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History of Virasoro constraints

In 1990, Witten proposed a conjecture saying that integrals of
ψ-classes in the moduli space of curves Mg ,n satisfy some
relations which completely determine them:

LkpZ q “ 0 for k ě ´1 ,

where Z is the generating function of these integrals and Lk
are differential operators satisfying the Virasoro bracket

rLk , L`s “ p`´ kqLk`` .

Witten’s conjecture was proven in 1992 by Kontsevich.
Alternative proofs by Okounkov-Pandharipande and
Mirzakhani were found later.

Eguchi-Hori-Xiong propose in 1997 a generalization to the
Gromov-Witten (GW) theory of a target variety X .



History of Virasoro constraints

In 2006, Maulik-Nekrasov-Okounkov-Pandharipande (MNOP)
propose a conjecture connecting Gromov-Witten invariants on
3-folds to Donaldson-Thomas (DT) invariants, defined using
the moduli space of ideal sheaves.

An analog of Virasoro constraints should exist in DT theory!
Oblomkov-Okounkov-Pandharipande make a precise
conjecture by calculations in X “ P3.

In 2020, with Oblomkov-Okounkov-Pandharipande we prove
that the MNOP correspondence intertwines the GW Virasoro
and the DT Virasoro constraints (in stationary regime).

This proves Virasoro constraints for the DT theory of toric
3-folds with stationary descendents.



History of Virasoro constraints

In 2020 I used the previous result to prove a version of
Virasoro constraints for the Hilbert scheme of points on
simply-connected surfaces.

In 2021 D. van Bree conjectures a generalization of the Hilbert
scheme result to moduli spaces of stable sheaves on surfaces.

Much more general?...



Today

I will explain joint work with A. Bojko and W. Lim containing:

Unified formulation of Virasoro constraints for moduli spaces
of sheaves and pairs.

How the Virasoro constraints are naturally formulated using
the vertex algebra that D. Joyce introduced to study
wall-crossing.

Virasoro constraints are compatible with wall-crossing.

A proof of the Virasoro constraints for moduli spaces of stable
sheaves on curves and surfaces with h0,1 “ h0,2 “ 0 (either
torsion-free or dimension 1 sheaves) by reducing everything to
the rank 1 case.



Stable bundles on curves

Let C be a smooth projective curve of genus g ě 0. Given a vector
bundle G on C define its slope as

µpG q “
degpG q

rkpG q
.

Definition

A vector bundle is called (semi)stable if for every subbundle
G 1 Ĺ G

µpG 1qpďqµpG q

where pďq means ă in the stable case and ď in semistable.

We can form the moduli space M “ MC pr , dq of semistable
bundles of rank r and degree d .



Stable bundles on curves

If r , d are coprime then:

Every semistable sheaf in MC pr , dq is stable.

The moduli space MC pr , dq is a smooth projective variety of
dimension r2pg ´ 1q ` 1.

The tangent space at rG s P MC pr , dq is given by

Ext1pG ,G q.

There exists a universal bundle G on M ˆ C . Very important:
G is not unique, it is defined only up to twisting by a line
bundle pulled back from M.



Moduli spaces of Bradlow pairs

We want to define moduli spaces of pairs, that parametrize a
vector bundle F together with a section (or many sections), i.e
maps of vector bundles O‘mC Ñ F .
Given t P Rą0 we define the µt-slope

µtpO‘mC Ñ F q “
degpF q ` t ¨ d

rkpF q
.

Definition

A pair O‘mC Ñ F is called µt-(semi)stable if for every subpair

O‘m1 Ñ F 1 we have

µtpO‘m
1

C Ñ F 1qpďqµtpO‘mC Ñ F q

where pďq means ă in the stable case and ď in semistable.



Bradlow pairs

We can form the moduli space P “ Pt
C pr , dq of µt-semistable pairs

OC Ñ F such that F has rank r and degree d . If t R 1
r !Z then

Every semistable pair in Pt
C pr , dq is stable.

If d is large enough, the moduli space Pt
C pr , dq is a smooth

projective variety of dimension pr2 ´ rqpg ´ 1q ` d (for small
d it is still virtually smooth).

The tangent space at rOX Ñ F s is given by

Ext0prOX Ñ F s,F q .

There exists a unique (!) universal pair OPˆC Ñ F on P ˆ C .



Example

If r “ 1 then

1 MC p1, dq parametrizes degree d line bundles, i.e.

MC p1, dq “ JacdpC q

is topologically a torus of (real) dimension 2g .

2 Pt
C p1, dq parametrizes surjective pairs of the form

OC Ñ OC pDq for some effective divisor D of degree d , i.e.

Pt
C p1, dq “ C rds – Cˆd{Σd

is the symmetric power of C . In particular it does not depend
on t.



General story...

More generally we can consider a smooth projective variety X of
low dimension (ď 4) and a moduli space M of semistable (for some
notion of stability) sheaves on X . We don’t need M smooth, but
only virtually smooth i.e. have a 2-term perfect obstruction theory:

Ext1pG ,G q “ TanrG s , Ext2pG ,G q “ ObrG s , Extě3pG ,G q “ 0 .

Then we get a virtual fundamental class rMsvir and we can define
enumerative invariants by

ż

rMsvir
. . .

Includes many interesting invariants: Donaldson, Seiberg-Witten,
Donaldson-Thomas, Pandharipande-Thomas. Another direction are
moduli spaces of quiver representations.



Descendents

To get numerical invariants from M we integrate certain natural
cohomology classes against the virtual fundamental class.

Definition (Descendent algebra)

Let DX be the free (super)commutative C-algebra generated by
symbols

chH
i pγq for i ě 0, γ P H‚pX q .

Definition (Geometric realization of descendents)

Let M be a moduli of sheaves with a universal sheaf G in M ˆ X .
Define the geometric realization morphism ξG : DX Ñ H‚pMq by

ξG

´

chH
i pγq

¯

“ p˚
`

chi`dimpX q´spGqq˚γ
˘

P H‚pMq

for γ P Hs,tpX q. p, q are the projections of the product onto M
and X , respectively.



Descendents for pairs

There is an analogous definition for pairs:

Definition (Pair descendent algebra)

Let DX ,pa – DX b DX be the free (super)commutative C-algebra
generated by symbols

chH,V
i pγq, chH,F

i pγq for i ě 0, γ P H‚pX q .

Definition (Geometric realization of pair descendents)

Let P be a moduli of sheaves with a universal pair q˚V Ñ F in
X ˆ P. Define the geometric realization morphism by

ξpq˚V ,Fq
`

chH,F
i pγq

˘

“ p˚
`

chi`dimpX q´spFqq˚γ
˘

,

ξpq˚V ,Fq
`

chH,V
i pγq

˘

“ p˚
`

chi`dimpX q´spq
˚V qq˚γ

˘

“ δi0

ż

X
chpV qγ .



Virasoro operators

Definition

For n ě ´1 define the operators Ln : DX Ñ DX by Ln “ Rn ` Tn

where:

1 The operator Rn : DX Ñ DX is a derivation defined on
generators by

RnchH
i pγq “

˜

n
ź

j“0

pi ` jq

¸

chH
i`npγq.

2 The operator Tn : DX Ñ DX is the multiplication by the
element of DX given by

Tn “
ÿ

i`j“n

i !j!
ÿ

s

p´1qdimX´pLs chH
i pγ

L
s qchH

j pγ
R
s q ,

where
ř

s γ
L
s b γ

R
s “ ∆˚tdpX q.



Virasoro operators

They satisfy the Virasoro bracket:

rLn, Lms “ pm ´ nqLn`m .

There is also a version Lpa
n : DX ,pa Ñ DX ,pa for pairs. The main

difference is in the Tn operator:

Tpa
n “

ÿ

i`j“n

i !j!
ÿ

s

p´1qdimX´pLs chH,F´V
i pγLs qchH,F

j pγRs q .



Virasoro constraints for pairs

Conjecture (Virasoro for pairs)

Let P be a moduli space of pairs with universal pair q˚V Ñ F. For
any D P DX ,pa and n ě 0 we have

ż

rPsvir
ξpq˚V ,Fq

`

Lpa
n pDq

˘

“ 0 .



Weight 0 descendents

The formulation of sheaf Virasoro constraints should be
independent on the choice of universal sheaf. If G is a universal
sheaf and L is a line bundle on M then G1 “ Gb p˚L is another
universal sheaf and

ξG1 “
ÿ

jě0

c1pLq
j

j!
ξG ˝ Rj

´1 .

Definition

We say that D P DX has weight 0 if R´1pDq “ 0. We denote by
DX
wt0 Ď DX the algebra of weight 0 descendents.

If D P DX
wt0 then its geometric realization ξGpDq does not depend

on the choice of G, so we write
ż

rMsvir
D “

ż

rMsvir
ξGpDq .



Virasoro constraints for sheaves

Let

Lwt0 “
ÿ

ně´1

p´1qn

pn ` 1q!
LnRn`1

´1 .

Fact

Lwt0pDq P D
X
wt0 .

Conjecture (Virasoro for sheaves)

Let M be a moduli space of sheaves. For any D P DX we have

ż

rMsvir
Lwt0pDq “ 0 .



Example – rank 2 sheaves on a curve

Let M “ MC p2,∆q be the moduli space of stable bundles on a
curve C of genus g with rank 2 and fixed determinant ∆ of odd
degree; this is a smooth moduli space of dimension 3g ´ 3.
All integrals of descendents on M can be deduced from integrals of
products of certain classes

η P H2pMq, θ P H4pMq, ζ P H6pMq .

Thaddeus proved:
ż

M
ηmθkζp “ p´1qg´1´p

m!g !

pg ´ pq!
22g´2´p

p2q ´ 2qBq

q!
,

where m ` 2k ` 3p “ 3g ´ 3 and q “ m ` p ´ g ` 1.
The Virasoro constraints for M are equivalent to

pg ´ pq

ż

M
ηmθkζp “ ´2m

ż

M
ηm´1θk´1ζp`1 .



Wall-crossing

Wall-crossing=studying how a moduli space/enumerative
invariants change when we change the stability condition. Let’s
study how Ptp2, dq changes with t P R` for d odd:

1. When t " 1 there are no µt-semistable pairs, i.e. Ptp2, dq
becomes empty.

2. When 0 ă t ! 1, a pair rOC
s
Ñ F s is µt-semistable if and only

if F is stable and s ‰ 0. Assuming d is large,

Ptp2, dq Ñ Mp2, dq

is a projective bundle with fibers PpH0pF qq.

3. The moduli space Ptp2, dq changes when we cross a t for
which Ptp2, dq has strictly semistable objects. Such t is called
a wall.



Wall-crossing

4. If Ptp2, dq has strictly semistable objects then t is an odd
integer ď d . The strictly semistable pairs are (S-equivalent
to)

pOX Ñ F1q ‘ p0 Ñ F2q

with
µtpOX Ñ F1q “ µtp0 Ñ F2q.

I.e.

pOX Ñ F1q P P
t
´

1,
d ´ t

2

¯

, p0 Ñ F2q P M
´

1,
d ` t

2

¯



Wall-crossing

5. (Thaddeus) Suppose t is a wall and t´ ă t ă t`. Then there
is a common blow-up

rPtp2, dq

Pt´p2, dq Pt`p2, dq

The exceptional divisor of the two blowups is the same and is
a Pa ˆ Pb-bundle over

Pt
´

1,
d ´ t

2

¯

ˆM
´

1,
d ` t

2

¯

.

6. Joyce’s wall-crossing formula:

Pt´p2, dq “ Pt`p2, dq ´
”

M
´

1,
d ` t

2

¯

,Pt
´

1,
d ´ t

2

¯ı

.



Wall-crossing



Joyce’s vertex algebra

1 Joyce defines a vertex algebra V‚ and with an associated Lie
algebra qV‚ “ V ‚{T pV‚q. They are defined as homologies of
the higher stack parametrizing complexes on X .

2 We can roughly think of V‚, qV‚ as the duals to DX , DX
wt0 ,

respectively. I.e an element in V‚ carries the information of
how to integrate descendents. Similarly, an element of qV‚
carries information of how to integrate weight 0 descendents.

3 A moduli space M defines a class rMsvir P qV‚ and a moduli
space with universal sheaf G an element rMsvirG P V‚.



Joyce’s vertex algebra

1 Joyce extends the definition of the classes rMsvir P qV‚ to the
case when M has strictly semistable sheaves.

2 Wall-crossing formulas are written in terms of the Lie bracket
on qV‚.

3 (J. Gross+BLM) For curves and surfaces, the vertex algebra
V‚ is isomorphic to a (generalized) lattice vertex algebra.

4 We define a pair version V pa
‚ of Joyce’s vertex algebra. A

moduli space of pairs naturally defines an element rPsvir
pq˚V ,Fq

induced by a universal pair q˚V Ñ F.



Conformal element

Vertex algebras often come with a conformal element ω P V‚. The
most important property of the conformal element is that it
induces operators

Ln : V‚ Ñ V‚, n P Z

via the state-field correspondence that form a representation of the
Virasoro Lie algebra:

rLn,Lms “ pn ´mqLm`n ` δm`n,0c
m3 ´m

12
id .

The constant c P C is called the central charge of ω. A vertex
algebra together with a conformal element is called a vertex
operator algebra.



Conformal element in Joyce’s VA

Theorem (Bojko-Lim-M)

Let X be a point, a curve or a surface with h0,2 “ 0. Then there is
a conformal element ω is the pair vertex algebra V pa

‚ .
Under the duality between V pa

‚ and DX ,pa, the Virasoro fields Ln

induced by ω are dual to the pair Virasoro operators Lpa
n defined in

the algebra of descendents DX ,pa.

The proof relies on Gross’ isomorphism between V pa
‚ and a lattice

vertex algebra and on a construction by Kac. Kac construction
needs a choice of a maximal isotropic decomposition of the
fermionic part, which in our case is

HoddpX q “ H‚,‚`1pX q ‘ H‚`1,‚pX q .



Physical states

There is a vertex algebra notion of physical states that roughly
corresponds to elements of V‚ or qV‚ that satisfy Virasoro
constraints:

Pi “ tv P V‚ : Lnpvq “ δn0iv , n ě 0u Ď V‚ ,

qP0 “ P1{T pP0q Ď qV‚ .

Proposition

Under some conditions, u P qP0 if and only if

0 “ ru, ωs “
ÿ

ně´1

p´1qn

pn ` 1q!
T n`1Lnpuq .



Physical states

Corollary (Bojko-Lim-M)

1 A moduli of sheaves M satisfies the sheaf Virasoro constraints
if and only if

rMsvir P qP0

is a physical state.

2 A moduli of pairs P with universal pair q˚V Ñ F satisfies the
pair Virasoro constraints if and only if

rPsvirpq˚V ,Fq P P
pa
0

is a physical state.



Wall-crossing compatibility

Proposition

1 The subspace qP0 Ď qV‚ is a Lie subalgebra, i.e.

u, v P qP0 ñ ru, v s P qP0 .

2 The subspace P0 Ď V‚ is a Lie algebra subrepresentation of
qP0 Ď qV‚, i.e.

u P qP0, v P P0 ñ ru, v s P P0 .

This proposition translates to a compatibility between the Virasoro
constraints and wall-crossing in moduli spaces of sheaves!



Results

Theorem (Bojko-Lim-M)

The Virasoro constraints hold for the following moduli spaces:

1 Moduli spaces of stable bundles on curves MC pr , dq;

2 Moduli spaces of stable torsion-free sheaves MH
S pr , β, nq on

surfaces S with h0,1 “ h0,2 “ 0 and a polarization H;

3 Moduli spaces of stable 1 dimensional sheaves MH
S pβ, nq on

surfaces S with h0,1 “ h0,2 “ 0 and a polarization H.



Sketch of proof

I will focus on the case of curves. The proof goes through the
strategy that was described before:

1. We prove by induction on r that Mpr , dq and Ptpr , dq satisfy
the sheaf and the pair Virasoro constraints, respectively.

2. In the base case r “ 1,

Mp1, dq “ JacpC q and Ptp1, dq “ C rds.

Both cases can be proven “by hand”. For surfaces, everything
can be reduced to the Hilbert scheme of points which was
proven earlier (M-Oblomkov-Okounkov-Pandharipande, M).

3. For r ą 1 the moduli space Ptpr , dq becomes empty for
large t, so it trivially satisfies Virasoro constraints.



Sketch of proof

4. Using the wall-crossing compatibility, Ptpr , dq satisfies the
pair Virasoro constraints for every t. Induction guarantees
that all the wall-crossing terms already satisfy Virasoro, e.g.

rPt´p2, dqs “ rPt`p2, dqs ´
”

M
´

1,
d ` t

2

¯

,Pt
´

1,
d ´ t

2

¯ı

.

5. If gcdpr , dq “ 1 then Ptpr , dq Ñ Mpr , dq is a projective
bundle for t close to 0. If gcdpr , dq ą 1 it “looks like” a
projective bundle up to corrections by lower rank wall-crossing
terms.

6. The projective bundle structure can be used to prove that if
Ptpr , dq satisfies pair Virasoro for t close to 0 then Mpr , dq
satisfies sheaf Virasoro.



Thanks!


