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Calculus of variations

The calculus of variations problem

Given L : RY x RY — R, find a curve x : [0, T] — R with
x(0) = x;, x(T) = x7 that minimizes

.
/ L(x(s), X(s))ds.
0
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Calculus of variations

Variational problems like this arise in multiple contexts
» Geodesics (shortest path)
» Brachistochrone problem (shortest time)
» Classical mechanics (minimal action principle)
> Elasticity...
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Calculus of variations

Shortest path problem

The lenght of a curve (x,y) between two points in the plane,
(x1,y1) and (x7,yT), is given by the integral

/0 " ke 1 y(s)ds.
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Calculus of variations

Euler-Lagrange equation

Let x : [0, T] — R? be a C? minimizer of the calculus of variations
problem. Let z be a C? function with z(0) = z(T) = 0. Then

.
i(e) = /0 L(x(s) + e2(s), X(s) + €3(s))ds.

has a minimum when € = 0. Hence, i/’(0) = 0.
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Calculus of variations

Differentiating and setting ¢ = 0, we get
T
0 :/ D, L(x(t),x(t))z(t) + D, L(x(t),x(t))z(t)dt
0
T d
-/ [DXL(x(t),)'((t)) — & DL((1),%(0) | 2(1)ds
0
Because z is arbitrary, we deduce the Euler-Lagrange equation

Do L(x(t), x(t)) — %DVL(x(t),)'((t)) —0.



Calculus of variations

The shortest path may be a line

For the minimal length problem, if x?> 4 y? # 0, the Euler-Lagrange
equation reads

d_x _q
dt /*2_}_92 -
d_y _
dt /)'(2_’_92 :
Thus, _ _
X y

——— = cos ¥, ———— =sind,

/x2 + y2 /x2 + y2
for some constant angle 6. Hence, the velocity vector has constant
directiont; that is, if there is a C? trajectory of shortest length
between two points, it must be a straight line.
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Calculus of variations

Questions

» is there in fact a C? trajectory of shortest length?
» is this trajectory unique?

P can we just prove directly that a straight line is the shortest
lenght path
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Calculus of variations

Convexity and optimality - real case

Consider a real-valued C! function, f.
» Any minimizer X of f is a critical point, Df(x) = 0.
» If f is convex any critical point is a minimizer.

Proof: for any x and y, convexity gives
f(y) = f(x) + DF(x)(y — x).
If x = X is a critical point Df(x) =0 and so

f(y) > f(X).
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Calculus of variations

Convexity and optimality

Suppose L is convex. Then any solution to the Euler-Lagrange
equation is a minimizer.
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Calculus of variations

Convexity and optimality - proof

Let x solve the Euler-Lagrange equation, and w any trajectory with
x(0) = w(0), x(T) = w(T). Then convexity gives

T T
/ L(w,w) > / L(x,x) + DyL(x,x)(w — x) + D, L(x,x)(w — x).
0 0

Because x solves the Euler-Lagrange equation, taking into account
the boundary conditions and integrating by parts gives

T . d _
/O (DXL(X7 X) - EDVL(X7 X))(W — X) =0.

/OTL(w,v'v) > /OTL(x,)'().

But then
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The shortest path is a line

> L(x,y) = +/X?+y? is convex....



Calculus of variations

Key concepts and ideas

» First-order optimality conditions (Euler-Lagrange equations)

» Convexity and optimality

U J
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Calculus of variations

Key questions in calculus of variations

» Rigorous setting (functional spaces, technical conditions on
L.)

» Existence of minimizers
» Necessary and sufficient conditions

» Solving Euler-Lagrange equations
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Optimal control

The optimal control problem

The standard terminal value problem in control theory seeks to
minimize

!
/O L(x, a)ds + ¥(x(T))

under the constraint
x = f(x,a).

The variable x is called the state and a is the control.
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Optimal control

Linear-Quadratic control problem

A particular relevant problem is the linear quadratic problem, given
matrices A, B, C, M, N, minimize

;
/ x" Ax+a' Bads +x"(T)Cx(T)
0

under the constraint
x = Mx + Na.
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Optimal control

Bolza vs Meyer problem

By applying a simple transformation is always possible to transform
a control problem in either

» Bolza form: ¢ =0
> Meyer form L = 0.
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Optimal control

Necessary optimality conditions

In optimal control, the Euler-Lagrange equations are replaced by
the Pontryagin maximum principle. Let (x,a) be an optimal
trajectory/control. Then

x = f(x,a)
p = —pDy«f(x,a) — DyL(x,a)

and a maximizes —pf(x,a) — L(x,a). Moreover,

p(T) = Dxyp(x(T)).

((((0\%
e



Optimal control

Sufficiency of PMP

Suppose L is uniformly convex and f is affine and terminal cost
vanishes.

L(%,3) > L(x,a) + DxL(x,a)(% — x) + D,L(x,a)(5 — a)

v

» There exists a unique a maximizing —pf(x,a) — L(x, a)
» D,L(x,a) = —pD,f(x,a)

> f(x,a) — f(X,3d) = Dif(x,a)(X — x) + D,f(x,a)(d — a)
> p(T)=0



Optimal control

Sufficiency of PMP

(Suppose L is convex and f is affine and terminal cost vanishes. )
Consider a triplet satisfying PMP, (x, a, p), let (X, 3) be a
competing trajectory. Then

T T
/ L(%,5) > / L(x,a) + DyL(x,a)(% — x) + DsL(x,a)(5 — a)
0 0
T
> [ ~(b-+ pDf(x @)% - x) ~ PD.f(x.a)(3 2
0

-
= /0 p(f(x,a) — f(%X,3)) — pDy«f(x,a)(X —x) — pD,f(x,a)(d— a

~—
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Optimal control

Hamiltonian dynamics

If f(x,v)=v, then

H(x, p) = sup —pv — L(x, v)

is called the Hamiltonian. Then, D,H = —v and
DyH = —DyL(x,v). Thus, the necessary optimality conditions

become
x = —DpH(x, p)
p= DXH(X7 p)7

the Hamiltonian dynamics, which is equivalent to the
Euler-Lagrange equation (exercise).



Optimal control

LQ case

In the particular LQ case

2 2
L:%—i—h/?l f(x,v)=v,
wehaveH:@—g
X=-—p
pP=—Xx
that is,
X =X

U J
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Key concepts and ideas

» Pontryagin maximum principle
> LQ control problems
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Optimal control

Key questions in optimal control

» Existence of optimal trajectories
» Computation of optimal trajectories

» Controllability issues

U J
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Hamilton-Jacobi equations

The value function

To simplify, consider the calculus of variations setting. The value
function is

-
u(x, t) = inf/t L(x,x)ds + ¥(x(T)),

where the infimum is taken over all C! trajectories x : [t, T] — RY
with x(t) = x.
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Dynamic programming principle

For h > 0 such that t + h < T, we have

t+h
u(x, t) = inf/t L(x, X)ds + u(x(t + h), ¢ + h)

<='/)
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Hamilton-Jacobi equations

The Hamilton—Jacobi equation (formal)

We have

u(x,t) |nf/ L(x,x)ds + u(x(t + h),t + h)
~ )I(?t{; hL(x,x)ds + u(x(t), t) + hDyu(x, t)x(t) + hu(x, t)
= u(x, t) — hH(x, Dxu(x, t)) + hue(x, t)
from which we deduce the Hamilton-Jacobi equation

—ut + H(x, Dxu(x,t)) = 0.
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Hamilton-Jacobi equations

Verification theorem

Suppose L is uniformly convex. Let u solve
—ur + H(x, Dyxu(x,t)) =0

with u(x, T) = 1(x). Then, u is the value function. Moreover, the
optimal dynamics is

x = —DpH(x, Dxu(x(t), t)).

%')))},
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Hamilton-Jacobi equations

Riccati equation and the LQ problem

2 2 . .
For our LQ example problem, H = % — %, the Hamilton-Jacobi
equation becomes

2 2

usy X
— ———:0
Ut+2 5

which admits quadratic solutions of the form u(x, t) = a(t)x?

where « solves the Riccati equation

1
—a+202 -2 =0.
o+ 2« 5

=
w
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Hamilton-Jacobi equations

Lack of smooth solutions for HJ equations
Unfortunately Hamilton-Jacobi may fail to admit solutions.
Consider the HJ equation

2

u
—Ut+?X:0.

Let v = ux. Then
—vi + vy = 0.

Consider the ODE
x = —v(x, t).

Then, v is constant along x because

d
av(x, t) = ve(x, t) + vi(x, t)x = 0.

((((0\%
e
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Key concepts and ideas

» Value function and dynamic programming principle
» Hamilton—Jacobi equation
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Hamilton-Jacobi equations

Key questions in optimal control

» Solution of the Hamilton—Jacobi equation

» Extended notions of solution (viscosity solutions)

U J
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Reinforcement learning

The (deterministic) reinforcement learning setting

> Agents have a state s and a possible action a

v

In state s, the action a corresponds to a reward r(s, a)

P> Actions change the state to a new state according to the
discrete dynamics sp+1 = f(Sp, an)

» Rewards are discounted in time (now is better than later) by a
parameter 0 < 6 <1

> Agents want to maximize the long-term reward

o0
Z Gir(s,-, aj)
=1

This is a control problem!

X



Reinforcement learning

Applications of reinforcement learning

Solving sames (chess, go, ...)
Finding the shortest path
Traffic light control

Bidding, advertising, personalized recommendations....

vVvYyyvyy

Theorem proving

) J
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Value function

We define the value function

Q(s) = |2f

ieir(s;, aj)
i=1

=
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Dynamic programming/discrete HJ equation

We have the

Q(s) = sup[r(s, a) + 0Q(*(s, a))]



Reinforcement learning

Learning the value function

» The key problem in reinforcement learning is to approximate
the value function, usually by iterative methods

» A popular method is the Q-learning algorithm

) J
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Reinforcement learning

Q-learning

Let 0 < v < 1 (learning rate). Given a an approximation Q",
choose a state s and let

Q" (s) = Q"(s) + ysuplr(s, a) +0Q"(f(s, 2)) — Q"(s)]

%')))},
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Reinforcement learning

The continuous analog

A continuous analog to @ learning is
ur = au + H(x, Du).

The convergence of @ learning is replaced by the convergence as
t — oo of u(x, t).

) J
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Reinforcement learning

Approximation of the value function

> If the state space is very large (think all possible positions in
chess), the function may not be representable in a computer.

» In this case, the value function must to be approximated. For
example as a linear combination of feature maps

V(s) = widi(s)

» This is similar to what chess players players use, queen=10,
rook=>5, bishop and kingt=3, pawn =1...

> Alternatively deep neural networks can be used to
approximate the value function.
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Key concepts and ideas

» Dynamic programming principle and Belmann equation
» Q-learning algorithm
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Key questions in reinforcement learning

» Approximation of value function: features vs deep NN
» Training algorithms
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Variational problems in the space of maps

Monge problem

» "How best to move a pile of soil or rubble to an excavation or
fill with the least amount of work.”

U J
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Variational problems in the space of maps

Probability measures

» If you know what a measure is, you know what a probability
measure is.

» If you don't know measure theory, today, a probability
measure is a non-negative function that integrates to 1.
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Variational problems in the space of maps

Push-forward and transport of measures

Given a map T : R? — R? and a probability measure m in R?, the
pushforward of m by T, Ttm, is the probability measure given by

[ roxTimay = [ rmomeen

)

((



Variational problems in the space of maps

Optimal transport

The Monge problem can be formulated as follows. Given two
probability measures mg and my, find a map T that

> Timo = m
» T minimizes [ |x — T(x)|?dm among all possible maps that
satisfy the preceding condition.

) J
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Variational problems in the space of maps

> T#mo = my means for all f
[ AT emo) = [ fymy)
> By the change of variables formula
[ f0)m) = [ AT m(T e der T

» Accordingly
mo(x) = mi(T(x))det T.
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Variational problems in the space of maps

Monge-Ampeére equation

> It turns out that if mg and my are positive smooth functions
then T = Du(x) for some function u

» By the change of variables formula, u satisfies the
Monge-Ampere equation

m1(Vu) det D*u = mg(x).

) J
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Variational problems in the space of maps

Lack of solutions

» The Monge problem may not have a solution for singular
measures.

» For example, there is no map T that transports Jp into
%5_1 + %51.

» The Kantorowich problem is a relaxation of Monge's problem
to address this lack of solutions.

) J
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Variational problems in the space of maps

Given a map that transports mg into my, we build the probability
measure 7 in R29 as follows

[ oteyydn = [ ot Tx))dmo.
In particular,

L, px)dm = | o(x)dmo L eW)dr = | o(y)dm.
R2d R R R

In the Kantorowich problem, the mass at a point x is sent not to a
point T(x) but to a distributed plan according to 7(x,y).

X



Variational problems in the space of maps

Kantorowich problem

Find a probability measure 7(x, y) that minimizes

/ |x — y[?dm
R2d

under the marginal constraints

/de (x)dm = /Rd w(x)dmg /de o(y)dT = /Rd o(y)dmy.

%')))},
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Variational problems in the space of maps

Wasserstein distance

» The solution 7* to the previous problem is called an optimal
mass transfer plan.

» The 2-Wasserstein distance between mg and mq is
2 _ 2 *
Wy (mg, my) —/|x—y| dr*.

» The 2-Wassersstein distance are often better to measure
distances between probability measures than the LP distances

Imo — myl?, = / mo(x) — m (x)]P.

> p-Wasserstein distances are defined analogously.

X



Variational problems in the space of maps

Wasserstein and integration

Let f be a Lipschitz function, mg and m; probability measures.
Then

‘/fmo—/fml

- ‘ / F(x) — F(y)dr*

< C/\x—y|d7r* < CWh(mg, my).

%')))},
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Variational problems in the space of maps

Data and probability measures

Often in machine learning, data is

> Data is a (large) collection of points in RY, x;, sampled
independently from a common distribution (often unknown) m

» Data can be identified with the empirical measure
1
N 2D
1

» Empirical measures approximate (eg in Wasserstein sense) the
common distribution.

X



Variational problems in the space of maps

More distances on probability measures

There a number of useful distances on probability measures that
sometimes are simpler to compute that Wasserstein. One of them
is the Kullback Leibler divergence

mg
Dk (mg, my) Z/mo log —.
my

) J
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Variational problems in the space of maps

Generative problem

Given a reference probability distribution mg (let's say a Gaussian)
and a target distribution m; (let's say images of persons). We
would like to find a map T

Tﬁmo = my.

Thus "a random point sampled from mg becames a random image
of a person T(x) sampled according to m;".

X



Variational problems in the space of maps

» We can think as the points sampled according to mg as a
vector of features

» The map T transforms features into images.

) J
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Variational problems in the space of maps

The generative models

The previous problem is intractable because m; is often not
known, rather only samples are available. Furthermore, the set of
all maps is too large. Rather, we fix an admissble set of maps A
and seek to find

min Dy (Tgmo, my).

min kL(Tgmo, m1)

) J
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Variational problems in the space of maps

» Neural networks provide a good way to construct large classes
of maps A

» Dy is computed through sampling methods.
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Infinite dimensional control

Control in the space of maps

» A velocity field (control), v(x, t) induces a trajectory in the
space of maps (flow)

T(x; t) = v(T(x;t),t).
» We seek to find v that minimizes
T
/ L(T, v)dt + (T, T)).
0
» This is an infinite dimensional control problem! Here L takes

a map and a vector field and returns a real number, so L
is not a function in RY!

X



Infinite dimensional control

Benamou-Brenier formulation of optimal transport

Given mg and my, find velocity field (control), v(x,t) that:
> T(-, 1)1jm0 = mq.

» minimizes ) )
T(x:t), t
[ [T oy

It turns out this problem is equivalent to the optimal transport
problem and T(-,1) is an optimal transport map.
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Infinite dimensional control

Euler-Arnold variational problem

Given a Lebesgue measure-preserving map T, find a
divergence-free velocity field (control), v(x, t) that:

> T(,1)=T, T(-,0) =1

» minimizes ) )
[} [Te0.08
0 2 ’

among all such divergence-free velocities.

It turns out a solution to this variational problem solves the Euler
equation in fluid mechanics

vi +vVv =Vp divv = 0.
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Infinite dimensional control

Deep learning as a (discrete) control problem

» Deep learning is a discrete control problem in spaces of maps.

» A layer is a parametrized map Np,
» The goal in deep learning is to choose m parameters such that

the map
T = Ny, o...Np

minimizes some functional.
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'— Control formulation of (deep) supervised learning

Supervised learning problem - data-centered formulation

Given pairs (x;, y;) € R?? find a map
that minimizes

T:Ngmo...N@1

Do lvi— TP
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Control formulation of (deep) supervised learning

Supervised learning problem - abstract version

Given a probability measure 1 in R?9 find a transformation

T =Ny, o... N

1

that minimizes

/ ly = T()Pdux. ).

U J
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Control formulation of (deep) supervised learning

Deep linear learning

We consider the linear neural networks
Np,(x) = Ax + b,
Then, the composition
T = Np,, o...0 Np(x)
gives the flow map corresponding to

Xn+1 = Axp + bp.

) J
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Control formulation of (deep) supervised learning

LQ control problem - recap

Consider the discrete dynamics with control b,
Xp+1 = Axp + bp.
and consider the problem of minimizing
’Xm‘z

(here, L =0).
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Control formulation of (deep) supervised learning

LQ control problem as a deep learning (supervised)
problem

Let Np,(x) = Ax + by, and consider the linear NN
T = Np,, o...0 Np(x),

to minimize
[1700 = yPo(6)ao(y )y

This is equivalent to minimize | T(x0)[? = |xm|%.

)

-



Control formulation of (deep) supervised learning

ResNets

A Residual Network (ResNet) is a NN architecure of the form
No(x) = x + hf(x, ).

For example
Nab(x) = x + ho(Ax + b)

Where o(z) = z* (taken coordinatewise).

)

-



Control formulation of (deep) supervised learning

Resnet continuous limit

The ResNet dynamics is
Xn+1 = Xn + ho(Anxn + bp)
which is the Euler discretization of the ODE

x = o(A(t)x + b(t)).

%')))},
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Control formulation of (deep) supervised learning

Resnet limit

Given the controls A(t) and b(t) the limit map is determined by

d

ET(x: 1) = oA T 1) + b(e)).

)

-



Control formulation of (deep) supervised learning

Supervised learning problem

Find A(t) and b(t) that minimize

/ y = T00 1) Pdp(x,y).

with
d
ET(X; 1_') = O’(A(t) T(X; t) + b(t))a

and T(x,0) = x.

)
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Control formulation of (deep) supervised learning

Key concepts and ideas

» Supervised learning can be set up as control problem in spaces
of maps

» Resnets are particularly suitable to obtain continuous limits
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Control formulation of (deep) supervised learning

Key questions in supervised learning

» Controllability (what maps can be generated by a particular
architecture)

» Convergence

» Approximation - can we use continuous limits to design better
neural networks.
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Control formulation of (deep) unsupervised learning

Unsupervised learning - clustering

The clustering problem can set up as follows. Find a map
T:RY—{1,...,n}

that minimizes some measure of dissimilarity among data.
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Control formulation of (deep) unsupervised learning

Example - center of mass clustering

Given a probability measure in R find
: <2
m i|°d
lin E,- /Q,- |x — X;|“du(x),

where Q; = T~1(i) and

5 2 Ja, xdp
I Zifﬂ,- ldy
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Control formulation of (deep) unsupervised learning

Auto-Encoders

Given a probability measure 1 in R? find two maps Tg : RY — R’
and Tp : R” — RY that minimize

X—TDOTEX 2d .
| p

When r < d the encoder map Tg provides a low-dimensional
representation of the data.
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Control formulation of (deep) unsupervised learning

Key concepts and ideas

» Many unsupervised learning can be set up as variational
problems or control problems in the space of maps.

» Measures of dissimilarity are functionals on spaces of maps.
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Control formulation of (deep) unsupervised learning

Key questions in unsupervised learning

» Good measures of dissimilarity for clustering
» Choice of admissible classes of maps
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Further mathematical issues

Choice of architectures

» Approximation properties (finite-element spaces and piecewise
linear NN)

» Group invariance (eg translation invariance in convolutional
NN)
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Further mathematical issues

Training

» Training refers to the process of finding the optimal set of
parameters

» Stochastic gradient descent and its variants seem to be the
tool of choice. But better global minimizers may be possible.
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Further mathematical issues

Temporal structure

> Here, our data was taken as points in RY. But there are other
interesting classes of data that are important in applications,
for example, infinite sequences.

» Probability concepts such as independence, Markov property,
ergodicity, are of great relevance for the formulation of the
problems.

» Structure of NN must take into account the data structure
(eg recurrent NN preserve non-anticipatory character)
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Further mathematical issues

Applications in PDEs

» Dataless training is also an area of great interest to solving
high-dimensional PDEs where few numerical methods are
available.

» This is often formulated as a minimization problem such as
min [|F(x, T(x), DT (x),...)ll

» Here, the choice of the norm is crucial and new questions arise
- for example, what are good choices of the norm || - || that
ensure that whever the previous minimization problem gives a
small number we have that T is close to the solution of the

problem
F(x,u,Du,...) = 0.
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Further mathematical issues

Implementation issues

> We did not discuss any implementation issues, but this is in
fact a crucial matter in applications.

» Neural networks and machine learning exist for quite a while
but only became popular once powerful enough computers
were available and flexible implementations (Keras, Tensor
flow, ...) were built.
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Further mathematical issues

Take home message

» Many problems in machine learning are variational or control
problems similar to well known and well studied mathematical
problems.

» Calculus of variations and control theory give important
insights in understanding machine learning problems

) J
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Further mathematical issues

Further references (just names and highlights)

>

Jinchao Xu (KAUST, AMCS) - approximation properties of
Neural Networks

Peter Markowich (KAUST, AMCS) - ResNets and control
theory

Peter Richtarik (KAUST, CS/AMCS) - Stochastic gradient
descent, optimization...

J. Schmidtuber (KAUST) - foundations of machine learning
E. Zuazua - connection with control theory, see recent works

Weinan E - high-dimensional PDE, dynamical system
approach

Carola Schonlieb and co-authors.... dynamical systems based
NN, structure preservation
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