.t.} \quad f_{\theta}(\phi,x) + \psi = 0, \ \nabla_{\phi}L(\phi) = 0 \right\} \\ \text{learning objective} & \mathcal{H}(\theta) = \frac{1}{2} \|\psi_{\star}\|^2 \\ \text{objective gradient} & \nabla_{\theta}\mathcal{H}(\theta) = -\frac{\partial f}{\partial \theta} (\phi_{\star},x,\theta)^{\top} \psi_{\star} & \text{(needs some technical assumptions} \\ \text{to ensure existence of implicit functions)} \end{array}$$

- Single-phase, activity-dependent, gradient-based learning
- How does optimizing for least-control relate to the original learning problem?
- How do we find the optimal control?

beginning of training after training $L(\phi)$ $L(\phi)$ * $f(\phi_*, \theta)$ ϕ_2 ϕ_2 ϕ_1

If we minimize the amount of control $\|\psi_*\|^2$ to zero, the original objective is solved

Formal propositions

original problem

$$\min_{\theta} L(\phi^*) \quad \text{s.t.} \ f(\phi^*, \theta) = 0, \tag{1}$$

least-control objective
$$\mathcal{H}(\theta) = \frac{1}{2} \|\psi_{\star}\|^2$$

Proposition 3. Assuming L is convex on the system output, we have that the optimal control ψ_{\star} is equal to 0 iff. the free equilibrium ϕ^* minimizes L.

Proposition 4. Assuming L is convex on the system output, a local minimizer θ of the least control objective \mathcal{H} is a global minimizer of the original learning problem (1), under the sufficient condition that $\partial_{\theta} f(\phi_{\star}, \theta)$ has full row rank.

Condition met in the *overparameterized* regime: $|\theta| \ge |\phi|$

Computing the optimal control: I. Output control

enforces constraint on the network output

Computing the optimal control: II. Conditions for hidden control at equilibrium

Generalized weight alignment conditions (recall weight transport problem)

Feedforward network:

 $\operatorname{Col}[Q(\phi_*, \theta)] = \operatorname{Col}[J_*^\top]$ $J_* = \begin{bmatrix} \frac{\partial \phi_L}{\partial \phi_1} & \dots & \frac{\partial \phi_L}{\partial \phi_L} \end{bmatrix} \Big|_{\phi = \phi_*}$ $\bigwedge \text{ Abuse of partials}$

Recurrent network:

$$\operatorname{Col}\left[Q(\phi_*,\theta)\right] = \operatorname{Col}\left[(\operatorname{Id} - \sigma'(\phi_*)W^{\top})^{-1}D^{\top}\right]$$

Computing the optimal control: III. Neural control circuits

Central idea: combine network dynamics and controller dynamics to settle down to an optimally controlled state

Approach 1: direct linear feedback

Feedforward network

Central idea: Take the simplest feedback controller architecture, and train Q to approximately satisfy optimal control conditions

$$\dot{\phi}_l(t) = -\phi_l(t) + W_l \sigma \big(\phi_{l-1}(t)\big) + Q_l u(t)$$

- Learn feedback weights Q with the help of noise
- Approximate control for nonlinear networks

Approach 2: dynamic inversion

Feedforward neural network

Central idea: combine network dynamics ϕ and controller dynamics $\dot{\psi}$ to jointly converge to an optimal control

$$\dot{\phi}_l(t) = -\phi_l(t) + W_l \sigma \left(\phi_l(t)\right) + \psi_l(t)$$
$$\dot{\psi}_l(t) = -\psi_l(t) + \sigma' W_{l+1}^\top \psi_{l+1}(t)$$

- Compare to backpropagation
- Feedback weights can be learned too
- Exact optimal control

Approach 2: dynamic inversion

Recurrent neural network

Central idea: combine network dynamics ϕ and controller dynamics $\dot{\psi}$ to jointly converge to an optimal control

$$\dot{\phi} = -\phi + W\sigma(\phi) + Ux + \psi$$
$$\dot{\psi} = -\psi + \sigma'(\phi)W^{\top}\psi + S_y^{\top}u$$

- Compare to recurrent backpropagation
- Feedback weights can be learned too
- Exact optimal control

Canonical microcircuits of the cortex

Douglas et al., *Neural Comput.*Bastos et al., *Neuron*Keller & Mrsic-Flogel, *Neuron*Sacramento et al., *NeurIPS*Whittington & Bogacz, *Trends Cogn. Sci.*Payeur et al., *Nat. Neurosci.*

- Flexible control conditions suggest new feedback circuits
- Compatible with previous microcircuit "motifs"
- Feedback can now strongly influence neural activity

Interim summary

We have:

- Embedded credit information within a dynamics as an optimal control
 - Control brings network towards a minimal-loss equilibrium state
- Reformulated learning as minimizing the amount of control at equilibrium
- Shown that (minimum-norm) least-control states enjoy desirable properties:
 - Yield local gradient-based learning rule for adapting parameters
 - Allow for flexible design of neural control circuits
 - Admit optimal parameters that also solve the original learning problem

Competitive performance in practice

Feedforward (test accuracy, %) Recurrent (test accuracy, %)

	MNIST	CIFAR-10	MNIST	CIFAR-10
LCP (linear feedback)	97.73 ± 0.07	/	97.70 ± 0.11	/
LCP (dynamic inversion)	98.11 ± 0.07	77.28 ± 0.10	97.58 ± 0.16	80.26 ± 0.17
LCP (dynamic inversion + learned feedback)	98.14 ± 0.09	77.16 ± 0.10	97.75 ± 0.11	/
(R)BP	98.29 ± 0.14	77.58 ± 0.14	97.87 ± 0.19	80.14 ± 0.20
	2-hidden-layer feedforward network	convolutional network	fully-connected equilibrium RNN	convolutional equilibrium RNN Bai et al., <i>NeurIPS</i> 2020

Outline

- Credit assignment in artificial and biological neural networks
- Assigning credit by backpropagation-of-error
- Assigning credit by controlling a neural dynamics
- Theory & experimental results
- Connections to probabilistic modeling and free-energy minimization

Connection to energy-based learning

$$\min_{\phi,\psi,\theta} \frac{1}{2} \|\psi\|^2 \quad \text{s.t.} \quad f_{\theta}(\phi, x) + \psi = 0, \quad \nabla_{\phi} L(\phi) = 0 \quad \text{the least-control principle}$$

Substituting the first constraint into the objective, we get, for feedforward neural networks:

$$\begin{split} &\min_{\phi,\theta} \frac{1}{2} \sum_{l} \|\phi_{l} - W_{l}\sigma(\phi_{l-1})\|^{2} + \beta L(\phi) \quad \text{augmented energy} \\ &= \min_{\phi,\theta} \left\{ -\ln p(\phi, y \mid x; \theta) \right\} \quad \substack{\text{variational expectation maximization} \\ &\text{under a conditional Gaussian probabilistic model} \end{split}$$

Letting $\beta \to \infty~$ we retrieve the least-control objective

- Solving a least-control problem is equivalent to free-energy minimization
- Gradient flow on the free-energy yields a least-control state
- New results for classical hierarchical predictive coding models

Rao & Ballard, *Nat. Neurosci.* 1999 Friston, *Trends Cogn. Sci.* 2009 Whittington & Bogacz, *Trends Cogn. Sci.* 2019

1

Unifying the spectrum

$$\frac{1}{2}\|f(\phi,\theta)\|^2 + \beta L(\phi) = 0 \qquad \text{augmented}$$

energy

Scellier & Bengio Front. Comput. Neurosci. 2017

Conclusions

- Local learning rules by embedding credit assignment information within a neural dynamics
- Credit assignment results from controlling dynamics; no weak perturbations
- Flexible conditions for designing control circuits
- Strong performance on standard supervised learning benchmarks
- Dynamics at equilibrium generalize feedforward networks.
 Learning away from equilibrium?

Thank you

Alexander Meulemans

Nicolas

Zucchet

Seijin Kobayashi

Johannes von Oswald

Angelika Steger

Funding:

Schweizerischer Nationalfonds

More results in:

The least-control principle for local learning at equilibrium A. Meulemans*, N. Zucchet*, S. Kobayashi*, J. von Oswald, J. Sacramento *NeurIPS* 2022