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History of Virasoro constraints

@ In 1990, Witten proposed a conjecture saying that integrals of
1p-classes in the moduli space of curves M, , satisfy some
relations which completely determine them:

Ly(Z)=0 fork>—-1,

where Z is the generating function of these integrals and Ly
are differential operators satisfying the Virasoro bracket

[Lks Lel = (€ — k) Lkve -

o Witten's conjecture was proven in 1992 by Kontsevich.
Alternative proofs by Okounkov-Pandharipande and
Mirzakhani were found later.

o Eguchi-Hori-Xiong propose in 1997 a generalization to the
Gromov-Witten (GW) theory of a target variety X.



History of Virasoro constraints

@ In 2006, Maulik-Nekrasov-Okounkov-Pandharipande (MNOP)
propose a conjecture connecting Gromov-Witten invariants on
3-folds to Donaldson-Thomas (DT) invariants, defined using
the moduli space of ideal sheaves.

@ An analog of Virasoro constraints should exist in DT theory!
Oblomkov-Okounkov-Pandharipande make a precise
conjecture by calculations in X = P3.

@ In 2020, with Oblomkov-Okounkov-Pandharipande we prove
that the MNOP correspondence intertwines the GW Virasoro
and the DT Virasoro constraints (in stationary regime).

@ This proves Virasoro constraints for the DT theory of toric
3-folds with stationary descendents.



History of Virasoro constraints

@ In 2020 | used the previous result to prove a version of
Virasoro constraints for the Hilbert scheme of points on
simply-connected surfaces.

@ In 2021 D. van Bree conjectures a generalization of the Hilbert
scheme result to moduli spaces of stable sheaves on surfaces.

@ Much more general?...



Today

I will explain joint work with A. Bojko and W. Lim containing:

o Unified formulation of Virasoro constraints for moduli spaces
of sheaves and pairs.

@ How the Virasoro constraints are naturally formulated using
the vertex algebra that D. Joyce introduced to study
wall-crossing.

@ Virasoro constraints are compatible with wall-crossing.

@ A proof of the Virasoro constraints for moduli spaces of stable
sheaves on curves and surfaces with h%! = h02 = 0 (either
torsion-free or dimension 1 sheaves) by reducing everything to
the rank 1 case.



Stable bundles on curves

Let C be a smooth projective curve of genus g > 0. Given a vector
bundle G on C define its slope as

deg(G)
G) = )
1(G) (G)
Definition
A vector bundle is called (semi)stable if for every subbundle
G <G
w(G)(<)u(G)

where (<) means < in the stable case and < in semistable.

We can form the moduli space M = Mc(r, d) of semistable
bundles of rank r and degree d.



Stable bundles on curves

If r,d are coprime then:
o Every semistable sheaf in M¢(r, d) is stable.

@ The moduli space Mc(r,d) is a smooth projective variety of
dimension r?(g — 1) + 1.

@ The tangent space at [G] € Mc(r,d) is given by
Ext}(G, G).

@ There exists a universal bundle G on M x C. Very important:
G is not unique, it is defined only up to twisting by a line
bundle pulled back from M.



Moduli spaces of Bradlow pairs

We want to define moduli spaces of pairs, that parametrize a
vector bundle F together with a section (or many sections), i.e
maps of vector bundles (9%9’ﬂ — F.

Given t € R.o we define the p;-slope

_ deg(F)+t-d

:U’t(o?m - F) I’k(F)

Definition

A pai,r O%Bm — F is called u¢-(semi)stable if for every subpair
O9™ . F' we have

(O™ — F')(<)pe (O™ — F)

where (<) means < in the stable case and < in semistable.




Bradlow pairs

We can form the moduli space P = P&(r, d) of p-semistable pairs
Oc¢ — F such that F has rank r and degree d. If t ¢ %Z then

o Every semistable pair in P&(r, d) is stable.

o If d is large enough, the moduli space P{(r,d) is a smooth
projective variety of dimension (r?> — r)(g — 1) + d (for small
d it is still virtually smooth).

@ The tangent space at [Ox — F] is given by
Ext®([Ox — F],F).

@ There exists a unique (!) universal pair Opxc — F on P x C.



If r =1 then
Q@ Mc(1,d) parametrizes degree d line bundles, i.e.

Mc(1,d) = Jac?(C)

is topologically a torus of (real) dimension 2g.

@ PE(1,d) parametrizes surjective pairs of the form
Oc — Oc(D) for some effective divisor D of degree d, i.e.

PL(1,d) = Cld =~ cxd/3,

is the symmetric power of C. In particular it does not depend
on t.




General story...

More generally we can consider a smooth projective variety X of
low dimension (< 4) and a moduli space M of semistable (for some
notion of stability) sheaves on X. We don’t need M smooth, but
only virtually smooth i.e. have a 2-term perfect obstruction theory:

Ext'(G,G) = Tanig), Ext*(G,G) = Obg, Ext*(G,G)=0.

Then we get a virtual fundamental class [M]"" and we can define

enumerative invariants by
J‘[M]vir

Includes many interesting invariants: Donaldson, Seiberg-Witten,
Donaldson-Thomas, Pandharipande-Thomas. Another direction are
moduli spaces of quiver representations.



Descendents

To get numerical invariants from M we integrate certain natural
cohomology classes against the virtual fundamental class.

Definition (Descendent algebra)

Let DX be the free (super)commutative C-algebra generated by
symbols

chf(y) fori>0,7ye H*(X).

Definition (Geometric realization of descendents)

Let M be a moduli of sheaves with a universal sheaf G in M x X.
Define the geometric realization morphism &g : DX — H®*(M) by

136! (Ch,ﬂ(’Y)> = px (chitrdimx)—s(G)q*y) € H*(M)

for v € HS*(X). p, q are the projections of the product onto M
and X, respectively.




Descendents for pairs

There is an analogous definition for pairs:

Definition (Pair descendent algebra)

Let DXP2 ~ DX @ DX be the free (super)commutative C-algebra
generated by symbols

ch™ (y), ch?F(y) for i >0,y e€ H*(X).

Definition (Geometric realization of pair descendents)

Let P be a moduli of sheaves with a universal pair g*V — F in
X x P. Define the geometric realization morphism by

§(q* V. F) (ch!"” () = ps (chitdim(x)—s(F)a*y) ,

Egrvn (Y (1) = pe(chivaimp)—s(a*V)a™) = dio L ch(V)y.

y




Virasoro operators

For n > —1 define the operators L,: DX - DX by L, =R, + T,
where:

@ The operator R,,: DX — DX is a derivation defined on
generators by

Rncht (y H i+J ) ) | chtt (7).

@ The operator T,: DX — DX is the multiplication by the
element of DX given by

_ 4L
To= ) 'J'Z 1)4mX=Pschit (y¢)chH (75) ,

i+j=n

where > 7L @K = Atd(X).




Virasoro operators

They satisfy the Virasoro bracket:
[Lm Lm] = (m - n)l-n+m .

There is also a version LB?: DX:P2 — DX:P2 for pairs. The main
difference is in the T, operator:

ay . i —pt -
TR = X I (e ()
i+j=n s



Virasoro constraints for pairs

Conjecture (Virasoro for pairs)

Let P be a moduli space of pairs with universal pair g*V — F. For
any D € DX:P2 and n > 0 we have

§gxv,m) (LR (D)) = 0.
J e v (12200




Weight 0 descendents

The formulation of sheaf Virasoro constraints should be
independent on the choice of universal sheaf. If G is a universal
sheaf and L is a line bundle on M then G’ = G ® p*L is another
universal sheaf and

o = ), Clj(.!L)J EcoR ;.

Jj=0

Definition

We say that D € DX has weight 0 if R_;(D) = 0. We denote by
]D)\),\fto < DX the algebra of weight 0 descendents.

If De ]D)ﬁto then its geometric realization £ (D) does not depend

on the choice of G, so we write

J[ CE fW é(D).



Virasoro constraints for sheaves

Let

LWtO _ Z (_1) L Rn+1'

n"_y
et (n+1)!

Lwt, (D) € D

wtg *

Conjecture (Virasoro for sheaves)

Let M be a moduli space of sheaves. For any D € DX we have

J Lwio (D) = 0.
[M]Wr




Example — rank 2 sheaves on a curve

Let M = Mc(2,A) be the moduli space of stable bundles on a
curve C of genus g with rank 2 and fixed determinant A of odd
degree; this is a smooth moduli space of dimension 3g — 3.

All integrals of descendents on M can be deduced from integrals of
products of certain classes

ne H* (M), 6eHYM), (eHM).

Thaddeus proved:

9

J nmakgp _ (_1)g—1—p mlgl 22g—2—p (2q — Z)Bq
M (& —p)! q!

where m+2k+3p=3g—3andg=m+p—g+ 1.
The Virasoro constraints for M are equivalent to

(g — p)f nmo*¢P = —2mf U AR
M M



Wall-crossing

Wall-crossing=studying how a moduli space/enumerative
invariants change when we change the stability condition. Let's
study how P(2,d) changes with t € R, for d odd:
1. When t » 1 there are no u;-semistable pairs, i.e. Pt(2,d)
becomes empty.
2. When 0 < t « 1, a pair [O¢c > F] is js-semistable if and only
if F is stable and s # 0. Assuming d is large,

P'(2,d) — M(2,d)

is a projective bundle with fibers P(HO(F)).

3. The moduli space P*(2,d) changes when we cross a t for
which P*(2,d) has strictly semistable objects. Such t is called

a wall.



Wall-crossing

4. 1f P*(2,d) has strictly semistable objects then t is an odd
integer < d. The strictly semistable pairs are (S-equivalent

to)
(Ox — Fl) ) (0 — Fg)
with
pe(Ox — F1) = pue(0 — F).
l.e.

(Ox — F)e Pi(1, %) . 0—R)em(t %)



Wall-crossing

5. (Thaddeus) Suppose t is a wall and t_ < t < t;. Then there
is a common blow-up

Pt(2,d)
/ \
Pt-(2, d) Pt+(2, d)

The exceptional divisor of the two blowups is the same and is
a P? x PP-bundle over

P55 < w155

6. Joyce's wall-crossing formula:

- e [t ) (5]



Wall-crossing
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Joyce's vertex algebra

@ Joyce defines a vertex algebra V, and with an associated Lie
algebra V, = V*/T(V,). They are defined as homologies of
the higher stack parametrizing complexes on X.

@ We can roughly think of V4, \7. as the duals to DX, Dxto,
respectively. l.e an element in V, carries the information of
how to integrate descendents. Similarly, an element of V,

carries information of how to integrate weight O descendents.

@ A moduli space M defines a class [M]"" € V, and a moduli
space with universal sheaf G an element [M] € V..



Joyce's vertex algebra

Q Joyce extends the definition of the classes [M]¥" € V, to the
case when M has strictly semistable sheaves.

Q Wall-crossing formulas are written in terms of the Lie bracket
on V,.

@ (J. Gross+BLM) For curves and surfaces, the vertex algebra
V, is isomorphic to a (generalized) lattice vertex algebra.

O We define a pair version Vo of Joyce's vertex algebra. A
moduli space of pairs naturally defines an element [P]‘(’g* V.F)
induced by a universal pair g*V — F.



Conformal element

Vertex algebras often come with a conformal element w € V,. The
most important property of the conformal element is that it
induces operators

L, Ve—> V., neZ

via the state-field correspondence that form a representation of the
Virasoro Lie algebra:

3

m>—m.
[Lna Lm] = (n - m)Lm+n + 5m+n,0CT id .

The constant ¢ € C is called the central charge of w. A vertex

algebra together with a conformal element is called a vertex

operator algebra.



Conformal element in Joyce's VA

Theorem (Bojko-Lim-M)

Let X be a point, a curve or a surface with h%? = 0. Then there is
a conformal element w is the pair vertex algebra V.

Under the duality between VP and DX:P2, the Virasoro fields L,
induced by w are dual to the pair Virasoro operators Lb? defined in
the algebra of descendents DX:P2

W

The proof relies on Gross’ isomorphism between VP ? and a lattice
vertex algebra and on a construction by Kac. Kac construction
needs a choice of a maximal isotropic decomposition of the
fermionic part, which in our case is

Hodd(X) = H** L (X) @ H* T2 (X).



Physical states

There is a vertex algebra notion of physical states that roughly
corresponds to elements of V, or V, that satisfy Virasoro
constraints:

Pi={ve Vi: Ly(v) = dnoiv,n >0} € Vi,
Po = P1/T(Po) < V.

Proposition

Under some conditions, U € 150 if and only if

0=[m,w] = )] (=1 T L (u).

= (n+1)!




Physical states

Corollary (Bojko-Lim-M)
@ A moduli of sheaves M satisfies the sheaf Virasoro constraints

if and only if L
[M]Vlr = PO

is a physical state.

Q@ A moduli of pairs P with universal pair g*V — T satisfies the
pair Virasoro constraints if and only if

[Pligev.r) € PO

is a physical state.




Wall-crossing compatibility

Q The subspace 50 C V. isa Lie subalgebra, i.e.

~

T, vePy=[u,v]ePy.

© The subspace Py < V, is a Lie algebra subrepresentation of
Pyc V., ie

Eeﬁo,ve PO:[E,V]EP().

W

This proposition translates to a compatibility between the Virasoro
constraints and wall-crossing in moduli spaces of sheaves!



Results

Theorem (Bojko-Lim-M)

The Virasoro constraints hold for the following moduli spaces:
@ Moduli spaces of stable bundles on curves Mc(r,d);

@ Moduli spaces of stable torsion-free sheaves M_’; (r,B,n) on
surfaces S with h%' = h%2 = 0 and a polarization H;

© Moduli spaces of stable 1 dimensional sheaves Mg" (B,n) on
surfaces S with h%! = h%2 = 0 and a polarization H.




Sketch of proof

| will focus on the case of curves. The proof goes through the
strategy that was described before:

1. We prove by induction on r that M(r,d) and P*(r,d) satisfy
the sheaf and the pair Virasoro constraints, respectively.

2. In the base case r = 1,
M(1,d) = Jac(C) and P%(1,d) = Cl9].

Both cases can be proven “by hand”. For surfaces, everything
can be reduced to the Hilbert scheme of points which was
proven earlier (M-Oblomkov-Okounkov-Pandharipande, M).

3. For r > 1 the moduli space P*(r,d) becomes empty for
large t, so it trivially satisfies Virasoro constraints.



Sketch of proof

4. Using the wall-crossing compatibility, P*(r, d) satisfies the
pair Virasoro constraints for every t. Induction guarantees
that all the wall-crossing terms already satisfy Virasoro, e.g.

d+t d—t
[Pt(2,d)] = [P (2, )] - [M(1,25), P(1.55) |
5. If ged(r,d) = 1 then P*(r,d) — M(r,d) is a projective
bundle for t close to 0. If gcd(r,d) > 1 it “looks like" a
projective bundle up to corrections by lower rank wall-crossing
terms.
6. The projective bundle structure can be used to prove that if
Pt(r,d) satisfies pair Virasoro for t close to 0 then M(r, d)
satisfies sheaf Virasoro.






