## A chromaticity-brightness model for color images denoising

## Rita Ferreira



# A chromaticity-brightness model for color images denoising 

Rita Ferreira ${ }^{1}$, Irene Fonseca ${ }^{2}$, and M. Luísa Mascarenhas ${ }^{3}$

${ }^{1}$ King Abdullah University of Science and Technology (KAUST)<br>${ }^{2}$ Carnegie Mellon University (CMU)<br>${ }^{3}$ Universidade Nova de Lisboa (UNL)

Global Portuguese Mathematicians
Técnico, Lisbon, July 13-14, 2017

## Motivation/Overview

## We propose:

A variational model for denoising color images that combines
$\checkmark$ Meyer's " $u+v$ " decomposition
$\checkmark$ chromaticity-brightness (CB) decomposition

## It involves:

> Minimization of integral functionals • linear growth • maps taking values on a manifold $\bullet$ depend on a small parameter $\varepsilon>0$
$>$ underlying manifold has boundary; the integrand and its recession function fail to satisfy hypotheses commonly assumed in literature

We prove:
characterization of asymptotic behavior as $\varepsilon \rightarrow 0^{+}$
convergence of infima, almost minimizers, and energies

## Image Restoration

## Deteriorated images

Images are damaged during creation, transmission, and recording:
$x$ blur due to an incorrect lens adjustment or due to motion
$X$ possible defects of the image system
$X$ random phenomenon such as noise due to signal transmission

## Variational PDE methods

$\checkmark$ have proven to be successful in the restoration process, where the desired clean and sharp image is obtained as a minimizer of a certain energy functional

## Image Restoration

## Variational PDE methods - cont.

The energy functionals proposed in the literature share the common feature of taking into account a balance between
$>$ a certain distance to the given noisy image - fidelity term
$>$ a filter acting as a regularization of the image
\& Some notation:
$>\Omega \subset \mathbb{R}^{2}$ image domain (typically, a rectangle)
$>u: \Omega \rightarrow \mathbb{R}$ original (gray-scaled) image describing a real scene
$>u_{0}$ observed (damaged) image of the same scene

## Image Restoration

regularization term + fidelity term

## Tikhonov \& Arsenin ('77):

Find $u$ that best fits the data, $u_{0}$, whose gradient is low ( $\lambda$ is a tuning parameter):

$$
\min _{u \in W^{1,2}(\Omega)}\left\{\int_{\Omega}|\nabla u|^{2} \mathrm{~d} x+\lambda \int_{\Omega}\left|u_{0}-u\right|^{2} \mathrm{~d} x\right\}
$$

$\checkmark L^{2}$-norm of the gradient enhances noise removal
$X$ but penalizes too much the gradient corresponding to edges oversmoothing

## Image Restoration

## Rudin \& Osher \& Fatemi ('92): TV-model

Proposed to use the $L^{1}$-norm:

$$
\inf _{\substack{u \in W^{1,1}(\Omega) \\ u_{0}-u \in L^{2}(\Omega)}}\left\{\int_{\Omega}|\nabla u| \mathrm{d} x+\lambda \int_{\Omega}\left|u_{0}-u\right|^{2} \mathrm{~d} x\right\}
$$

or, equivalently,

$$
\min _{\substack{u \in B V(\Omega) \\ u_{0}-u \in L^{2}(\Omega)}}\left\{|D u|(\Omega)+\lambda \int_{\Omega}\left|u_{0}-u\right|^{2} \mathrm{~d} x\right\}
$$

## Functions of Bounded Variation

$>\Omega \subset \mathbb{R}^{N}$ open set
$>\mathcal{M}\left(\Omega ; \mathbb{R}^{m}\right)$ space of $R^{m}$-valued Radon measures $\lambda: \mathcal{B}(\Omega) \rightarrow \mathbb{R}^{m}$ endowed with the total variation norm $|\cdot|$

$$
u \in B V\left(\Omega ; \mathbb{R}^{d}\right) \Leftrightarrow u \in L^{1}\left(\Omega ; \mathbb{R}^{d}\right) \& D u \equiv \lambda \in \mathcal{M}\left(\Omega ; \mathbb{R}^{d \times N}\right)
$$

\& $\|u\|_{B V\left(\Omega ; \mathbb{R}^{d}\right)}:=\|u\|_{L^{1}\left(\Omega ; \mathbb{R}^{d}\right)}+|D u|(\Omega)$
\& $u_{j} \stackrel{\star}{\rightharpoonup} u$ in $B V\left(\Omega ; \mathbb{R}^{d}\right) \Leftrightarrow u_{j} \rightarrow u$ in $L^{1}\left(\Omega ; \mathbb{R}^{d}\right) \& D u_{j} \stackrel{\star}{\rightharpoonup} D u$ weakly- $\operatorname{in} \mathcal{M}\left(\Omega ; \mathbb{R}^{d \times N}\right)$
if $u \in W^{1,1}\left(\Omega ; \mathbb{R}^{d}\right)$, then $u \in B V\left(\Omega ; \mathbb{R}^{d}\right)$ with $D u \equiv \nabla u \mathcal{L}^{N}$

## TV-model/ROF's model

$$
\min _{\substack{u \in B V(\Omega) \\ u_{0}-u \in L^{2}(\Omega)}}\left\{|D u|(\Omega)+\lambda \int_{\Omega}\left|u_{0}-u\right|^{2} \mathrm{~d} x\right\}
$$

$>$ It leads to a decomposition of the type $u_{0}=u+v$, where
$>u$ well-structured, aimed at modeling homogeneous regions
$>v$ encodes textures and noise
$\checkmark$ very successful as it removes noise while preserving edges
$X$ in some cases, leads to undesirable phenomena like blurring and stair-casing effect
$X$ may not provide a good decomposition - some pure geometric images are treated as noise or textures

Reasons pointed out in the literature relate to both the fidelity term and the regularization term

## On the fidelity term

## Meyer ('01):

## Proved:

$>$ oscillating images are often treated as texture or noise
$>$ replacing the $L^{2}$-norm in the fidelity term by a certain $G$-norm leads to better decompositions

Accordingly, he suggested the model

$$
\inf _{\substack{u \in B V(\Omega) \\ u-u_{0} \in G(\Omega)}}\left\{|D u|(\Omega)+\lambda\left\|u-u_{0}\right\|_{G(\Omega)}\right\}
$$

## Meyer's $G$-norm

\& $\Omega=\mathbb{R}^{2}$ : Meyer '01
\& $\Omega \subset \mathbb{R}^{2}$ open, bounded, connected, Lipschitz: Aubert \& Aujol '05
$G(\Omega)$ is the subspace of $W^{-1, \infty}(\Omega) \simeq\left(W_{0}^{1,1}(\Omega)\right)^{\prime}$ given by

$$
G(\Omega):=\left\{v \in L^{2}(\Omega): v=\operatorname{div} \xi, \xi \in L^{\infty}\left(\Omega ; \mathbb{R}^{2}\right), \xi \cdot n=0 \text { on } \partial \Omega\right\}
$$

Banach space when endowed with the norm

$$
\|v\|_{G(\Omega)}:=\inf \left\{\|\xi\|_{L^{\infty}\left(\Omega ; \mathbb{R}^{2}\right)}: \operatorname{div} \xi=v, \xi \cdot n=0 \text { on } \partial \Omega\right\}
$$

Alternative characterization ( $N=2$ ):

$$
G(\Omega)=\left\{v \in L^{2}(\Omega): \int_{\Omega} v(x) \mathrm{d} x=0\right\}
$$

## Main properties of $G(\Omega)$

Let $\left\{v_{n}\right\}_{n \in \mathbb{N}} \subset G(\Omega)$ be a sequence for which there exists $p>2$ such that $v_{n} \rightharpoonup 0$ weakly in $L^{p}(\Omega)$ as $n \rightarrow \infty$. Then,

$$
\lim _{n \rightarrow \infty}\left\|v_{n}\right\|_{G(\Omega)}=0
$$

$>$ a function in $G(\Omega)$ may have large oscillations but small $G(\Omega)$-norm

Let $(u, v)$ be the unique solution of ROF's model. If $\left\|u_{0}\right\|_{G(\Omega)} \leqslant \frac{1}{2 \lambda}$, then $u=0$ and $v=u_{0}$.
> an oscillating image that has small $G(\Omega)$-norm will be treated by ROF's model as texture or noise, which is not what expected if $u_{0}$ were a pure geometric image (e.g., a characteristic function)

## Back to Meyer's model

These two results show that the space $G$ is well suited to capture oscillations of a function in an energy minimization method

$$
\inf _{\substack{u \in B V(\Omega) \\ u-u_{0} \in G(\Omega)}}\left\{|D u|(\Omega)+\lambda\left\|u-u_{0}\right\|_{G(\Omega)}\right\}
$$

$\checkmark$ Existence: Yes
? Uniqueness: Open problem
$>$ Meyer's model is difficult to handle numerically because of the form of the $G(\Omega)$-norm (it prevents to express directly the associated Euler-Lagrange equation with respect to $u$ )
$>$ Several models attempting to approximate Meyer's model have been proposed (Aubert, Blanc-Féraud, Chambolle, Osher, Solé, Vese, ...)

## Chromaticity-Brightness (CB) models

$>u_{0}: \Omega \rightarrow\left(\mathbb{R}_{0}^{+}\right)^{3}$ observed (damaged) color image (RGB system)
$>\left(u_{0}\right)_{b}:=\left|u_{0}\right|$ brightness component of $u_{0}$
$>\left(u_{0}\right)_{c}:=\frac{u_{0}}{\left|u_{0}\right|}=\frac{u_{0}}{\left(u_{0}\right)_{b}} \in S^{2}$ chromaticity component of $u_{0}$

## General idea of the CB models:

\% restore brightness and chromaticity components separately (get $u_{b}$ and $u_{c}$ )
observe that brightness component behaves as a gray-scale image (use any of the previous models)
assemble the two components to get the restored image:
$u:=u_{b} u_{c}$
Considered as reducing shadowing and providing better simulation results

## A CB model

## Kang \& March ('07): (inpainting) CB model

$$
\min _{u_{c} \in W^{1,2}\left(\Omega ; S^{2}\right)}\left\{\int_{\Omega} g\left(\left|\nabla u_{b}^{\sigma}\right|\right)\left|\nabla u_{c}\right|^{2} \mathrm{~d} x+\lambda \int_{D}\left|u_{c}-\left(u_{0}\right)_{c}\right|^{2} \mathrm{~d} x\right\}
$$

$>D \subset \Omega$ set where the color is known

$$
\begin{aligned}
& >u_{b}^{\sigma}:=G_{\sigma} *\left(u_{0}\right)_{b}, G_{\sigma}(x):=\frac{A}{\sigma} e^{-\frac{|x|^{2}}{4 \sigma}}, A>0 \\
& >g: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}^{+}, g \searrow, g(0)=1, g(+\infty)=0
\end{aligned}
$$

$$
\left(g(t):=\frac{1}{1+\left(\frac{t}{a}\right)^{2}}, \quad g(t):=e^{-\left(\frac{t}{a}\right)^{2}} \text { with } a>0\right)
$$

\% The value of the function $g\left(\left|\nabla u_{b}^{\sigma}\right|\right)$ :
$\checkmark$ is close to one in the regions where $u_{b}^{\sigma}$ varies slowly
$\checkmark$ is small at the edges of brightness (if both $\sigma$ and $a$ are small enough)

## Kang \& March's CB model

$\min _{u_{c} \in W^{1,2}\left(\Omega ; S^{2}\right)}\left\{\int_{\Omega} g\left(\left|\nabla u_{b}^{\sigma}\right|\right)\left|\nabla u_{c}\right|^{2} \mathrm{~d} x+\lambda \int_{D}\left|u_{c}-\left(u_{0}\right)_{c}\right|^{2} \mathrm{~d} x\right\}$
$>$ the first term acts as a regularization functional: the diffusion of chromaticity is inhibited across the edges of $u_{b}^{\sigma}$, yielding a sharp transition in the function $u_{c}$
$>$ the second term requires the unitary vector field to be close to the chromaticity data $\left(u_{0}\right)_{c}$ in $D$

Therefore, the minimizer is a piecewise smooth color field, which is smooth in regions where the brightness $u_{b}^{\sigma}$ varies slowly.
$>$ If $u_{c}$ is a solution of this problem, the colorized image $u$ can is defined by $u:=u_{b} u_{c}$.

## A scheme towards our model



Because $1 \leqslant\left|u_{0}\right| \leqslant C$ a.e., we will consider $u_{b}$ 's such that $\alpha \leqslant\left|u_{b}\right| \leqslant \beta$ for some $0<\alpha \leqslant \beta$. This condition plays an important role to obtain (uniform) estimates concerning $\int_{\Omega}\left|\nabla u_{c}\right| \mathrm{d} x$.

## Towards our model

$$
\begin{aligned}
F^{r e g}\left(u_{b}, u_{c}\right) & :=\int_{\Omega}\left|\nabla u_{b}\right| \mathrm{d} x+\int_{\Omega} g\left(\left|\nabla u_{b}\right|\right)\left|\nabla u_{c}\right|^{2} \mathrm{~d} x+\int_{\Omega}\left|\nabla\left(u_{b} u_{c}\right)\right| \mathrm{d} x \\
F^{f i d}\left(u_{b}, u_{c}\right): & :=\lambda_{b}\left\|u_{b}-\left(u_{0}\right)_{b}\right\|_{G(\Omega)}+\lambda_{c} \int_{\Omega}\left|u_{c}-\left(u_{0}\right)_{c}\right|^{2} \mathrm{~d} x \\
& +\lambda_{v}\left\|u_{b} u_{c}-u_{0}\right\|_{G\left(\Omega ; \mathbb{R}^{3}\right)}
\end{aligned}
$$

$$
\inf _{\substack{u_{b} \in W^{1,1}(\Omega ;[\alpha, \beta]), u_{c} \in W^{1,2}\left(\Omega ; ;^{2}\right), u_{b}-\left(u_{0}\right)_{b} \in G(\Omega), u_{b} u_{c}-u_{0} \in G\left(\Omega ; \mathbb{R}^{3}\right)}}\left\{F^{r e g}\left(u_{b}, u_{c}\right)+F^{f i d}\left(u_{b}, u_{c}\right)\right\}
$$

## A visit to the "Gap Problem"

$$
\begin{aligned}
F^{r e g}\left(u_{b}, u_{c}\right) & =\int_{\Omega}\left|\nabla u_{b}\right| \mathrm{d} x+\int_{\Omega} g\left(\left|\nabla u_{b}\right|\right)\left|\nabla u_{c}\right|^{2} \mathrm{~d} x+\int_{\Omega}\left|\nabla\left(u_{b} u_{c}\right)\right| \mathrm{d} x \\
& =\int_{\Omega} h\left(u_{b}, u_{c}, \nabla u_{b}, \nabla u_{c}\right) \mathrm{d} x
\end{aligned}
$$

where

$$
h(r, s, \xi, \eta):=|\xi|+g(|\xi|)|\eta|^{2}+|s \otimes \xi+r \eta|
$$

$>(\xi, \eta) \mapsto h(r, s, \xi, \eta)$ is not (in general) quasiconvex
$>\frac{1}{C}(|\xi|+|\eta|) \leqslant h(r, s, \xi, \eta) \leqslant C\left(1+|\xi|+|\eta|^{2}\right)$ non-standard growth

$$
\left(\frac{1}{2}|\xi|+\frac{\alpha}{2}|\eta| \leqslant \frac{1}{2}|\xi|+\frac{1}{2}(|r \eta+s \otimes \xi|+|\xi|) \leqslant h(r, s, \xi, \eta)\right)
$$

## Towards our model - cont.

$$
\begin{aligned}
F^{r e g}\left(u_{b}, u_{c}\right): & :=\int_{\Omega}\left|\nabla u_{b}\right| \mathrm{d} x+\int_{\Omega} g\left(\left|\nabla u_{b}\right|\right)\left|\nabla u_{c}\right| \mathrm{d} x+\int_{\Omega}\left|\nabla\left(u_{b} u_{c}\right)\right| \mathrm{d} x \\
F^{f i d}\left(u_{b}, u_{c}\right): & :=\lambda_{b}\left\|u_{b}-\left(u_{0}\right)_{b}\right\|_{G(\Omega)}+\lambda_{c} \int_{\Omega}\left|u_{c}-\left(u_{0}\right)_{c}\right|^{2} \mathrm{~d} x \\
& +\lambda_{v}\left\|u_{b} u_{c}-u_{0}\right\|_{G\left(\Omega ; \mathbb{R}^{3}\right)}
\end{aligned}
$$

(Almost) Our model:

$$
\inf _{\substack{\left(u_{b}, u_{c}\right) \in W^{1,1}(\Omega ;[\alpha, \beta]) \times W^{1,1}\left(\Omega ; S^{2}\right), u_{b}-\left(u_{0}\right)_{b} \in G(\Omega), u_{b} u_{c}-u_{0} \in G\left(\Omega ; \mathbb{R}^{3}\right)}}\left\{F^{r e g}\left(u_{b}, u_{c}\right)+F^{f i d}\left(u_{b}, u_{c}\right)\right\}
$$

$>$ It is a challenging task to construct a recovery sequence that simultaneously satisfies the manifold constraint and the average restrictions

## A penalized version of $F^{\text {fid }}$

$$
\begin{aligned}
& F_{\varepsilon}^{f i d}\left(u_{b}, u_{c}\right) \\
& \quad:=\lambda_{b}\left\|u_{b}-\left(u_{0}\right)_{b}-f_{\Omega}\left(u_{b}-\left(u_{0}\right)_{b}\right) \mathrm{d} x\right\|_{G(\Omega)}+\frac{1}{\varepsilon}\left|\int_{\Omega}\left(u_{b}-\left(u_{0}\right)_{b}\right) \mathrm{d} x\right| \\
& \quad+\lambda_{c} \int_{\Omega}\left|u_{c}-\left(u_{0}\right)_{c}\right|^{2} \mathrm{~d} x \\
& \quad+\lambda_{v}\left\|u_{b} u_{c}-u_{0}-f_{\Omega}\left(u_{b} u_{c}-u_{0}\right) \mathrm{d} x\right\|_{G\left(\Omega ; \mathbb{R}^{3}\right)}+\frac{1}{\varepsilon}\left|\int_{\Omega}\left(u_{b} u_{c}-u_{0}\right) \mathrm{d} x\right|
\end{aligned}
$$

We will recover $F^{f i d}\left(u_{b}, u_{c}\right)$ in the limit as $\varepsilon \rightarrow 0^{+}$.

## Our model

## Study the asymptotic behavior as $\varepsilon \rightarrow 0^{+}$of:

$$
\begin{aligned}
& \inf _{\left(u_{b}, u_{c}\right) \in W^{1,1}(\Omega,\{\alpha, \beta]) \times W^{1,1}\left(\Omega ; S^{2}\right),}\left\{F^{\text {reg }}\left(u_{b}, u_{c}\right)+F_{\varepsilon}^{f i d}\left(u_{b}, u_{c}\right)\right\} \\
& F^{r e g}\left(u_{b}, u_{c}\right):=\int_{\Omega}\left|\nabla u_{b}\right| \mathrm{d} x+\int_{\Omega} g\left(\left|\nabla u_{b}\right|\right)\left|\nabla u_{c}\right| \mathrm{d} x+\int_{\Omega}\left|\nabla\left(u_{b} u_{c}\right)\right| \mathrm{d} x \\
& F_{\varepsilon}^{f i d}\left(u_{b}, u_{c}\right):=\lambda_{b}\left\|u_{b}-\left(u_{0}\right)_{b}-f_{\Omega}\left(u_{b}-\left(u_{0}\right)_{b}\right) \mathrm{d} x\right\|_{G(\Omega)} \\
& +\frac{1}{\varepsilon}\left|\int_{\Omega}\left(u_{b}-\left(u_{0}\right)_{b}\right) \mathrm{d} x\right|+\lambda_{c} \int_{\Omega}\left|u_{c}-\left(u_{0}\right)_{c}\right|^{2} \mathrm{~d} x \\
& +\lambda_{v}\left\|u_{b} u_{c}-u_{0}-f_{\Omega}\left(u_{b} u_{c}-u_{0}\right) \mathrm{d} x\right\|_{G\left(\Omega ; \mathbb{R}^{3}\right)}+\frac{1}{\varepsilon}\left|\int_{\Omega}\left(u_{b} u_{c}-u_{0}\right) \mathrm{d} x\right|
\end{aligned}
$$

## More on the space $B V\left(\Omega ; \mathbb{R}^{d}\right)$

Approximate limit set $A_{u}$ \& Approximate discontinuity set $S_{u}$ $x \in A_{u}$ if $u$ has an approximate limit at $x$, i.e., $\exists z=: \tilde{u}(x) \in \mathbb{R}^{d}$ such that

$$
\lim _{\delta \rightarrow 0^{+}} f_{B(x, \delta)}|u(y)-z| \mathrm{d} y=0 .
$$

$S_{u}:=\Omega \backslash A_{u}$ is called the approximate discontinuity set.
Set $J_{u}$ of approximate jump points of $u$ $x \in J_{u}$ if $\exists a, b \in \mathbb{R}^{d}, a \neq b$, and $\nu \in S^{N-1}$ such that

$$
\lim _{\delta \rightarrow 0^{+}} f_{B_{\nu}^{+}(x, \delta)}|u(y)-a| \mathrm{d} y=0, \quad \lim _{\delta \rightarrow 0^{+}} f_{B_{\nu}^{-(x, \delta)}}|u(y)-b| \mathrm{d} y=0 .
$$

The triplet $(a, b, \nu)$, uniquely determined up to a permutation of $(a, b)$ and a change of sign of $\nu$, is denoted by $\left(u^{+}(x), u^{-}(x), \nu_{u}(x)\right)$.

## More on the space $B V\left(\Omega ; \mathbb{R}^{d}\right)$ - cont.

Set $D_{u}$ of approximate approximate differentiability points of $u$ $x \in D_{u}$ if $x \in A_{u}$ and $\exists L \in \mathbb{M}^{d \times N}=: \nabla u(x)$ such that

$$
\lim _{\delta \rightarrow 0^{+}} f_{B(x, \delta)} \frac{|u(y)-\tilde{u}(x)-L(y-x)|}{\delta} \mathrm{d} y=0 .
$$

Decomposition of $D u$ with $u \in B V\left(\Omega ; \mathbb{R}^{d}\right)$

$$
\begin{aligned}
D u & =D^{a} u+D^{s} u & D^{a} u \ll \mathcal{L}^{N}{ }_{\lfloor\Omega}, D^{s} u \perp \mathcal{L}^{N}{ }_{\lfloor\Omega} \\
& =D^{a} u+D^{s} u_{\left\lfloor J_{u}\right.}+D^{s} u_{\left\lfloor A_{u}\right.} & \mathcal{H}^{N-1}\left(S_{u} \backslash J_{u}\right)=0 \\
& =\nabla u \mathcal{L}^{N}+\left(u^{+}-u^{-}\right) \otimes \nu_{u} \mathcal{H}^{N-1}{ }_{\left\lfloor J_{u}\right.}+D^{c} u & D^{c} u:=D^{s} u_{\left\lfloor A_{u}\right.}
\end{aligned}
$$

## First main result

A relaxation one:
$\Omega \subset \mathbb{R}^{2}$ open $\&$ bounded domain, $\partial \Omega$ Lipschitz
$F: L^{1}(\Omega) \times L^{1}\left(\Omega ; \mathbb{R}^{3}\right) \rightarrow[0,+\infty]$
$F\left(u_{b}, u_{c}\right):= \begin{cases}F^{r e g}\left(u_{b}, u_{c}\right), & \left(u_{b}, u_{c}\right) \in W^{1,1}(\Omega ;[\alpha, \beta]) \times W^{1,1}\left(\Omega ; S^{2}\right) \\ +\infty, & \text { otherwise. }\end{cases}$
Then, the lower semicontinuous envelope of $F, \mathcal{F}: L^{1}(\Omega) \times$ $L^{1}\left(\Omega ; \mathbb{R}^{3}\right) \rightarrow[0,+\infty]$, has the integral representation
$\mathcal{F}\left(u_{b}, u_{c}\right)= \begin{cases}F^{\text {reg }, s c^{-}}\left(u_{b}, u_{c}\right), & \left(u_{b}, u_{c}\right) \in B V(\Omega ;[\alpha, \beta]) \times B V\left(\Omega ; S^{2}\right) \\ +\infty & \text { otherwise },\end{cases}$
where $F^{r e g, s c^{-}}=F_{a c}^{r e g, s c^{-}}+F_{j}^{r e g, s c^{-}}+F_{c}^{r e g, s c^{-}}$, with

## Relaxation - characterization of $F_{a c}^{r e g, s c^{-}}$

$$
F_{a c}^{r e g, s c^{-}}\left(u_{b}, u_{c}\right)=\int_{\Omega} \mathcal{Q}_{T} f\left(u_{b}(x), u_{c}(x), \nabla u_{b}(x), \nabla u_{c}(x)\right) \mathrm{d} x
$$

where $\mathcal{Q}_{T} f$ is the tangential quasiconvex envelope of $f$ :

$$
\begin{aligned}
\mathcal{Q}_{T} f(r, s, \xi, \eta)=\inf \left\{\int_{Q} f(r, s, \xi+\nabla \varphi(y), \eta+\nabla \psi(y)) \mathrm{d} y\right.
\end{aligned}
$$

$>T_{s}\left(S^{2}\right)$ tangential space to $S^{2}$ at $s$
$>r \in[\alpha, \beta], s \in S^{2}, \xi \in \mathbb{R}^{2}, \eta \in\left[T_{s}\left(S^{2}\right)\right]^{2}$
$>f(r, s, \xi, \eta)=|\xi|+g(|\xi|)|\eta|+|s \otimes \xi+r \eta|$

## Alternative characterization of $Q_{T} f$

For all $r \in[\alpha, \beta], s \in S^{2}, \xi \in \mathbb{R}^{2}$, and $\eta \in\left[T_{s}\left(S^{2}\right)\right]^{2}$, we have that

$$
\mathcal{Q}_{T} f(r, s, \xi, \eta)=\mathcal{Q} \tilde{f}(r, s, \xi, \eta)
$$

where, for $(r, s, \xi, \eta) \in \mathbb{R} \times \mathbb{R}^{3} \times \mathbb{R}^{2} \times \mathbb{R}^{3 \times 2}$,

$$
\tilde{f}(r, s, \xi, \eta):= \begin{cases}f\left(\tilde{r}, \tilde{s}, \xi, P_{\tilde{s}} \eta\right) \phi(|s|) & \text { if } s \in \mathbb{R}^{3} \backslash\{0\} \\ 0 & \text { otherwise }\end{cases}
$$

where

$$
\tilde{r}:= \begin{cases}\alpha & \text { if } r \leqslant \alpha, \\ r & \text { if } \alpha \leqslant r \leqslant \beta, \quad \tilde{s}:=\frac{s}{|s|}, \\ \beta & \text { if } r \geqslant \beta,\end{cases}
$$

and $\phi \in C^{\infty}(\mathbb{R} ;[0,1])$ is a cut-off function such that $\phi(t)=1$ if $t \geqslant 1$, and $\phi(t)=0$ if $t \leqslant \frac{3}{4}$.

## Relaxation - characterization of $F_{j}^{\text {reg,sc- }}$

$$
F_{j}^{r e g, s c^{-}}\left(u_{b}, u_{c}\right)=\int_{S_{\left(u_{b}, u_{c}\right)}} K\left(\left(u_{b}, u_{c}\right)^{+}(x),\left(u_{b}, u_{c}\right)^{-}(x), \nu_{\left(u_{b}, u_{c}\right)}(x)\right) \mathrm{d} \mathcal{H}^{1}(x),
$$

where, for $a, b \in[\alpha, \beta] \times S^{2}, \nu \in S^{1}, Q_{\nu}$ unit cube centered at 0 and two faces orthogonal to $\nu$,

$$
K(a, b, \nu)=\inf _{(\varphi, \psi) \in \mathcal{P}(a, b, \nu)} \int_{Q_{\nu}} f^{\infty}(\varphi(y), \psi(y), \nabla \varphi(y), \nabla \psi(y)) \mathrm{d} y
$$

$$
\begin{aligned}
f^{\infty}(r, s, \xi, \eta): & =\limsup _{t \rightarrow+\infty} \frac{f(r, s, t \xi, t \eta)}{t} \\
& =\limsup _{t \rightarrow+\infty}(|\xi|+g(t|\xi|)|\eta|+|r \eta+s \otimes \xi|) \\
& =|\xi|+\chi_{\{0\}}(|\xi|)|\eta|+|r \eta+s \otimes \xi|
\end{aligned}
$$

## Relaxation - characterization of $F_{c}^{r e g, s c^{-}}$

$$
F_{c}^{r e g, s c^{-}}\left(u_{b}, u_{c}\right)=\int_{\Omega}\left(\mathcal{Q}_{T} f\right)^{\infty}\left(\tilde{u}_{b}(x), \tilde{u}_{c}(x), W_{b}^{c}(x), W_{c}^{c}(x)\right) \mathrm{d}\left|D^{c}\left(u_{b}, u_{c}\right)\right|
$$

$>\left(Q_{T} f\right)^{\infty}(r, s, \xi, \eta)=\limsup _{t \rightarrow+\infty} \frac{Q_{T} f(r, s, t \xi, t \eta)}{t}$
$>\tilde{u}_{b}(x)$ and $\tilde{u}_{c}(x)$ : approximate limits of $u_{b}$ and $u_{c}$ at $x$
$>W^{c}$ : Radon-Nikodym derivative of $D^{c}\left(u_{b}, u_{c}\right)$ w.r.t. its total variation
$>W_{b}^{c}$ : first row of $W^{c}$
$>W_{c}^{c}: 3 \times 2$ matrix obtained from $W^{c}$ by erasing its first row

## Previous results - Sobolev setting

B. Dacorogna, I. Fonseca, J. Malý, K. Trivisa ('99)

Manifold constrained variational problems
$>f: \mathbb{R}^{d \times N} \rightarrow[0, \infty)$ continuous
$>0 \leqslant f(\zeta) \leqslant C\left(1+|\zeta|^{p}\right), \quad p \geqslant 1$
$>\mathcal{M} \subset \mathbb{R}^{d}$ ia a $C^{1}$ submanifold without boundary
$\inf \left\{\liminf _{n \rightarrow \infty} \int_{\Omega} f\left(\nabla u_{n}\right) \mathrm{d} x: u_{n} \rightharpoonup u\right.$ in $\left.W^{1, p}(\Omega ; \mathcal{M})\right\}=\int_{\Omega} Q_{T} f(u, \nabla u) \mathrm{d} x$

$$
Q_{T} f(y, \zeta)=\inf \left\{\int_{\Omega} f(\zeta+\nabla \varphi(x)) \mathrm{d} x: \varphi \in W_{0}^{1, \infty}\left(Q ; T_{y}(\mathcal{M})\right)\right\}
$$

$$
\begin{gathered}
Q_{T} f(y, \zeta)=Q \bar{f}(y, \zeta), \quad \bar{f}(y, \zeta):=f\left(P_{y} \zeta\right) \\
\left(P_{y} \zeta \text { is the orthogonal projection of } \mathbb{R}^{d} \text { onto } T_{y}(\mathcal{M})\right)
\end{gathered}
$$

## Previous results - $B V$ setting

R R. Alicandro, A. Corbo Esposito, C. Leone ('07) Relaxation in BV of Integral Functionals Defined on Sobolev Functions with Values in the Unit Sphere

$$
F(u)=\int_{\Omega} f(x, u, \nabla u) \mathrm{d} x, \quad u \in W^{1,1}\left(\Omega ; S^{d-1}\right)
$$

$>f: \Omega \times \mathbb{R}^{d} \times \mathbb{R}^{d \times N} \rightarrow[0, \infty)$ continuous, $\ldots$
$>C^{-1}|\zeta| \leqslant f(x, y, \zeta) \leqslant C(1+|\zeta|)$
$>\mathcal{M}=S^{d-1}$
$>f(x, \cdot, \cdot)$ is a tangential quasiconvex function
$>\left|f^{\infty}(x, y, \zeta)-f(x, y, \zeta)\right| \leqslant C\left(1+|\zeta|^{1-m}\right), \quad 0<m<1$

## Previous results - $B V$ setting

固 D. Mucci ('09)
Relaxation of isotropic functionals with linear growth defined on manifold constrained Sobolev mappings

$$
F(u)=\int_{B^{N}} f(x, u, \nabla u) \mathrm{d} x, \quad u \in W^{1,1}(\Omega ; \mathcal{M})
$$

$>f: B^{N} \times \mathbb{R}^{d} \times \mathbb{R}^{d \times N} \rightarrow[0, \infty)$ continuous, ...
$>C^{-1}|\zeta| \leqslant f(x, y, \zeta) \leqslant C(1+|\zeta|)$
> $\mathcal{M}$ smooth, compact, connected, without boundary
$>f(x, \cdot, \cdot)$ is a tangential quasiconvex function
$>\left|f^{\infty}(x, y, \zeta)-f(x, y, \zeta)\right| \leqslant C\left(1+|\zeta|^{1-m}\right), \quad 0<m<1$

## Previous results - $B V$ setting

围 J.-F. Babadjian, V. Millot ('09)
Homogenization of variational problems in manifold valued $B V$-spaces

$$
F(u)=\int_{\Omega} f\left(\frac{x}{\varepsilon}, \nabla u\right) \mathrm{d} x, \quad u \in W^{1,1}(\Omega ; \mathcal{M})
$$

$>f: \mathbb{R}^{N} \times \mathbb{R}^{d \times N} \rightarrow[0, \infty)$ Carathéodory, $\ldots$
$>C^{-1}|\zeta| \leqslant f(x, \zeta) \leqslant C(1+|\zeta|)$
$>\mathcal{M}$ smooth, compact, connected, without boundary
$>\left|f^{\infty}(x, y, \zeta)-f(x, y, \zeta)\right| \leqslant C\left(1+|\zeta|^{1-m}\right), \quad 0<m<1$

$$
F(w)=\int_{\Omega} f(w, \nabla w) \mathrm{d} x, \quad w \in W^{1,1}(\Omega ; \mathcal{M}), \quad w=\left(u_{b}, u_{c}\right)
$$

$>\mathcal{M}=[\alpha, \beta] \times S^{2}$ has boundary
$>f(r, s, \xi, \eta)=|\xi|+g(|\xi|)|\eta|+|s \otimes \xi+r \eta|$
$>$ is not tangentially quasiconvex!

$$
f^{\infty}(r, s, \xi, \eta)=|\xi|+\chi_{\{0\}}(|\xi|)|\eta|+|r \eta+s \otimes \xi|
$$

$>$ does not satisfy a condition of the type

$$
\begin{aligned}
& \left|f^{\infty}(x, y, \xi, \eta)-f(x, y, \xi, \eta)\right| \leqslant C\left(1+|(\xi, \eta)|^{1-m}\right), \quad 0<m<1 \\
& \left|f^{\infty}(x, y, \xi, \eta)-f(x, y, \xi, \eta)\right|=\left|\chi_{\{0\}}(|\xi|)-g(|\xi|)\right||\eta|
\end{aligned}
$$

We anticipate that our arguments may be used to treat more general manifolds with boundary and integrands.

## Back to our original problem

## Study the asymptotic behavior as $\varepsilon \rightarrow 0^{+}$of:

$$
\begin{aligned}
& \quad \inf _{\left(u_{b}, u_{c}\right) \in W^{1,1}(\Omega ;[\alpha, \beta]] \times W^{1,1}\left(\Omega ; S^{2}\right)}\left\{F^{r e g}\left(u_{b}, u_{c}\right)+F_{\varepsilon}^{f i d}\left(u_{b}, u_{c}\right)\right\} \\
& F^{r e g}\left(u_{b}, u_{c}\right):=\int_{\Omega}\left|\nabla u_{b}\right| \mathrm{d} x+\int_{\Omega} g\left(\left|\nabla u_{b}\right|\right)\left|\nabla u_{c}\right| \mathrm{d} x+\int_{\Omega}\left|\nabla\left(u_{b} u_{c}\right)\right| \mathrm{d} x \\
& \begin{array}{r}
F_{\varepsilon}^{f i d}\left(u_{b}, u_{c}\right):=\lambda_{b}\left\|u_{b}-\left(u_{0}\right)_{b}-f_{\Omega}\left(u_{b}-\left(u_{0}\right)_{b}\right) \mathrm{d} x\right\|_{G(\Omega)} \\
\quad+\frac{1}{\varepsilon}\left|\int_{\Omega}\left(u_{b}-\left(u_{0}\right)_{b}\right) \mathrm{d} x\right|+\lambda_{c} \int_{\Omega}\left|u_{c}-\left(u_{0}\right)_{c}\right|^{2} \mathrm{~d} x
\end{array} \quad+\lambda_{v}\left\|u_{b} u_{c}-u_{0}-f_{\Omega}\left(u_{b} u_{c}-u_{0}\right) \mathrm{d} x\right\|_{G\left(\Omega ; \mathbb{R}^{3}\right)+\frac{1}{\varepsilon}\left|\int_{\Omega}\left(u_{b} u_{c}-u_{0}\right) \mathrm{d} x\right|} \begin{array}{r}
X=\left\{\left(u_{b}, u_{c}\right) \in B V(\Omega ;[\alpha, \beta]) \times B V\left(\Omega ; S^{2}\right): u_{b}-\left(u_{0}\right)_{b} \in G(\Omega),\right. \\
\left.u_{b} u_{c}-u_{0} \in G\left(\Omega ; \mathbb{R}^{3}\right)\right\}
\end{array}
\end{aligned}
$$

## Auxiliary lemma

## Lemma

The set

$$
\begin{aligned}
& X=\left\{\left(u_{b}, u_{c}\right) \in B V(\Omega ;[\alpha, \beta]) \times B V\left(\Omega ; S^{2}\right): u_{b}-\left(u_{0}\right)_{b} \in G(\Omega),\right. \\
& \left.u_{b} u_{c}-u_{0} \in G\left(\Omega ; \mathbb{R}^{3}\right)\right\}
\end{aligned}
$$


$>$ Recall: $\left(u_{0}\right)_{b}=\left|u_{0}\right| \in[\alpha, \beta],\left(u_{0}\right)_{c}=\frac{u_{0}}{\left|u_{0}\right|}=\frac{u_{0}}{\left(u_{0}\right)_{b}} \in S^{2}$, and $u_{0}=\left(u_{0}\right)_{b}\left(u_{0}\right)_{c}$.
$>$ Set $u_{b}(x):=c_{0}, x \in \Omega$, where $c_{0}:=f_{\Omega}\left(u_{0}\right)_{b} \mathrm{~d} x$.

$$
\left.\begin{array}{rl}
\checkmark & u_{b} \in B V(\Omega ;[\alpha, \beta]) \\
\checkmark & u_{b}
\end{array}\right)\left(u_{0}\right)_{b} \in G(\Omega)
$$

## Auxiliary lemma - cont.

$>$ Observe: $\left|f_{\Omega}\left(u_{0}\right)_{b}\left(u_{0}\right)_{c} \mathrm{~d} x\right| \leqslant f_{\Omega}\left(u_{0}\right)_{b} \mathrm{~d} x=c_{0}$
$>$ Thus: $\exists \theta \in[0,1], s_{1}, s_{2} \in \partial B\left(0, c_{0}\right)$ such that

$$
f_{\Omega}\left(u_{0}\right)_{b}\left(u_{0}\right)_{c} \mathrm{~d} x=\theta s_{1}+(1-\theta) s_{2}
$$

$>$ Let $\left\{\Omega_{1}, \Omega_{2}\right\}$ be a Lipschitz partition of $\Omega$ satisfying

$$
\mathcal{L}^{2}\left(\Omega_{1}\right)=\theta \mathcal{L}^{2}(\Omega), \quad \mathcal{L}^{2}\left(\Omega_{2}\right)=(1-\theta) \mathcal{L}^{2}(\Omega)
$$

$>$ Set, for $x \in \Omega, u_{c}(x):=\frac{s_{1}}{c_{0}}$ if $x \in \Omega_{1}$ and $u_{c}(x):=\frac{s_{2}}{c_{0}}$ if $x \in \Omega_{2}$.

$$
\begin{aligned}
& \checkmark u_{c} \in B V\left(\Omega ; S^{2}\right) \\
& \checkmark \quad u_{b} u_{c}-u_{0} \in G\left(\Omega ; \mathbb{R}^{3}\right)
\end{aligned}
$$

## Second main result

$\Omega \subset \mathbb{R}^{2}$ open $\&$ bounded domain, $\partial \Omega$ Lipschitz; $\varepsilon_{n}, \delta_{n} \rightarrow 0^{+}$

## The imaging problem:

(1) $\lim _{n \rightarrow \infty} \inf _{\left(u_{b}, u_{c}\right) \in W^{1,1}(\Omega ;[\alpha, \beta]) \times W^{1,1}\left(\Omega ; S^{2}\right)}\left(F^{r e g}\left(u_{b}, u_{c}\right)+F_{\varepsilon_{n}}^{f i d}\left(u_{b}, u_{c}\right)\right)$

$$
=\min _{\left(u_{b}, u_{c}\right) \in X}\left(F^{r e g, s c^{-}}\left(u_{b}, u_{c}\right)+F^{f i d}\left(u_{b}, u_{c}\right)\right)
$$

(2) If $\left(u_{b}^{n}, u_{c}^{n}\right) \in W^{1,1}(\Omega ;[\alpha, \beta]) \times W^{1,1}\left(\Omega ; S^{2}\right)$ is a $\delta_{n}$-minimizer of $\left(F^{r e g}+F_{\varepsilon_{n}}^{f i d}\right)$ in $W^{1,1}(\Omega ;[\alpha, \beta]) \times W^{1,1}\left(\Omega ; S^{2}\right)$, then
$\checkmark\left(u_{b}^{n}, u_{c}^{n}\right)_{n \in \mathbb{N}}$ bounded in $B V(\Omega) \times B V\left(\Omega ; \mathbb{R}^{3}\right)$
$\checkmark$ A cluster point $\left(u_{b}, u_{c}\right)$ of $\left(u_{b}^{n}, u_{c}^{n}\right)_{n \in \mathbb{N}} \bullet$ belongs to $X, \bullet$ is a minimizer of $\left(F^{r e g, s c^{-}}+F^{f i d}\right)$ in $X$, and

$$
\text { - } \begin{aligned}
\lim _{n \rightarrow \infty} & \left(F^{\text {reg }}\left(u_{b}^{n}, u_{c}^{n}\right)+F_{\varepsilon_{n}}^{f i d}\left(u_{b}^{n}, u_{c}^{n}\right)\right) \\
& =F^{\text {reg }, s c^{-}}\left(u_{b}, u_{c}\right)+F^{f i d}\left(u_{b}, u_{c}\right)
\end{aligned}
$$

## Thank you!

Manuscript can be downloaded at: http://arxiv.org/abs/1603.07647 http://www.ritaferreira.pt

