Virasoro constraints for sheaf moduli spaces via wall-crossing

Miguel Moreira

ETHZ
Joint with Arkadij Bojko and Woonam Lim
Arxiv 2210.05266

Geometria em Lisboa
18 October 2022

History of Virasoro constraints

- In 1990, Witten proposed a conjecture saying that integrals of ψ-classes in the moduli space of curves $\overline{\mathcal{M}}_{g, n}$ satisfy some relations which completely determine them:

$$
L_{k}(Z)=0 \quad \text { for } k \geqslant-1
$$

where Z is the generating function of these integrals and L_{k} are differential operators satisfying the Virasoro bracket

$$
\left[L_{k}, L_{\ell}\right]=(\ell-k) L_{k+\ell} .
$$

- Witten's conjecture was proven in 1992 by Kontsevich. Alternative proofs by Okounkov-Pandharipande and Mirzakhani were found later.
- Eguchi-Hori-Xiong propose in 1997 a generalization to the Gromov-Witten (GW) theory of a target variety X.

History of Virasoro constraints

- In 2006, Maulik-Nekrasov-Okounkov-Pandharipande (MNOP) propose a conjecture connecting Gromov-Witten invariants on 3-folds to Donaldson-Thomas (DT) invariants, defined using the moduli space of ideal sheaves.
- An analog of Virasoro constraints should exist in DT theory! Oblomkov-Okounkov-Pandharipande make a precise conjecture by calculations in $X=\mathbb{P}^{3}$.
- In 2020, with Oblomkov-Okounkov-Pandharipande we prove that the MNOP correspondence intertwines the GW Virasoro and the DT Virasoro constraints (in stationary regime).
- This proves Virasoro constraints for the DT theory of toric 3-folds with stationary descendents.

History of Virasoro constraints

- In 2020 I used the previous result to prove a version of Virasoro constraints for the Hilbert scheme of points on simply-connected surfaces.
- In 2021 D. van Bree conjectures a generalization of the Hilbert scheme result to moduli spaces of stable sheaves on surfaces.
- Much more general?...

Today

I will explain joint work with A. Bojko and W. Lim containing:

- Unified formulation of Virasoro constraints for moduli spaces of sheaves and pairs.
- How the Virasoro constraints are naturally formulated using the vertex algebra that D. Joyce introduced to study wall-crossing.
- Virasoro constraints are compatible with wall-crossing.
- A proof of the Virasoro constraints for moduli spaces of stable sheaves on curves and surfaces with $h^{0,1}=h^{0,2}=0$ (either torsion-free or dimension 1 sheaves) by reducing everything to the rank 1 case.

Stable bundles on curves

Let C be a smooth projective curve of genus $g \geqslant 0$. Given a vector bundle G on C define its slope as

$$
\mu(G)=\frac{\operatorname{deg}(G)}{\operatorname{rk}(G)} .
$$

Definition

A vector bundle is called (semi)stable if for every subbundle $G^{\prime} \subsetneq G$

$$
\mu\left(G^{\prime}\right)(\leqslant) \mu(G)
$$

where (\leqslant) means $<$ in the stable case and \leqslant in semistable.
We can form the moduli space $M=M_{C}(r, d)$ of semistable bundles of rank r and degree d.

Stable bundles on curves

If r, d are coprime then:

- Every semistable sheaf in $M_{C}(r, d)$ is stable.
- The moduli space $M_{C}(r, d)$ is a smooth projective variety of dimension $r^{2}(g-1)+1$.
- The tangent space at $[G] \in M_{C}(r, d)$ is given by

$$
\operatorname{Ext}^{1}(G, G)
$$

- There exists a universal bundle \mathbb{G} on $M \times C$. Very important: \mathbb{G} is not unique, it is defined only up to twisting by a line bundle pulled back from M.

Moduli spaces of Bradlow pairs

We want to define moduli spaces of pairs, that parametrize a vector bundle F together with a section (or many sections), i.e maps of vector bundles $\mathcal{O}_{C}^{\oplus m} \rightarrow F$.
Given $t \in \mathbb{R}_{>0}$ we define the μ_{t}-slope

$$
\mu_{t}\left(\mathcal{O}_{C}^{\oplus m} \rightarrow F\right)=\frac{\operatorname{deg}(F)+t \cdot d}{\operatorname{rk}(F)}
$$

Definition

A pair $\mathcal{O}_{C}^{\oplus m} \rightarrow F$ is called $\mu_{t^{-}}$(semi)stable if for every subpair $\mathcal{O}^{\oplus m^{\prime}} \rightarrow F^{\prime}$ we have

$$
\mu_{t}\left(\mathcal{O}_{C}^{\oplus m^{\prime}} \rightarrow F^{\prime}\right)(\leqslant) \mu_{t}\left(\mathcal{O}_{C}^{\oplus m} \rightarrow F\right)
$$

where (\leqslant) means $<$ in the stable case and \leqslant in semistable.

Bradlow pairs

We can form the moduli space $P=P_{C}^{t}(r, d)$ of $\mu_{t^{-}}$-semistable pairs $\mathcal{O}_{C} \rightarrow F$ such that F has rank r and degree d. If $t \notin \frac{1}{r!} \mathbb{Z}$ then

- Every semistable pair in $P_{C}^{t}(r, d)$ is stable.
- If d is large enough, the moduli space $P_{C}^{t}(r, d)$ is a smooth projective variety of dimension $\left(r^{2}-r\right)(g-1)+d$ (for small d it is still virtually smooth).
- The tangent space at $\left[\mathcal{O}_{X} \rightarrow F\right]$ is given by

$$
\operatorname{Ext}^{0}\left(\left[\mathcal{O}_{X} \rightarrow F\right], F\right)
$$

- There exists a unique (!) universal pair $\mathcal{O}_{P \times C} \rightarrow \mathbb{F}$ on $P \times C$.

Example

If $r=1$ then
(1) $M_{C}(1, d)$ parametrizes degree d line bundles, i.e.

$$
M_{C}(1, d)=\operatorname{Jac}^{d}(C)
$$

is topologically a torus of (real) dimension $2 g$.
(2) $P_{C}^{t}(1, d)$ parametrizes surjective pairs of the form $\mathcal{O}_{C} \rightarrow \mathcal{O}_{C}(D)$ for some effective divisor D of degree d, i.e.

$$
P_{C}^{t}(1, d)=C^{[d]} \cong C^{\times d} / \Sigma_{d}
$$

is the symmetric power of C. In particular it does not depend on t.

General story...

More generally we can consider a smooth projective variety X of low dimension $(\leqslant 4)$ and a moduli space M of semistable (for some notion of stability) sheaves on X. We don't need M smooth, but only virtually smooth i.e. have a 2-term perfect obstruction theory:

$$
\operatorname{Ext}^{1}(G, G)=\operatorname{Tan}_{[G]}, \quad \operatorname{Ext}^{2}(G, G)=\mathrm{Ob}_{[G]}, \quad \operatorname{Ext}^{\geqslant 3}(G, G)=0
$$

Then we get a virtual fundamental class $[M]^{\text {vir }}$ and we can define enumerative invariants by

$$
\int_{[M] \text { vir }} \cdots
$$

Includes many interesting invariants: Donaldson, Seiberg-Witten, Donaldson-Thomas, Pandharipande-Thomas. Another direction are moduli spaces of quiver representations.

Descendents

To get numerical invariants from M we integrate certain natural cohomology classes against the virtual fundamental class.

Definition (Descendent algebra)

Let \mathbb{D}^{X} be the free (super)commutative \mathbb{C}-algebra generated by symbols

$$
\operatorname{ch}_{i}^{H}(\gamma) \quad \text { for } i \geqslant 0, \gamma \in H^{\bullet}(X) .
$$

Definition (Geometric realization of descendents)

Let M be a moduli of sheaves with a universal sheaf \mathbb{G} in $M \times X$. Define the geometric realization morphism $\xi_{\mathbb{G}}: \mathbb{D}^{X} \rightarrow H^{\bullet}(M)$ by

$$
\xi_{\mathbb{G}}\left(\operatorname{ch}_{i}^{\mathrm{H}}(\gamma)\right)=p_{*}\left(\operatorname{ch}_{i+\operatorname{dim}(X)-s}(\mathbb{G}) q^{*} \gamma\right) \in H^{\bullet}(M)
$$

for $\gamma \in H^{s, t}(X) . p, q$ are the projections of the product onto M and X, respectively.

Descendents for pairs

There is an analogous definition for pairs:

Definition (Pair descendent algebra)

Let $\mathbb{D}^{X, \mathrm{pa}} \cong \mathbb{D}^{X} \otimes \mathbb{D}^{X}$ be the free (super)commutative \mathbb{C}-algebra generated by symbols

$$
\operatorname{ch}_{i}^{\mathrm{H}, \mathcal{V}}(\gamma), \mathrm{ch}_{i}^{\mathrm{H}, \mathcal{F}}(\gamma) \quad \text { for } i \geqslant 0, \gamma \in H^{\bullet}(X) .
$$

Definition (Geometric realization of pair descendents)

Let P be a moduli of sheaves with a universal pair $q^{*} V \rightarrow \mathbb{F}$ in $X \times P$. Define the geometric realization morphism by
$\xi_{\left(q^{*} V, \mathbb{F}\right)}\left(\operatorname{ch}_{i}^{H, \mathcal{F}}(\gamma)\right)=p_{*}\left(\operatorname{ch}_{i+\operatorname{dim}(X)-s}(\mathbb{F}) q^{*} \gamma\right)$,
$\xi_{\left(q^{*} V, \mathbb{F}\right)}\left(\operatorname{ch}_{i}^{H, \mathcal{V}}(\gamma)\right)=p_{*}\left(\operatorname{ch}_{i+\operatorname{dim}(X)-s}\left(q^{*} V\right) q^{*} \gamma\right)=\delta_{i 0} \int_{X} \operatorname{ch}(V) \gamma$.

Virasoro operators

Definition

For $n \geqslant-1$ define the operators $\mathrm{L}_{n}: \mathbb{D}^{X} \rightarrow \mathbb{D}^{X}$ by $\mathrm{L}_{n}=\mathrm{R}_{n}+\mathrm{T}_{n}$ where:
(1) The operator $\mathrm{R}_{n}: \mathbb{D}^{X} \rightarrow \mathbb{D}^{X}$ is a derivation defined on generators by

$$
\mathrm{R}_{n} \operatorname{ch}_{i}^{\mathrm{H}}(\gamma)=\left(\prod_{j=0}^{n}(i+j)\right) \operatorname{ch}_{i+n}^{\mathrm{H}}(\gamma)
$$

(2) The operator $\mathrm{T}_{n}: \mathbb{D}^{X} \rightarrow \mathbb{D}^{X}$ is the multiplication by the element of \mathbb{D}^{X} given by

$$
\mathrm{T}_{n}=\sum_{i+j=n} i!j!\sum_{s}(-1)^{\operatorname{dim} X-p_{s}^{L}} \operatorname{ch}_{i}^{\mathrm{H}}\left(\gamma_{s}^{L}\right) \operatorname{ch}_{j}^{\mathrm{H}}\left(\gamma_{s}^{R}\right)
$$

$$
\text { where } \sum_{s} \gamma_{s}^{L} \otimes \gamma_{s}^{R}=\Delta_{*} \operatorname{td}(X)
$$

Virasoro operators

They satisfy the Virasoro bracket:

$$
\left[\mathrm{L}_{n}, \mathrm{~L}_{m}\right]=(m-n) \mathrm{L}_{n+m} .
$$

There is also a version $\mathrm{L}_{n}^{\mathrm{pa}}: \mathbb{D}^{X, \text { pa }} \rightarrow \mathbb{D}^{X, \text { pa }}$ for pairs. The main difference is in the T_{n} operator:

$$
\mathrm{T}_{n}^{\mathrm{pa}}=\sum_{i+j=n} i!j!\sum_{s}(-1)^{\operatorname{dim} X-p_{s}^{L}} \mathrm{ch}_{i}^{H, \mathcal{F}-\mathcal{V}}\left(\gamma_{s}^{L}\right) \mathrm{ch}_{j}^{H, \mathcal{F}}\left(\gamma_{s}^{R}\right)
$$

Virasoro constraints for pairs

Conjecture (Virasoro for pairs)

Let P be a moduli space of pairs with universal pair $q^{*} V \rightarrow \mathbb{F}$. For any $D \in \mathbb{D}^{X, \mathrm{pa}}$ and $n \geqslant 0$ we have

$$
\int_{[P]_{\text {vir }}} \xi_{\left(q^{*} V, \mathbb{F}\right)}\left(\mathrm{L}_{n}^{\mathrm{pa}}(D)\right)=0
$$

Weight 0 descendents

The formulation of sheaf Virasoro constraints should be independent on the choice of universal sheaf. If \mathbb{G} is a universal sheaf and L is a line bundle on M then $\mathbb{G}^{\prime}=\mathbb{G} \otimes p^{*} L$ is another universal sheaf and

$$
\xi_{\mathbb{G}^{\prime}}=\sum_{j \geqslant 0} \frac{c_{1}(L)^{j}}{j!} \xi_{\mathbb{G}} \circ \mathrm{R}_{-1}^{j}
$$

Definition

We say that $D \in \mathbb{D}^{X}$ has weight 0 if $\mathrm{R}_{-1}(D)=0$. We denote by $\mathbb{D}_{\mathrm{wt}_{0}}^{X} \subseteq \mathbb{D}^{X}$ the algebra of weight 0 descendents.

If $D \in \mathbb{D}_{\mathrm{wt}_{0}}^{X}$ then its geometric realization $\xi_{\mathbb{G}}(D)$ does not depend on the choice of \mathbb{G}, so we write

$$
\int_{[M]_{\mathrm{ir}}} D=\int_{[M]_{\mathrm{iir}}} \xi_{\mathbb{G}}(D)
$$

Virasoro constraints for sheaves

Let

$$
\mathrm{L}_{\mathrm{wt}_{0}}=\sum_{n \geqslant-1} \frac{(-1)^{n}}{(n+1)!} \mathrm{L}_{n} \mathrm{R}_{-1}^{n+1}
$$

Fact

$$
\mathrm{L}_{\mathrm{wt}_{0}}(D) \in \mathbb{D}_{\mathrm{wt}_{0}}^{X} .
$$

Conjecture (Virasoro for sheaves)

Let M be a moduli space of sheaves. For any $D \in \mathbb{D}^{X}$ we have

$$
\int_{[M]^{\mathrm{iri}}} \mathrm{~L}_{\mathrm{wt}_{0}}(D)=0
$$

Example - rank 2 sheaves on a curve

Let $M=M_{C}(2, \Delta)$ be the moduli space of stable bundles on a curve C of genus g with rank 2 and fixed determinant Δ of odd degree; this is a smooth moduli space of dimension $3 g-3$. All integrals of descendents on M can be deduced from integrals of products of certain classes

$$
\eta \in H^{2}(M), \quad \theta \in H^{4}(M), \quad \zeta \in H^{6}(M) .
$$

Thaddeus proved:

$$
\int_{M} \eta^{m} \theta^{k} \zeta^{p}=(-1)^{g-1-p} \frac{m!g!}{(g-p)!} 2^{2 g-2-p} \frac{\left(2^{q}-2\right) B_{q}}{q!},
$$

where $m+2 k+3 p=3 g-3$ and $q=m+p-g+1$.
The Virasoro constraints for M are equivalent to

$$
(g-p) \int_{M} \eta^{m} \theta^{k} \zeta^{p}=-2 m \int_{M} \eta^{m-1} \theta^{k-1} \zeta^{p+1}
$$

Wall-crossing

Wall-crossing=studying how a moduli space/enumerative invariants change when we change the stability condition. Let's study how $P^{t}(2, d)$ changes with $t \in \mathbb{R}_{+}$for d odd:

1. When $t \gg 1$ there are no μ_{t}-semistable pairs, i.e. $P^{t}(2, d)$ becomes empty.
2. When $0<t \ll 1$, a pair $\left[\mathcal{O}_{C} \xrightarrow{s} F\right.$] is μ_{t}-semistable if and only if F is stable and $s \neq 0$. Assuming d is large,

$$
P^{t}(2, d) \rightarrow M(2, d)
$$

is a projective bundle with fibers $\mathbb{P}\left(H^{0}(F)\right)$.
3. The moduli space $P^{t}(2, d)$ changes when we cross a t for which $P^{t}(2, d)$ has strictly semistable objects. Such t is called a wall.

Wall-crossing

4. If $P^{t}(2, d)$ has strictly semistable objects then t is an odd integer $\leqslant d$. The strictly semistable pairs are (S-equivalent to)

$$
\left(\mathcal{O}_{x} \rightarrow F_{1}\right) \oplus\left(0 \rightarrow F_{2}\right)
$$

with

$$
\mu_{t}\left(\mathcal{O}_{X} \rightarrow F_{1}\right)=\mu_{t}\left(0 \rightarrow F_{2}\right)
$$

I.e.

$$
\left(\mathcal{O}_{X} \rightarrow F_{1}\right) \in P^{t}\left(1, \frac{d-t}{2}\right), \quad\left(0 \rightarrow F_{2}\right) \in M\left(1, \frac{d+t}{2}\right)
$$

Wall-crossing

5. (Thaddeus) Suppose t is a wall and $t_{-}<t<t_{+}$. Then there is a common blow-up

$$
\widetilde{P}^{t}(2, d)
$$

$$
P^{t_{-}}(2, d) \quad P^{t_{+}}(2, d)
$$

The exceptional divisor of the two blowups is the same and is a $\mathbb{P}^{a} \times \mathbb{P}^{b}$-bundle over

$$
P^{t}\left(1, \frac{d-t}{2}\right) \times M\left(1, \frac{d+t}{2}\right) .
$$

6. Joyce's wall-crossing formula:

$$
P^{t_{-}}(2, d)=P^{t_{+}}(2, d)-\left[M\left(1, \frac{d+t}{2}\right), P^{t}\left(1, \frac{d-t}{2}\right)\right] .
$$

Wall-crossing

Joyce's vertex algebra

(1) Joyce defines a vertex algebra V_{\bullet} and with an associated Lie algebra $\check{V}_{\bullet}=V^{\bullet} / T\left(V_{\bullet}\right)$. They are defined as homologies of the higher stack parametrizing complexes on X.
(2) We can roughly think of $V_{\bullet}, \check{V}_{\bullet}$ as the duals to $\mathbb{D}^{X}, \mathbb{D}_{\mathrm{wt}_{0}}^{X}$, respectively. I.e an element in V_{\bullet} carries the information of how to integrate descendents. Similarly, an element of \check{V}_{\bullet} carries information of how to integrate weight 0 descendents.
(3) A moduli space M defines a class $[M]^{v i r} \in \check{V}_{\bullet}$ and a moduli space with universal sheaf \mathbb{G} an element $[M]_{\mathbb{G}}^{\text {vir }} \in V_{\bullet}$.

Joyce's vertex algebra

(1) Joyce extends the definition of the classes $[M]^{v i r} \in \check{V}_{\bullet}$ to the case when M has strictly semistable sheaves.
(2) Wall-crossing formulas are written in terms of the Lie bracket on \check{V}_{\bullet}.
(3) (J. Gross+BLM) For curves and surfaces, the vertex algebra V_{\bullet} is isomorphic to a (generalized) lattice vertex algebra.
(9) We define a pair version $V_{\bullet}^{\text {pa }}$ of Joyce's vertex algebra. A moduli space of pairs naturally defines an element $[P]_{\left(q^{*} V, \mathbb{F}\right)}^{\text {vir }}$ induced by a universal pair $q^{*} V \rightarrow \mathbb{F}$.

Conformal element

Vertex algebras often come with a conformal element $\omega \in V_{\mathbf{0}}$. The most important property of the conformal element is that it induces operators

$$
\mathrm{L}_{n}: V_{\bullet} \rightarrow V_{\bullet}, \quad n \in \mathbb{Z}
$$

via the state-field correspondence that form a representation of the Virasoro Lie algebra:

$$
\left[\mathrm{L}_{n}, \mathrm{~L}_{m}\right]=(n-m) \mathrm{L}_{m+n}+\delta_{m+n, 0} c \frac{m^{3}-m}{12} \mathrm{id}
$$

The constant $c \in \mathbb{C}$ is called the central charge of ω. A vertex algebra together with a conformal element is called a vertex operator algebra.

Conformal element in Joyce's VA

Theorem (Bojko-Lim-M)

Let X be a point, a curve or a surface with $h^{0,2}=0$. Then there is a conformal element ω is the pair vertex algebra $V_{\bullet}^{\text {pa }}$. Under the duality between $V_{\bullet}^{\text {pa }}$ and $\mathbb{D}^{X, \mathrm{pa}}$, the Virasoro fields L_{n} induced by ω are dual to the pair Virasoro operators $L_{n}^{\text {pa }}$ defined in the algebra of descendents $\mathbb{D}^{X, \mathrm{pa}}$.

The proof relies on Gross' isomorphism between $V_{\bullet}^{\text {pa }}$ and a lattice vertex algebra and on a construction by Kac. Kac construction needs a choice of a maximal isotropic decomposition of the fermionic part, which in our case is

$$
H^{\text {odd }}(X)=H^{\bullet \bullet+1}(X) \oplus H^{\bullet+1, \bullet}(X)
$$

Physical states

There is a vertex algebra notion of physical states that roughly corresponds to elements of V_{\bullet} or \breve{V}_{\bullet} that satisfy Virasoro constraints:

$$
\begin{aligned}
& P_{i}=\left\{v \in V_{\bullet}: \mathrm{L}_{n}(v)=\delta_{n 0} i v, n \geqslant 0\right\} \subseteq V_{\bullet} \\
& \check{P}_{0}=P_{1} / T\left(P_{0}\right) \subseteq \check{V}_{\bullet}
\end{aligned}
$$

Proposition

Under some conditions, $\bar{u} \in \check{P}_{0}$ if and only if

$$
0=[\bar{u}, \omega]=\sum_{n \geqslant-1} \frac{(-1)^{n}}{(n+1)!} T^{n+1} \mathrm{~L}_{n}(u)
$$

Physical states

Corollary (Bojko-Lim-M)

(1) A moduli of sheaves M satisfies the sheaf Virasoro constraints if and only if

$$
[M]^{\text {vir }} \in \check{P}_{0}
$$

is a physical state.
(2) A moduli of pairs P with universal pair $q^{*} V \rightarrow \mathbb{F}$ satisfies the pair Virasoro constraints if and only if

$$
[P]_{\left(q^{*} V, \mathbb{F}\right)}^{\mathrm{vir}} \in P_{0}^{\mathrm{pa}}
$$

is a physical state.

Wall-crossing compatibility

Proposition

(1) The subspace $\check{P}_{0} \subseteq \check{V}_{\text {- }}$ is a Lie subalgebra, i.e.

$$
\bar{u}, \bar{v} \in \check{P}_{0} \Rightarrow[\bar{u}, \bar{v}] \in \check{P}_{0}
$$

(2) The subspace $P_{0} \subseteq V_{0}$ is a Lie algebra subrepresentation of $\check{P}_{0} \subseteq \breve{V}_{\bullet}$, i.e.

$$
\bar{u} \in \check{P}_{0}, v \in P_{0} \Rightarrow[\bar{u}, v] \in P_{0}
$$

This proposition translates to a compatibility between the Virasoro constraints and wall-crossing in moduli spaces of sheaves!

Results

Theorem (Bojko-Lim-M)

The Virasoro constraints hold for the following moduli spaces:
(1) Moduli spaces of stable bundles on curves $M_{C}(r, d)$;
(2) Moduli spaces of stable torsion-free sheaves $M_{S}^{H}(r, \beta, n)$ on surfaces S with $h^{0,1}=h^{0,2}=0$ and a polarization H;
(3) Moduli spaces of stable 1 dimensional sheaves $M_{S}^{H}(\beta, n)$ on surfaces S with $h^{0,1}=h^{0,2}=0$ and a polarization H.

Sketch of proof

I will focus on the case of curves. The proof goes through the strategy that was described before:

1. We prove by induction on r that $M(r, d)$ and $P^{t}(r, d)$ satisfy the sheaf and the pair Virasoro constraints, respectively.
2. In the base case $r=1$,

$$
M(1, d)=\operatorname{Jac}(C) \text { and } P^{t}(1, d)=C^{[d]}
$$

Both cases can be proven "by hand". For surfaces, everything can be reduced to the Hilbert scheme of points which was proven earlier (M -Oblomkov-Okounkov-Pandharipande, M).
3. For $r>1$ the moduli space $P^{t}(r, d)$ becomes empty for large t, so it trivially satisfies Virasoro constraints.

Sketch of proof

4. Using the wall-crossing compatibility, $P^{t}(r, d)$ satisfies the pair Virasoro constraints for every t. Induction guarantees that all the wall-crossing terms already satisfy Virasoro, e.g.

$$
\left[P^{t_{-}}(2, d)\right]=\left[P^{t_{+}}(2, d)\right]-\left[M\left(1, \frac{d+t}{2}\right), P^{t}\left(1, \frac{d-t}{2}\right)\right]
$$

5. If $\operatorname{gcd}(r, d)=1$ then $P^{t}(r, d) \rightarrow M(r, d)$ is a projective bundle for t close to 0 . If $\operatorname{gcd}(r, d)>1$ it "looks like" a projective bundle up to corrections by lower rank wall-crossing terms.
6. The projective bundle structure can be used to prove that if $P^{t}(r, d)$ satisfies pair Virasoro for t close to 0 then $M(r, d)$ satisfies sheaf Virasoro.

Thanks!

