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Calculus of variations

The calculus of variations problem

Given L : Rd × Rd → R, find a curve x : [0,T ]→ Rd with
x(0) = xI , x(T ) = xT that minimizes∫ T

0
L(x(s), ẋ(s))ds.



Calculus of variations

Variational problems like this arise in multiple contexts

I Geodesics (shortest path)

I Brachistochrone problem (shortest time)

I Classical mechanics (minimal action principle)

I Elasticity...



Calculus of variations

Shortest path problem

The lenght of a curve (x, y) between two points in the plane,
(xI , yI ) and (xT , yT ), is given by the integral∫ T

0

√
ẋ(s)2 + ẏ(s)2ds.



Calculus of variations

Euler-Lagrange equation

Let x : [0,T ]→ Rd be a C 2 minimizer of the calculus of variations
problem. Let z be a C 2 function with z(0) = z(T ) = 0. Then

i(ε) =

∫ T

0
L(x(s) + εz(s), ẋ(s) + εż(s))ds.

has a minimum when ε = 0. Hence, i ′(0) = 0.



Calculus of variations

Differentiating and setting ε = 0, we get

0 =

∫ T

0
DxL(x(t), ẋ(t))z(t) + DvL(x(t), ẋ(t))ż(t)dt

=

∫ T

0

[
DxL(x(t), ẋ(t))− d

dt
DvL(x(t), ẋ(t))

]
z(t)ds

Because z is arbitrary, we deduce the Euler-Lagrange equation

DxL(x(t), ẋ(t))− d

dt
DvL(x(t), ẋ(t)) = 0.



Calculus of variations

The shortest path may be a line

For the minimal length problem, if ẋ2 + ẏ2 6= 0, the Euler-Lagrange
equation reads 

d
dt

ẋ√
ẋ2+ẏ2

= 0

d
dt

ẏ√
ẋ2+ẏ2

= 0.

Thus,
ẋ√

ẋ2 + ẏ2
= cos θ,

ẏ√
ẋ2 + ẏ2

= sin θ,

for some constant angle θ. Hence, the velocity vector has constant
directiont; that is, if there is a C 2 trajectory of shortest length
between two points, it must be a straight line.



Calculus of variations

Questions

I is there in fact a C 2 trajectory of shortest length?

I is this trajectory unique?

I can we just prove directly that a straight line is the shortest
lenght path



Calculus of variations

Convexity and optimality - real case

Consider a real-valued C 1 function, f .

I Any minimizer x̄ of f is a critical point, Df (x̄) = 0.

I If f is convex any critical point is a minimizer.

Proof: for any x and y , convexity gives

f (y) ≥ f (x) + Df (x)(y − x).

If x = x̄ is a critical point Df (x̄) = 0 and so

f (y) ≥ f (x̄).



Calculus of variations

Convexity and optimality

Suppose L is convex. Then any solution to the Euler-Lagrange
equation is a minimizer.



Calculus of variations

Convexity and optimality - proof

Let x solve the Euler-Lagrange equation, and w any trajectory with
x(0) = w(0), x(T ) = w(T ). Then convexity gives∫ T

0
L(w, ẇ) ≥

∫ T

0
L(x, ẋ) + DxL(x, ẋ)(w− x) + DvL(x, ẋ)(ẇ− ẋ).

Because x solves the Euler-Lagrange equation, taking into account
the boundary conditions and integrating by parts gives∫ T

0
(DxL(x, ẋ)− d

dt
DvL(x, ẋ))(w − x) = 0.

But then ∫ T

0
L(w, ẇ) ≥

∫ T

0
L(x, ẋ).



Calculus of variations

The shortest path is a line

I L(ẋ, ẏ) =
√

ẋ2 + ẏ2 is convex....



Calculus of variations

Key concepts and ideas

I First-order optimality conditions (Euler-Lagrange equations)

I Convexity and optimality



Calculus of variations

Key questions in calculus of variations

I Rigorous setting (functional spaces, technical conditions on
L...)

I Existence of minimizers

I Necessary and sufficient conditions

I Solving Euler-Lagrange equations
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Optimal control

The optimal control problem

The standard terminal value problem in control theory seeks to
minimize ∫ T

0
L(x, a)ds + ψ(x(T ))

under the constraint
ẋ = f (x, a).

The variable x is called the state and a is the control.



Optimal control

Linear-Quadratic control problem

A particular relevant problem is the linear quadratic problem, given
matrices A,B,C ,M,N, minimize∫ T

0
xTAx + aTBads + xT (T )Cx(T )

under the constraint
ẋ = Mx + Na.



Optimal control

Bolza vs Meyer problem

By applying a simple transformation is always possible to transform
a control problem in either

I Bolza form: ψ = 0

I Meyer form L = 0.



Optimal control

Necessary optimality conditions

In optimal control, the Euler-Lagrange equations are replaced by
the Pontryagin maximum principle. Let (x, a) be an optimal
trajectory/control. Then{

ẋ = f (x, a)

ṗ = −pDx f (x, a)− DxL(x, a)

and a maximizes −pf (x, a)− L(x, a). Moreover,
p(T ) = Dxψ(x(T )).



Optimal control

Sufficiency of PMP

Suppose L is uniformly convex and f is affine and terminal cost
vanishes.

I L(x̃ , ã) ≥ L(x, a) + DxL(x, a)(x̃ − x) + DaL(x, a)(ã− a)

I There exists a unique a maximizing −pf (x, a)− L(x, a)

I DaL(x, a) = −pDaf (x, a)

I f (x, a)− f (x̃ , ã) = Dx f (x, a)(x̃ − x) + Daf (x, a)(ã− a)

I p(T ) = 0



Optimal control

Sufficiency of PMP

(Suppose L is convex and f is affine and terminal cost vanishes. )
Consider a triplet satisfying PMP, (x, a,p), let (x̃ , ã) be a
competing trajectory. Then∫ T

0
L(x̃ , ã) ≥

∫ T

0
L(x, a) + DxL(x, a)(x̃ − x) + DaL(x, a)(ã− a)

≥
∫ T

0
−(ṗ + pDx f (x, a))(x̃ − x)− pDaf (x, a)(ã− a)

=

∫ T

0
p(f (x, a)− f (x̃ , ã))− pDx f (x, a)(x̃ − x)− pDaf (x, a)(ã− a)

= 0



Optimal control

Hamiltonian dynamics

If f (x , v) = v , then

H(x , p) = sup
v
−pv − L(x , v)

is called the Hamiltonian. Then, DpH = −v and
DxH = −DxL(x , v). Thus, the necessary optimality conditions
become {

ẋ = −DpH(x,p)

ṗ = DxH(x,p),

the Hamiltonian dynamics, which is equivalent to the
Euler-Lagrange equation (exercise).



Optimal control

LQ case

In the particular LQ case

L =
|x |2

2
+
|v |2

2
f (x , v) = v ,

we have H = |p|2
2 −

|x |2
2 {

ẋ = −p

ṗ = −x;

that is,
ẍ = x.



Optimal control

Key concepts and ideas

I Pontryagin maximum principle

I LQ control problems



Optimal control

Key questions in optimal control

I Existence of optimal trajectories

I Computation of optimal trajectories

I Controllability issues
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Hamilton-Jacobi equations

The value function

To simplify, consider the calculus of variations setting. The value
function is

u(x , t) = inf

∫ T

t
L(x, ẋ)ds + ψ(x(T )),

where the infimum is taken over all C 1 trajectories x : [t,T ]→ Rd

with x(t) = x .



Hamilton-Jacobi equations

Dynamic programming principle

For h > 0 such that t + h < T , we have

u(x , t) = inf

∫ t+h

t
L(x, ẋ)ds + u(x(t + h), t + h).



Hamilton-Jacobi equations

The Hamilton–Jacobi equation (formal)

We have

u(x , t) = inf
x

∫ t+h

t
L(x, ẋ)ds + u(x(t + h), t + h)

' inf
ẋ(t)

hL(x , ẋ)ds + u(x(t), t) + hDxu(x , t)ẋ(t) + hut(x , t)

= u(x , t)− hH(x ,Dxu(x , t)) + hut(x , t)

from which we deduce the Hamilton-Jacobi equation

−ut + H(x ,Dxu(x , t)) = 0.



Hamilton-Jacobi equations

Verification theorem

Suppose L is uniformly convex. Let u solve

−ut + H(x ,Dxu(x , t)) = 0

with u(x ,T ) = ψ(x). Then, u is the value function. Moreover, the
optimal dynamics is

ẋ = −DpH(x,Dxu(x(t), t)).



Hamilton-Jacobi equations

Riccati equation and the LQ problem

For our LQ example problem, H = p2

2 −
x2

2 , the Hamilton-Jacobi
equation becomes

−ut +
u2
x

2
− x2

2
= 0

which admits quadratic solutions of the form u(x , t) = α(t)x2

where α solves the Riccati equation

−α̇ + 2α2 − 1

2
= 0.



Hamilton-Jacobi equations

Lack of smooth solutions for HJ equations

Unfortunately Hamilton-Jacobi may fail to admit solutions.
Consider the HJ equation

−ut +
u2
x

2
= 0.

Let v = ux . Then
−vt + vvx = 0.

Consider the ODE
ẋ = −v(x, t).

Then, v is constant along x because

d

dt
v(x, t) = vt(x, t) + vx(x, t)ẋ = 0.

But different initial conditions can cross...



Hamilton-Jacobi equations

Key concepts and ideas

I Value function and dynamic programming principle

I Hamilton–Jacobi equation



Hamilton-Jacobi equations

Key questions in optimal control

I Solution of the Hamilton–Jacobi equation

I Extended notions of solution (viscosity solutions)
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Reinforcement learning

The (deterministic) reinforcement learning setting

I Agents have a state s and a possible action a

I In state s, the action a corresponds to a reward r(s, a)

I Actions change the state to a new state according to the
discrete dynamics sn+1 = f (sn, an)

I Rewards are discounted in time (now is better than later) by a
parameter 0 < θ < 1

I Agents want to maximize the long-term reward

∞∑
i=1

θi r(si , ai )

This is a control problem!



Reinforcement learning

Applications of reinforcement learning

I Solving sames (chess, go, ...)

I Finding the shortest path

I Traffic light control

I Bidding, advertising, personalized recommendations....

I Theorem proving



Reinforcement learning

Value function

We define the value function

Q(s) = inf
ai

∞∑
i=1

θi r(si , ai )



Reinforcement learning

Dynamic programming/discrete HJ equation

We have the

Q(s) = sup
a

[r(s, a) + θQ(f (s, a))] .



Reinforcement learning

Learning the value function

I The key problem in reinforcement learning is to approximate
the value function, usually by iterative methods

I A popular method is the Q-learning algorithm



Reinforcement learning

Q-learning

Let 0 < γ < 1 (learning rate). Given a an approximation Qn,
choose a state s and let

Qn+1(s) = Qn(s) + γ sup
a

[r(s, a) + θQn(f (s, a))− Qn(s)] .



Reinforcement learning

The continuous analog

A continuous analog to Q learning is

ut = αu + H(x ,Du).

The convergence of Q learning is replaced by the convergence as
t →∞ of u(x , t).



Reinforcement learning

Approximation of the value function

I If the state space is very large (think all possible positions in
chess), the function may not be representable in a computer.

I In this case, the value function must to be approximated. For
example as a linear combination of feature maps

V (s) =
∑

wiφi (s)

I This is similar to what chess players players use, queen=10,
rook=5, bishop and kingt=3, pawn =1...

I Alternatively deep neural networks can be used to
approximate the value function.



Reinforcement learning

Key concepts and ideas

I Dynamic programming principle and Belmann equation

I Q-learning algorithm



Reinforcement learning

Key questions in reinforcement learning

I Approximation of value function: features vs deep NN

I Training algorithms
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Variational problems in the space of maps

Monge problem

I ”How best to move a pile of soil or rubble to an excavation or
fill with the least amount of work.”



Variational problems in the space of maps

Probability measures

I If you know what a measure is, you know what a probability
measure is.

I If you don’t know measure theory, today, a probability
measure is a non-negative function that integrates to 1.



Variational problems in the space of maps

Push-forward and transport of measures

Given a map T : Rd → Rd and a probability measure m in Rd , the
pushforward of m by T , T ]m, is the probability measure given by∫

f (y)(T ]m)(y)dy =

∫
f (Tx)m(x)dx .



Variational problems in the space of maps

Optimal transport

The Monge problem can be formulated as follows. Given two
probability measures m0 and m1, find a map T that

I T ]m0 = m1

I T minimizes
∫
|x − T (x)|2dm among all possible maps that

satisfy the preceding condition.



Variational problems in the space of maps

I T ]m0 = m1 means for all f∫
f (T (x))m0(x) =

∫
f (y)m1(y)

I By the change of variables formula∫
f (y)m1(y) =

∫
f (T (x))m1(T (x)) detT

I Accordingly
m0(x) = m1(T (x)) detT .



Variational problems in the space of maps

Monge-Ampère equation

I It turns out that if m0 and m1 are positive smooth functions
then T = Du(x) for some function u

I By the change of variables formula, u satisfies the
Monge-Ampere equation

m1(∇u) detD2u = m0(x).



Variational problems in the space of maps

Lack of solutions

I The Monge problem may not have a solution for singular
measures.

I For example, there is no map T that transports δ0 into
1
2δ−1 + 1

2δ1.

I The Kantorowich problem is a relaxation of Monge’s problem
to address this lack of solutions.



Variational problems in the space of maps

Given a map that transports m0 into m1, we build the probability
measure π in R2d as follows∫

φ(x , y)dπ =

∫
φ(x ,T (x))dm0.

In particular,∫
R2d

ϕ(x)dπ =

∫
Rd

ϕ(x)dm0

∫
R2d

ϕ(y)dπ =

∫
Rd

ϕ(y)dm1.

In the Kantorowich problem, the mass at a point x is sent not to a
point T (x) but to a distributed plan according to π(x , y).



Variational problems in the space of maps

Kantorowich problem

Find a probability measure π(x , y) that minimizes∫
R2d

|x − y |2dπ

under the marginal constraints∫
R2d

ϕ(x)dπ =

∫
Rd

ϕ(x)dm0

∫
R2d

ϕ(y)dπ =

∫
Rd

ϕ(y)dm1.



Variational problems in the space of maps

Wasserstein distance

I The solution π∗ to the previous problem is called an optimal
mass transfer plan.

I The 2-Wasserstein distance between m0 and m1 is

W 2
2 (m0,m1) =

∫
|x − y |2dπ∗.

I The 2-Wassersstein distance are often better to measure
distances between probability measures than the Lp distances

‖m0 −m1‖pLp =

∫
|m0(x)−m1(x)|p.

I p-Wasserstein distances are defined analogously.



Variational problems in the space of maps

Wasserstein and integration

Let f be a Lipschitz function, m0 and m1 probability measures.
Then ∣∣∣∣∫ fm0 −

∫
fm1

∣∣∣∣ =

∣∣∣∣∫ f (x)− f (y)dπ∗
∣∣∣∣

≤ C

∫
|x − y |dπ∗ ≤ CW1(m0,m1).



Variational problems in the space of maps

Data and probability measures

Often in machine learning, data is

I Data is a (large) collection of points in Rd , xi , sampled
independently from a common distribution (often unknown) m

I Data can be identified with the empirical measure

1

N

∑
i

δxi

I Empirical measures approximate (eg in Wasserstein sense) the
common distribution.



Variational problems in the space of maps

More distances on probability measures

There a number of useful distances on probability measures that
sometimes are simpler to compute that Wasserstein. One of them
is the Kullback Leibler divergence

DKL(m0,m1) =

∫
m0 log

m0

m1
.



Variational problems in the space of maps

Generative problem

Given a reference probability distribution m0 (let’s say a Gaussian)
and a target distribution m1 (let’s say images of persons). We
would like to find a map T

T ]m0 = m1.

Thus ”a random point sampled from m0 becames a random image
of a person T (x) sampled according to m1”.



Variational problems in the space of maps

I We can think as the points sampled according to m0 as a
vector of features

I The map T transforms features into images.



Variational problems in the space of maps

The generative models

The previous problem is intractable because m1 is often not
known, rather only samples are available. Furthermore, the set of
all maps is too large. Rather, we fix an admissble set of maps A
and seek to find

min
T∈A
DKL(T ]m0,m1).



Variational problems in the space of maps

I Neural networks provide a good way to construct large classes
of maps A

I DKL is computed through sampling methods.
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Infinite dimensional control

Control in the space of maps

I A velocity field (control), v(x , t) induces a trajectory in the
space of maps (flow)

Ṫ (x ; t) = v(T (x ; t), t).

I We seek to find v that minimizes∫ T

0
L(T , v)dt + ψ(T (·,T )).

I This is an infinite dimensional control problem! Here L takes
a map and a vector field and returns a real number, so L
is not a function in Rd !



Infinite dimensional control

Benamou-Brenier formulation of optimal transport

Given m0 and m1, find velocity field (control), v(x , t) that:

I T (·, 1)]m0 = m1.

I minimizes ∫ 1

0

∫
|v(T (x ; t), t)|2

2
m0(x)dxdt

It turns out this problem is equivalent to the optimal transport
problem and T (·, 1) is an optimal transport map.



Infinite dimensional control

Euler-Arnold variational problem

Given a Lebesgue measure-preserving map T̄ , find a
divergence-free velocity field (control), v(x , t) that:

I T (·, 1) = T̄ , T (·, 0) = I

I minimizes ∫ 1

0

∫
|v(T (x ; t), t)|2

2
dxdt,

among all such divergence-free velocities.

It turns out a solution to this variational problem solves the Euler
equation in fluid mechanics

vt + v∇v = ∇p div v = 0.



Infinite dimensional control

Deep learning as a (discrete) control problem

I Deep learning is a discrete control problem in spaces of maps.

I A layer is a parametrized map Nθi
I The goal in deep learning is to choose m parameters such that

the map
T = Nθm ◦ . . .Nθ1

minimizes some functional.
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Control formulation of (deep) supervised learning

Supervised learning problem - data-centered formulation

Given pairs (xi , yi ) ∈ R2d find a map

T = Nθm ◦ . . .Nθ1

that minimizes ∑
|yi − T (xi )|2.



Control formulation of (deep) supervised learning

Supervised learning problem - abstract version

Given a probability measure µ in R2d find a transformation

T = Nθm ◦ . . .Nθ1

that minimizes ∫
|y − T (x)|2dµ(x , y).



Control formulation of (deep) supervised learning

Deep linear learning

We consider the linear neural networks

Nbn(x) = Ax + bn

Then, the composition

T = Nbm ◦ . . . ◦ Nb1(x)

gives the flow map corresponding to

xn+1 = Axn + bn.



Control formulation of (deep) supervised learning

LQ control problem - recap

Consider the discrete dynamics with control bn

xn+1 = Axn + bn.

and consider the problem of minimizing

|xm|2

(here, L = 0).



Control formulation of (deep) supervised learning

LQ control problem as a deep learning (supervised)
problem

Let Nbn(x) = Ax + bn, and consider the linear NN

T = Nbm ◦ . . . ◦ Nb1(x),

to minimize ∫
|T [x ]− y |2δx0(x)δ0(y)dxdy .

This is equivalent to minimize |T (x0)|2 = |xm|2.



Control formulation of (deep) supervised learning

ResNets

A Residual Network (ResNet) is a NN architecure of the form

Nθ(x) = x + hf (x , θ).

For example
NA,b(x) = x + hσ(Ax + b)

Where σ(z) = z+ (taken coordinatewise).



Control formulation of (deep) supervised learning

Resnet continuous limit

The ResNet dynamics is

xn+1 = xn + hσ(Anxn + bn)

which is the Euler discretization of the ODE

ẋ = σ(A(t)x + b(t)).



Control formulation of (deep) supervised learning

Resnet limit

Given the controls A(t) and b(t) the limit map is determined by

d

dt
T (x ; t) = σ(A(t)T (x ; t) + b(t)).



Control formulation of (deep) supervised learning

Supervised learning problem

Find A(t) and b(t) that minimize∫
|y − T (x , 1)|2dµ(x , y).

with
d

dt
T (x ; t) = σ(A(t)T (x ; t) + b(t)),

and T (x , 0) = x .



Control formulation of (deep) supervised learning

Key concepts and ideas

I Supervised learning can be set up as control problem in spaces
of maps

I Resnets are particularly suitable to obtain continuous limits



Control formulation of (deep) supervised learning

Key questions in supervised learning

I Controllability (what maps can be generated by a particular
architecture)

I Convergence

I Approximation - can we use continuous limits to design better
neural networks.
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Control formulation of (deep) unsupervised learning

Unsupervised learning - clustering

The clustering problem can set up as follows. Find a map

T : Rd → {1, . . . , n}

that minimizes some measure of dissimilarity among data.



Control formulation of (deep) unsupervised learning

Example - center of mass clustering

Given a probability measure in Rd find

min
T

∑
i

∫
Ωi

|x − x̄i |2dµ(x),

where Ωi = T−1(i) and

x̄i =

∑
i

∫
Ωi

xdµ∑
i

∫
Ωi

1dµ
.



Control formulation of (deep) unsupervised learning

Auto-Encoders

Given a probability measure µ in Rd find two maps TE : Rd → Rr

and TD : Rr → Rd that minimize∫
|x − TD ◦ TE (x)|2dµ.

When r < d the encoder map TE provides a low-dimensional
representation of the data.



Control formulation of (deep) unsupervised learning

Key concepts and ideas

I Many unsupervised learning can be set up as variational
problems or control problems in the space of maps.

I Measures of dissimilarity are functionals on spaces of maps.



Control formulation of (deep) unsupervised learning

Key questions in unsupervised learning

I Good measures of dissimilarity for clustering

I Choice of admissible classes of maps
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Further mathematical issues

Choice of architectures

I Approximation properties (finite-element spaces and piecewise
linear NN)

I Group invariance (eg translation invariance in convolutional
NN)



Further mathematical issues

Training

I Training refers to the process of finding the optimal set of
parameters

I Stochastic gradient descent and its variants seem to be the
tool of choice. But better global minimizers may be possible.



Further mathematical issues

Temporal structure

I Here, our data was taken as points in Rd . But there are other
interesting classes of data that are important in applications,
for example, infinite sequences.

I Probability concepts such as independence, Markov property,
ergodicity, are of great relevance for the formulation of the
problems.

I Structure of NN must take into account the data structure
(eg recurrent NN preserve non-anticipatory character)



Further mathematical issues

Applications in PDEs

I Dataless training is also an area of great interest to solving
high-dimensional PDEs where few numerical methods are
available.

I This is often formulated as a minimization problem such as

min
T
‖F (x ,T (x),DT (x), . . .)‖

I Here, the choice of the norm is crucial and new questions arise
- for example, what are good choices of the norm ‖ · ‖ that
ensure that whever the previous minimization problem gives a
small number we have that T is close to the solution of the
problem

F (x , u,Du, . . .) = 0.
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Implementation issues

I We did not discuss any implementation issues, but this is in
fact a crucial matter in applications.

I Neural networks and machine learning exist for quite a while
but only became popular once powerful enough computers
were available and flexible implementations (Keras, Tensor
flow, ...) were built.
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Take home message

I Many problems in machine learning are variational or control
problems similar to well known and well studied mathematical
problems.

I Calculus of variations and control theory give important
insights in understanding machine learning problems
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Further references (just names and highlights)

I Jinchao Xu (KAUST, AMCS) - approximation properties of
Neural Networks

I Peter Markowich (KAUST, AMCS) - ResNets and control
theory

I Peter Richtarik (KAUST, CS/AMCS) - Stochastic gradient
descent, optimization...

I J. Schmidtuber (KAUST) - foundations of machine learning

I E. Zuazua - connection with control theory, see recent works

I Weinan E - high-dimensional PDE, dynamical system
approach

I Carola Schönlieb and co-authors.... dynamical systems based
NN, structure preservation
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