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The ARNN abstract computer,3 extensively analysed in [28], introduces an
analogue-digital model of computation in discrete time. When the parameters
of the system (so-called weights) are real-valued,4 the computations cannot be
specified by finite means: we have computation without a program. Several other
models of analogue-digital computation were introduced around the same time
to explore the power of reals added to digital computation (see [17,27,29]). Un-
der the polynomial time constraint, the ARNN efficiently performs not only all
Turing machine efficient computations,5 but also computes non-recursive func-
tions such as (a unary encoding of) the halting problem (of Turing machines).
The reals6 are introduced into the computation by means of measurements made
either by a few neurons that read a weight byte by byte, or by means of a real-
valued probability of transition. In the first case, the ARNN decides P/poly
in polynomial time and, in the second case, the ARNN decides BPP// log? in
polynomial time. However, in these systems, measurements sound physically un-
realistic since the function involved in computing the so-called activation of the
neurons (the physical processors) is the well-behaved piecewise linear function,
exhibiting sharp vertices. In an attempt to recover the classical analytic sigmoid
activation function, in [25], the power of the deterministic ARNN in polynomial
time drops to P/ log? as shown in [7,19].

Criticism was addressed towards the possibility of engineering such machines.
In [20], Martin Davis pointed clearly that the only way a machine can go beyond
the Turing limit is being provided with non-computable information and in [21]
he says that, even if a machine could compute beyond the Turing limit, we would
not be able to certify that fact (a phenomenon that can be well understood in
[24], since only the computable character of a function can be verified — but
not decided — in the limit). In [30], Younger et al. discuss the realization of

3 Analogue Recurrent Neural Net.
4 Real weights are quite common in the neural net literature.
5 A few rational weights being enough for the purpose.
6 In fact, the truncated reals. The amount of precision depends on the size of the

input.



BPP// log? super-Turing machines with their electronic engineering project. In
our paper, the general model is only intended to establish limits to abstract
and ideal computing devices that, like the ARNN, have access to real numbers
by means of an ideal measurement in Classical Physics. It should be noted that
measurements of physical quantities are also the subject of well-developed theory
that started with Hempel and Carnap (see [18,22,23]). Their theory explains how
numerical representations of qualitative attributes are possible and is laid out in
the work of Krantz et al. [26].

In order to understand the computations of new paradigms of computing
involving real numbers, it was proposed in [5] and [6] to replace the classical
oracle to a Turing machine by an analogue device like those in the hybrid models
of the sixties (see [16] for those analogue-digital models).

The oracles that we considered are physical processes that enable the Turing
machine to measure quantities. As far as we have investigated (see [15]), mea-
surements can be classified in one of the three types:7 one-sided or threshold
measurement, two-sided measurement and vanishing measurement. A one-sided
experiment is an experiment that approximates the unknown value y just from
one side, i.e. it approximates an unknown value y either with values z from above
or with values z from below, checking either if y < z or if z < y, but not both. A
two-sided experiment8 is an experiment that approximates the unknown value
y from both sides, i.e. it approximates the unknown value y with values z from
above and with values z from below, checking if y < z and z < y. A vanishing
experiment is an experiment that approximates the unknown value y measuring
the number of ticks of a (Turing machine) clock.9 This type of experimental clas-
sification is neither in Hempel’s original work in [23], nor in the fully developed
theory in [26].

For the previous types of oracle, the communication between the Turing
machine and the oracle is ruled by one of the following protocols, inter alia (see
[8] for the other protocols):

– Infinite precision: the oracle answers to the queried word with infinite preci-
sion;

– Arbitrary precision: the oracle answers to the queried word with probability
of error that can be made as small as desired but is never 0;

– Fixed precision ε > 0: the oracle answers to the queried word with probability
of error ε.

It was then realised that the interaction between the analogue part – exper-
iment to conduct or value to be measured – and the digital part – the scientist
or the computer – takes (physical) time that is at least exponential in the de-
sired number of bits of precision (see [10,11,12,13,14,15]). (This physical time
is intrinsic to physical law and does not represent the time needed for the ac-
tivity of measurement itself.) Having discovered such a timing restriction (that

7 This is still conjecture.
8 ARNN computes with a two-sided experiment.
9 A time constructible function.



in the ARNN model corresponds to the replacement of the piecewise linear or
saturated sigmoid by the analytical sigmoid), we engaged in an investigation on
experimental apparatuses in order to answer the question What can one compute
with the help of a measurement of a magnitude? (see [1,4,8,13,15]). In [1,2,4,8,9]
the upper bounds of analogue-digital computation in polynomial time under
ideal conditions were placed in BPP// log? in the case of both deterministic,
and of probabilistic, computation. In fact, the power of measurements has been
BPP// log? persistently, across all limited precision protocols, while it drops
from P/poly to P/ log? in the case of the deterministic measurement. We won-
dered whether the barrier BPP// log? would persist in more general conditions.
In [3], we show that under the most general (ideal) conditions the upper bounds
of computational power of measurements of (deterministic) infinite, arbitrary
and limited precisions are BPP// log?.

Among a number of theorems, we have shown that if these measurements
are used as an oracle to a Turing machine, then, in polynomial time, we can
compute the complexity classes listed in Table 1.

non-analytic analogue Infinite Unbounded Fixed

Lower Bound P/poly P/poly BPP// log?

Upper Bound P/poly P/poly BPP// log?

analytic analogue Infinite Unbounded Fixed

Lower Bound P/ log? BPP// log? BPP// log?

Upper Bound P/ log? BPP// log2? BPP// log2?
or BPP// log? or BPP// log?

Table 1. The lower and upper bounds for the main complexity classes computed by
the analogue-digital models characterised by either a non-analytic (C0, but not C2)
or an analytic function (from C2 to analytic). These results were presented in [5,6] for
the first case and in [1,4,8] for the second case. Different classes such as BPP// log2?
and BPP// log? occur in further specialization of the protocols not considered in this
extended abstract.

Recently, we have moved towards understanding the computational limits of
analogue-digital machines operating in bounded space. Some new research will
be summarised.
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