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Motivation /Overview

We propose:

A variational model for denoising color images that combines
[1 Meyer's “u 4+ v" decomposition

1 chromaticity-brightness (CB) decomposition

It involves:

[J Minimization of integral functionals e linear growth e maps
taking values on a manifold e depend on a small parameter ¢ > 0

[J underlying manifold has boundary; the integrand and its recession
function fail to satisfy hypotheses commonly assumed in literature

We prove:

[l characterization of asymptotic behavior as ¢ — 0"

[1 convergence of infima, almost minimizers, and energies
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Image Restoration

G

Deteriorated images

Images are damaged during creation, transmission, and recording:
" blur due to an incorrect lens adjustment or due to motion
| possible defects of the image system

I random phenomenon such as noise due to signal transmission

Variational PDE methods

[ have proven to be successful in the restoration process, where
the desired clean and sharp image is obtained as a minimizer
of a certain energy functional

Rita Ferreira (KAUST) IST, 14th July 2017 3



Image Restoration

Variational PDE methods - cont.

The energy functionals proposed in the literature share the common
feature of taking into account a balance between

[ a certain distance to the given noisy image - fidelity term

[J a filter acting as a regularization of the image

[J Some notation:
1 C R? image domain (typically, a rectangle)
[0 w: ) — R original (gray-scaled) image describing a real scene

[1 wg observed (damaged) image of the same scene

Rita Ferreira (KAUST) IST, 14th July 2017 4



Image Restoration

LI regularization term + fidelity term

Tikhonov & Arsenin ('77):

Find u that best fits the data, g, whose gradient is low (\ is a tuning
parameter):

min {/|Vu|2dw +)\/|u0—u|2dw}
ueW1h2(Q) Q Q

1 L?-norm of the gradient enhances noise removal

[l but penalizes too much the gradient corresponding to edges -
oversmoothing



Image Restoration

Rudin & Osher & Fatemi (92): TV-model

Proposed to use the L!'-norm:

inf {/|Vu|da; + )\/|u0—u|2dx}
uewl:1(Q)

ug—u€L2(Q)

or, equivalently,

- 2
Join {|Du|(Q) + A /Q\uo ul dw}

ug—u€L2(Q)



Functions of Bounded Variation

[ Q c RY open set

0 M(2;R™) space of R™-valued Radon measures A : B(€2) — R™
endowed with the total variation norm | - |

u € BV(Q;RY) & ue LY QRY) & Du= )€ M(Q; RN )

Hull gy aray = [lull g ouray + [Dul(52)

O uj S win BV(RY) & wj —uin LH4RY) & Duj = Du
weakly-x in M(Q;RdXN)
0 if uw € WHHQ;RY), then u € BV (;R?) with Du = Vuly



TV-model/ROF’s model ) S

(¢

min { |Du|(2) + A / \uo—u‘de}
wEBV(Q) Q

ug—u€L2(R)

[ It leads to a decomposition of the type ug = u + v, where

[J u well-structured, aimed at modeling homogeneous regions
[] v encodes textures and noise

[J very successful as it removes noise while preserving edges

in some cases, leads to undesirable phenomena like blurring and
stair-casing effect

may not provide a good decomposition - some pure geometric
images are treated as noise or textures

[] Reasons pointed out in the literature relate to both the fidelity term
and the regularization term
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On the fidelity term

Meyer (’01):
Proved:

[1 oscillating images are often treated as texture or noise

[ replacing the L2-norm in the fidelity term by a certain G-norm
leads to better decompositions

Accordingly, he suggested the model

ot { [Dul(€) + A [lu — uollge) }
u—ugEG(Q)



Meyer's GG-norm

[ ©Q =R2% Meyer '01
[ © c R? open, bounded, connected, Lipschitz: Aubert & Aujol '05

G(9) is the subspace of W~1(Q) ~ (W, (€2))’ given by
G(Q) = {v e L*(Q): v=divE, € € L®(Q;R?), £-n =0 on 90}
Banach space when endowed with the norm

[vllg) = inf {Hg”Loo(Q;]RQ): divé =v, {-n=0on 90}

Alternative characterization (N = 2):
Q) = {v € 12(Q): / o(z) do = o}
Q



Main properties of G(£2)

Let {vp, tnen C G(Q2) be a sequence for which there exists p > 2 such that
v, — 0 weakly in LP(§2) as n — oo. Then,

Jim vnllg) = 0.

L) a function in G(€2) may have large oscillations but small G(£2)-norm

Let (u,v) be the unique solution of ROF's model. If [luol|g(q) < 75, then
u =0 and v = ug.

[] an oscillating image that has small G(£2)-norm will be treated by
ROF's model as texture or noise, which is not what expected if ug
were a pure geometric image (e.g., a characteristic function)



Back to Meyer’'s model

These two results show that the space G is well suited to capture
oscillations of a function in an energy minimization method

et { [Dul(€) + A [lu —uollge) }
u—ugEG(Q)

[] Existence: Yes

7 Uniqueness: Open problem

'] Meyer's model is difficult to handle numerically because of the form
of the G(€2)-norm (it prevents to express directly the associated
Euler—Lagrange equation with respect to )

[] Several models attempting to approximate Meyer's model have been
proposed (Aubert, Blanc-Féraud, Chambolle, Osher, Solé, Vese, ...)



Chromaticity-Brightness (CB) models

0 g : Q — (RY)? observed (damaged) color image (RGB system)
0 (ug)p := |up| brightness component of wug
0 (ug)e = -2 = 10

=— = € S? chromaticity component of g
luol (w0

General idea of the CB models:

[l restore brightness and chromaticity components separately (get
up and uy)

[] observe that brightness component behaves as a gray-scale
image (use any of the previous models)

[1 assemble the two components to get the restored image:
U 1= Uple

[] Considered as reducing shadowing and providing better simulation
results



A CB model

Kang & March ('07): (inpainting) CB model

i Vug|)|Vue|*d +>\/ c— c2d}
ot A [ 0vEDTul s+ [ = (uohefda

1 D C € set where the color is known
O uf := Go * (ug)p, Go(z) 1= ée - ,A>0
0 g:Ry —=RY, g\, g(0) =1, g(+00) =0

1 ty2 .
<9(t) = T@)Q, g(t) == e (@) with a > O)

[l The value of the function g(|Vuf|):
[] is close to one in the regions where uj varies slowly
[l is small at the edges of brightness (if both o and a are small enough)



Kang & March’s CB model

min {/g(\VUé‘\)yvucpdx +A / |uc—(u0)c|2dx}
) Q D

uc€WH2(Q;52

[ the first term acts as a regularization functional: the diffusion of
chromaticity is inhibited across the edges of uj, yielding a sharp
transition in the function u,

[1 the second term requires the unitary vector field to be close to the
chromaticity data (ug). in D

Therefore, the minimizer is a piecewise smooth color field, which is smooth
in regions where the brightness uj varies slowly.

[ If u. is a solution of this problem, the colorized image u can is defined
by u := upue.



A scheme towards our model

ug - 0 — (Rg-)?’
r |
U =Uple  [Dul(Q) + Ao lu—uollars) v

Uy |Dup|(2) +Ao [lup — (uo)sllaio) Ue [, 9(|Vup|)|Vue|* dz

e Jo lue = (uo)e|* da

Because 1 < |up| < C' a.e., we will consider uy's such that a < |up| <
for some 0 < o < 3. This condition plays an important role to obtam
(uniform) estimates concerning [, |[Vu.|dz.




Towards our model

F"e9 (up, uc) ::/ \Vub|dx+/g(|Vub|)|Vuc\2dx+/ |V (upue)| dz
Q Q Q

Fid(uy, u0) = My — ()bl + Ae /Q e — (up)ef? da

+Aol[upuc — UOHG(Q;R?’)

inf {Freg(ub,uc) + Ff(uy, u,) }
upeWh1(Qsa,8]),uceWwh2(2;52),
'u,bf('u.o)bGG(Q),ubucfu0€G(Q;]R3)




A visit to the “Gap Problem”

Pw%%wa/wmm+/mwwmmfm+/wwmmm
Q Q Q
= / h(up, te, Vuy, Vu,) dz,
Q

where
h(r,s,&,m) == €]+ g(I€DnI* + s @ & + ]

0 (&m) — h(r,s,&,n) is not (in general) quasiconvex

0 G+ Inl) < h(r,s,€6,m) < C(1+[€] + nf*) non-standard growth

(161 + $ Il < 3161+ 3(irm + s @ €] + Igl) < h(r, 5,6,m)

GAP PROBLEM...! )




Towards our model - cont.
F7e9 (up, uc) ::/ \Vub|dx—|—/g(\Vub\)Vqux—l—/ |V (upue)| dz
Q Q Q

FFid(uy, u0) = My — ()bl + Ae /Q e — ()e|2 da

+Aol[upue — UOHG(Q;R?’)
(amosty Our model:

inf { Freg(ub’uC) + Ffid(ub’uc) }
(upruc)eWLL(Qsla,B) x W1 (Q;52),
ubf(uo)bGG(Q),ubucfu0€G(Q;]R3)

[l It is a challenging task to construct a recovery sequence that
simultaneously satisfies the manifold constraint and the
average restrictions



A penalized version of F/%

F (wy, u,)

1
= )\b up — (’u())b — ][ (U(, — (UO)b) dz + - /(ub — (’U,o)b) dz
Q G flJo
+ )xc/ |ue — (ug)c|* dz
Q
1
+ Aol|uptte — ug — ][(ubuc —up) dz + - /(ubuc —ugp) dx
Q GOR3)  flJa
We will recover Ff%(uy, u.) in the limit as ¢ — 07F. J




Our model

Study the asymptotic behavior as ¢ — 0" of:

inf { Freo(up,ue) + FIup, ue) }
(up,ue) €W (Qs[a,8)) xWh1(0;52),

e - v(n_p?j

b ®076 [Zade v

Fre9(up,ue) = [ |Vup| dz+ [ g(|Vup|)[Vue| dz+ [ [V (upuc) | da

FL upue) = Nollup — (uo)y — foy(up — (u0)s) dzflao
1| fo(up — (uo)p) dx| + Ae [q [ue — (ug)c|* da

+ Ao [[upue—uo— fo (uptc — uo) dw”G(Q;R?*)‘i‘%’ Jo(upte — uo) dz|



More on the space BV (Q; RY)

Approximate limit set A, & Approximate discontinuity set .S,

x € A, if u has an approximate limit at z, i.e., 3z =: @(x) € R? such that

lim u(y) — z|dy = 0.
Jm f () =]

Sy = Q\ A, is called the approximate discontinuity set.

Set .J,, of approximate jump points of u
x€J,if Ja,beR? a#b, and v € SN71 such that

lim u(y) —a|dy =0, lim u(y) — bl dy = 0.
Jm, BJW)! (y) —d Jim, B;W)! (y) — 0l

The triplet (a,b,v), uniquely determined up to a permutation of (a,b) and
a change of sign of v, is denoted by (u™t(z),u™ (x), vy (x)).




More on the space BV (Q; R?) - cont.

Set D, of approximate approximate differentiability points of

€D, if v € A, and 3L € MV =: Vu(z) such that
lim lu(y) — a(z) — L(y — 2)| dy = 0.
§—0+ B(x,0) 1)
Decomposition of Du with u € BV ({; RY)
Du = D%+ D*u Dy < [,NLQ, Déu L ENLQ
= D"+ D*uj, + D*uja, HYL(Sy\ Ju) =0
= Vul® + (ut —u”) @ v, KN 5, + DCu Du := D*uy4,




First main result
A relaxation one:
Q) C R? open & bounded domain, 02 Lipschitz

F:LYQ) x LY(Q;R3) — [0, +o0]

F(ubguc) — {FT&‘](UZ),UC), (ub,uc) c Wl’l(Q; [Oé,ﬂ]) y Wl’l(Q;S2)

400, otherwise.

Then, the lower semicontinuous envelope of F, F : L'(Q) x
LY(;R3) — [0, +00], has the integral representation

Freose (up, uc),  (up, uc) € BV (i [a, f]) x BV (;5?)
400 otherwise,

F(up, ue) = {

where Fre9:5¢T = [ 4 Fjreg’sc + FZ9% | with



Relaxation - characterization of F59¢

Freose” (uy. ) = /Q Or f (uy(2), ue(x), Vuup(z), Ve (x)) da, J

where Q7 f is the tangential quasiconvex envelope of f:

Or f(r5,6,m) = inf{ /Q F(r5,€ + Veoly), 1+ Vib(y)) dy:

o EWE™(Q), v € W&’“(Q;TS(SQ))}

O TS(SQ) tangential space to S? at s
0 refa, 8], s€S8? R ne[Ty(S?)?
O f(rys,6m) = €]+ g€ Inl + s @& + )
IST, 14th July 2017 25



Alternative characterization of Q)7 f

Forall 7 € [a, 8], s € S%, ¢ € R?, and ) € [T5(S5?)]?, we have that

QTf(Ta S, 57 ’I’]) = Q.f(ra S, 67 77)7 J

where, for (r,5,£,m) € R x R? x R? x R3%2,

. f(7,3,€, Ps s|) if s € R3\{0},
R F(CER Y DR €\ (0}
0 otherwise,
where
a ifr<a,
Fi={r fa<r<g, §—§T
pifr=p,

and ¢ € C*(RR;[0,1]) is a cut-off function such that ¢(t) =1 if t > 1,
and ¢(t) =0 if t < 2.
IST, 14th July 2017 26



Relaxation - characterization of F;eg’sc

(uvaC)

FI% (up, ue) = /S K ((up, 1) (), (up, te) ™ (%), Y(uy ue) (7)) dHl(x)aJ

where, for a,b € [a, 8] x S?, v € S1, Q, unit cube centered at 0 and two
faces orthogonal to v,

K(a,bv)= inf /fw(w(y),w(y),vw(y),Vw(y))dy J

(p)eP(abr) Jq

tE,t
foo(,r, S, E; 77) ':hm Sup f(r7 57 57 77)
t—-4o00 t

:htlffgop (1] + g(tlED Il + lrn + s @ €])

=I€l 4 X0 (€D + [ + 5 @ ]

r .



)

Relaxation - characterization of F!9*¢

FE (uny 1) = [ (Qnf) (), o), W (), We(2) 4| D ) J

(@r ) (r.5.€n) = limsup LI 15: 10

t——+o0 t

O

tp(z) and G.(x): approximate limits of up and u, at
W¢: Radon-Nikodym derivative of D(up, u.) w.r.t. its total variation

Wy first row of W¢

O O o O™

WE: 3 x 2 matrix obtained from W¢ by erasing its first row



Previous results - Sobolev setting

[@ B. Dacorogna, |. Fonseca, J. Maly, K. Trivisa ('99)
Manifold constrained variational problems

0 f:R™N [0, 00) continuous
D0 fO<CA+[¢F), p>1
[0 M c R%iaa C! submanifold without boundary

n—oo

inf { liminf/ f(Vuy)dz: u, — win Wl’p(Q;M)} = / Q7 f(u, Vu)dz
Q Q

Qrf(y, ) = int { [ 76+ Vo@)asi g e WOI’OO(Q;Ty(M))}

QTf(y7 C) = Qf_(y7<)a f(y7 C) = f(PyC)

(P,C is the orthogonal projection of R? onto T}, (M))




Previous results - BV setting

@ R. Alicandro, A. Corbo Esposito, C. Leone ('07)
Relaxation in BV of Integral Functionals Defined on Sobolev
Functions with Values in the Unit Sphere

F(u) = /Qf(flf,u, Vu) dz, u€ lel(Q; Sd—l) J

f: QxR x RN [0, 00) continuous, ...
CHel < fl,,¢) < CL+C)
M = i1

O O o d

f(z,-,-) is a tangential quasiconvex function

O

1£°(2,9,¢) — f(z,9,0)| <CA+ ™), 0<m<1



Previous results - BV setting

@ D. Mucci ('09)
Relaxation of isotropic functionals with linear growth defined on
manifold constrained Sobolev mappings

F(u) = . f(z,u, Vu)dz, ueWHH(Q; M) J

[ f: BN xR? x RN — [0, 00) continuous, ...
0 CH < flay, Q) < CA+ [

[1 M smooth, compact, connected, without boundary

[l f(z,-,-) is a tangential quasiconvex function

O, y,¢) = flz,y, O <K CA+ ™), 0<m<1



Previous results - BV setting

[ J.-F. Babadjian, V. Millot ('09)
Homogenization of variational problems in manifold valued BV -spaces

F(u)z/ﬂf(%,Vu)dx, u € WHHQ; M) J

O f RN x RN [0, 00) Carathéodory, ...
0CT < f@, O < C+ ()

[1 M smooth, compact, connected, without boundary



Our case

F(w) = /Qf(w,Vw) dz, we Wb M), w= (up, u) J

[ M = [a, 8] x S? has boundary
0 frys.&m) = €1+ g([€DIn] + |s @ €+

[l is not tangentially quasiconvex!
fer s, &m) = 181+ X g0y (€D + Irm + s @ €]
[l does not satisfy a condition of the type
[f=(@,y,6m) — fla,y,&m)| S CA+[(EmI'T™), 0<m<1
|foo(w,y,&m) — fla,y,&m)| = Ix o, (1ED — g(IED]Inl

& we anticipate that our arguments may be used to treat more
general manifolds with boundary and integrands.



Back to our original problem

Study the asymptotic behavior as ¢ — 0 of:

inf Freg . pfid ,
(ub7uc)€W1’1(Q§£7ﬁ})xwl,1(9;52){ (up, ue) + FL(up, ue) }

Fred(up, ue) = [o |Vup| dz+ [, g(|Vup|)|[Vue| dz+ [, |V (upue)| de
FL 'y, ue) = Nollup — (uo)p — £, (up — (uo)p) dzl| oy

+2| [o(up — (uo)s) dz| + A [ [ue — (uo)e|? da

+ Aol [uptte—uo— o (uptie — uo) dz||gams) +2| Jo (upue — uo) |

X = {(wr ) € BV(; [, B]) x BV(9 5%): wy — (uo)s € G(),
Uple — Ug € G(Q;R3)} J




Auxiliary lemma

Lemma

The set
X = {(w,uc) € BV (% [ev, 8]) x BV (£2:5%): uy, — (ug)y € G(Q),
uptte — up € G(; R?’)}

is non-empty.

[ Recall: (ug)p = |uo| € [, 8], (uo)e = Tl = o)y € S?, and
up = (uo)p(to)e.
[ Set uy(x) := co, © € Q, where ¢y := §,(ug)p dz.
U wp, € BV (], 6])
O Up — (uo)b S G(Q)



Auxiliary lemma - cont.

) Observe: | £, (uo)s(uo)e dz| < fo(uo)sdz = co
() Thus: 36 € [0,1], s1,s2 € 9B(0,¢p) such that

][(uo)b(uo)cdx — sy + (1— 0)s,
Q

[ Let {21,923} be a Lipschitz partition of 2 satisfying
L) = 0L2(Q), L%(Q2) = (1-0)L*(Q)
1) Set, for x € Q, uc(x) := 2L if & € Oy and uc(x) := 2 if z € Q.

U u. € BV(Q;5?)
O upue — ug € G(;R3)



Second main result
Q C R? open & bounded domain, 99 Lipschitz; &,,,, — 0
The imaging problem:

Ol inf Fred U Ffid 4
rL1—>H;o (up,ue) EWLI(SY [a,ﬁ])XWl 1(Q:52) ( (Ub (% )+ En (Ub U, ))

= min Fregsc” (yy ) + FFd(uy, u
(ub,uc)GX( ( b C) ( b C))

O (ug, ul) € WhHH(Q; [a, B]) x WHEH(;.52) is a §,-minimizer of
(Fres + Fg‘;d) in WLL(Q; [, 4]) x WHE(Q; 52), then
O (ul,ul)nen bounded in BV (2) x BV (Q;R?)
O A cluster point (up, ue) of (up,ul)nen © belongs to X, e is a
minimizer of ( F7¢95¢" 4+ Ffid)in X, and

o lim (F"°(uy, ug) + FL' (up, uf))

n—oo

= Fre95 (up,ue) + FF%(uy, uc)



<

Thank you!

@ Manuscript can be downloaded at:
http://arxiv.org/abs/1603.07647
http://www.ritaferreira.pt



