Semi-Supervised Learning and the ∞-Laplacian

José Miguel Urbano
(KAUST and CMUC)

Mini-course, IST - October 14, 2022

SSL and the ∞-Laplacian

SSL and graph based algorithms

SSL - smoothness assumption

$$
\begin{gathered}
\min _{\substack{u: X \rightarrow \mathbb{R} \\
u=g \text { on } \Gamma}} \sum_{x, y \in X} \omega_{x y}|u(x)-u(y)|^{2} \\
\min _{u} \int_{\Omega}|\nabla u|^{2} d x \quad \hookrightarrow \quad-\operatorname{div}(D u)=0
\end{gathered}
$$

SSL and the ∞-Laplacian

(a) $p=2$

SSL and the ∞-Laplacian

SSL - smoothness assumption

$$
\begin{gathered}
\min _{\substack{u: X \rightarrow \mathbb{R} \\
u=g \text { on } \Gamma}} \sum_{x, y \in X} \omega_{x y}|u(x)-u(y)|^{p} \\
\min _{u} \int_{\Omega}|\nabla u|^{p} d x \quad \hookrightarrow \quad-\operatorname{div}\left(|D u|^{p-2} D u\right)=0
\end{gathered}
$$

SSL and the ∞-Laplacian

(b) $p=2.5$

SSL - smoothness assumption

$$
\min _{\substack{u: X \rightarrow \mathbb{R} \\ u=g \text { on } \Gamma}} \max _{x, y \in X} \omega_{x y}|u(x)-u(y)|
$$

$$
\min _{u}\|\nabla u\|_{\infty} \quad \hookrightarrow \quad \Delta_{\infty} u=0
$$

SSL and the ∞-Laplacian

(c) $p=\infty$

SSL and the ∞-Laplacian

The infinity-Laplace equation

$$
\begin{aligned}
\Delta_{\infty} u & :=\left\langle D^{2} u D u, D u\right\rangle \\
& =\sum_{i, j=1}^{n} u_{x_{i}} u_{x_{j}} u_{x_{i} x_{j}} \\
& =0
\end{aligned}
$$

- nonlinear and degenerate
- not in divergence form

SSL and the ∞-Laplacian

Lipschitz functions

Definition. Let $X \subset \mathbb{R}^{n}$. A function $f: X \rightarrow \mathbb{R}$ is Lipschitz continuous on X, equivalently $f \in \operatorname{Lip}(X)$, if there exists a constant $L \in[0, \infty)$ such that

$$
\begin{equation*}
|f(x)-f(y)| \leq L|x-y|, \quad \forall x, y \in X . \tag{1}
\end{equation*}
$$

Any $L \in[0, \infty)$ for which (1) holds is called a Lipschitz constant for f in X. The least constant $L \in[0, \infty)$ for which (1) holds is denoted by $\operatorname{Lip}_{f}(X)$.

If there is no L for which (1) holds, we write $\operatorname{Lip}_{f}(X)=\infty$.

The Lipschitz Extension Problem

Given $f \in \operatorname{Lip}(\partial U)$, find $u \in \operatorname{Lip}(\bar{U})$ such that

$$
u=f \text { on } \partial U
$$

and

$$
\operatorname{Lip}_{u}(\bar{U})=\operatorname{Lip}_{f}(\partial U)
$$

SSL and the ∞-Laplacian

The McShane-Whitney extensions

Definition. The McShane-Whitney extensions of $f \in \operatorname{Lip}(\partial U)$ are the functions defined in \bar{U} by

$$
\mathscr{M} \mathscr{W}_{*}(f)(x):=\sup _{z \in \partial U} F_{z}(x)=\sup _{z \in \partial U}\left\{f(z)-\operatorname{Lip}_{f}(\partial U)|x-z|\right\}
$$

and

$$
\mathscr{M} \mathscr{W}^{*}(f)(x):=\inf _{y \in \partial U} G_{y}(x)=\inf _{y \in \partial U}\left\{f(y)+\operatorname{Lip}_{f}(\partial U)|x-y|\right\}
$$

SSL and the ∞-Laplacian

Problem solved?

Theorem. The McShane-Whitney extensions, $\mathscr{M} W_{*}(f)$ and $\mathscr{M} W^{*}(f)$, solve the Lipschitz extension problem for $f \in \operatorname{Lip}(\partial U)$ and if u is any other solution to the problem then

$$
\mathscr{M} \mathscr{W}_{*}(f) \leq u \leq \mathscr{M} \mathscr{W}^{*}(f) \quad \text { in } \bar{U}
$$

SSL and the ∞-Laplacian

Absolutely Minimising Lipschitz

Definition. A function $u \in C(U)$ is absolutely minimising Lipschitz on U, and we write $u \in \operatorname{AML}(U)$, if

$$
\operatorname{Lip}_{u}(V)=\operatorname{Lip}_{u}(\partial V), \quad \forall V \subset \subset U
$$

LEP: Given $f \in \operatorname{Lip}(\partial U)$, find $u \in C(\bar{U})$ such that

$$
u \in \operatorname{AML}(U) \quad \text { and } \quad u=f \text { on } \partial U
$$

Comparison with Cones

Definition. A cone with vertex $x_{0} \in \mathbb{R}^{n}$ is a function of the form

$$
C(x)=a+b\left|x-x_{0}\right|, \quad a, b \in \mathbb{R}
$$

The height of C is a and its slope is b.

Definition. A function $w \in C(U)$ enjoys comparison with cones from above in U if, for every $V \subset \subset U$ and every cone C whose vertex is not in V,

$$
w \leq C \text { on } \partial V \quad \Longrightarrow \quad w \leq C \text { in } V .
$$

SSL and the ∞-Laplacian

CWC and AML

Theorem. A function $u \in C(U)$ is absolutely minimising Lipschitz in U if, and only if, it enjoys comparison with cones in U.

Proof. Sufficiency only. Suppose u enjoys comparison with cones in U and let $V \subset \subset U$. We want to show that

$$
\operatorname{Lip}_{u}(V)=\operatorname{Lip}_{u}(\partial V)
$$

Since $u \in C(\bar{V})$, we have $\operatorname{Lip}_{u}(V)=\operatorname{Lip}_{u}(\bar{V})$ (exercise!). Then, as $\partial V \subset \bar{V}$, we trivially have that $\operatorname{Lip}_{u}(V) \geq \operatorname{Lip}_{u}(\partial V)$ and it remains to prove the other inequality.

SSL and the ∞-Laplacian

First, observe that, for any $x \in V$,

$$
\begin{equation*}
\operatorname{Lip}_{u}(\partial(V \backslash\{x\}))=\operatorname{Lip}_{u}(\partial V \cup\{x\})=\operatorname{Lip}_{u}(\partial V) \tag{2}
\end{equation*}
$$

To see this holds we need only check that, for any $y \in \partial V$,

$$
|u(y)-u(x)| \leq \operatorname{Lip}_{u}(\partial V)|y-x|,
$$

which is equivalent to

$$
\begin{equation*}
u(y)-\operatorname{Lip}_{u}(\partial V)|x-y| \leq u(x) \leq u(y)+\operatorname{Lip}_{u}(\partial V)|x-y| \tag{3}
\end{equation*}
$$

This clearly holds for any $x \in \partial V$ but what we want to prove is that it holds for $x \in V$. Let's focus on the second inequality in (3). The right-hand side can be regarded as the cone

$$
C(x)=u(y)+\operatorname{Lip}_{u}(\partial V)|x-y|,
$$

SSL and the ∞-Laplacian

centred at $y \in \partial V$. Since $y \notin V$ and u enjoys comparison with cones from above in U, the inequality holds in V because it holds on ∂V. To obtain the first inequality in (3), we argue analogously, using comparison with cones from below.

Now let $x, y \in V$. Using (2) twice, we obtain

$$
\operatorname{Lip}_{u}(\partial V)=\operatorname{Lip}_{u}(\partial(V \backslash\{x\}))=\operatorname{Lip}_{u}(\partial(V \backslash\{x, y\}))
$$

Since $x, y \in \partial(V \backslash\{x, y\})=\partial V \cup\{x, y\}$, we have

$$
|u(x)-u(y)| \leq \operatorname{Lip}_{u}(\partial(V \backslash\{x, y\}))|x-y|=\operatorname{Lip}_{u}(\partial V)|x-y| .
$$

Thus

$$
\operatorname{Lip}_{u}(V) \leq \operatorname{Lip}_{u}(\partial V)
$$

SSL and the ∞-Laplacian

Viscosity solutions

Definition. A function $w \in C(U)$ is a viscosity subsolution of $\Delta_{\infty} u=0$ (or a viscosity solution of $\Delta_{\infty} u \geq 0$ or ∞-subharmonic) in U if, for every $\hat{x} \in U$ and every $\varphi \in C^{2}(U)$ such that $w-\varphi$ has a local maximum at \hat{x}, we have

$$
\Delta_{\infty} \varphi(\hat{x}) \geq 0
$$

A function $w \in C(U)$ is ∞-superharmonic in U if $-w$ is ∞-subharmonic in U. A function $w \in C(U)$ is ∞-harmonic in U if it is both ∞-subharmonic and ∞-superharmonic in U.

SSL and the ∞-Laplacian

Consistency

Lemma. If $u \in C^{2}(U)$ then u is ∞-harmonic in U if, and only if, $\Delta_{\infty} u=0$ in the pointwise sense.

Proof. Suppose u is ∞-harmonic. Then it is ∞-subharmonic and we take $\varphi=u$ in the definition. Since every point $x \in U$ will then be a local maximum of $u-\varphi \equiv 0, \Delta_{\infty} u(x) \geq 0$, for every $x \in U$. Since also $-u$ is ∞-subharmonic, we get in addition

$$
\Delta_{\infty}(-u)(x) \geq 0 \Leftrightarrow-\Delta_{\infty} u(x) \geq 0 \Leftrightarrow \Delta_{\infty} u(x) \leq 0, \quad \forall x \in U
$$

and so $\Delta_{\infty} u=0$ in the pointwise sense.

SSL and the ∞-Laplacian

Reciprocally, suppose $\Delta_{\infty} u=0$ in the pointwise sense and take $\hat{x} \in U$ and $\varphi \in C^{2}(U)$ such that $u-\varphi$ has a local maximum at \hat{x}. We want to prove that $\Delta_{\infty} \varphi(\hat{x}) \geq 0$, thus showing that u is ∞-subharmonic (the ∞-superharmonicity is obtained in an analogous way).

We have, since $u-\varphi \in C^{2}(U)$ and $\hat{x} \in U$ is a local maximum,

$$
D(u-\varphi)(\hat{x})=0 \Leftrightarrow D u(\hat{x})=D \varphi(\hat{x})
$$

and

$$
D^{2}(u-\varphi)(\hat{x}) \leq 0 \Leftrightarrow\left\langle D^{2} u(\hat{x}) \xi, \xi\right\rangle \leq\left\langle D^{2} \varphi(\hat{x}) \xi, \xi\right\rangle, \quad \forall x \in \mathbb{R}^{n} .
$$

SSL and the ∞-Laplacian

Then

$$
\begin{aligned}
\Delta_{\infty} \varphi(\hat{x}) & =\left\langle D^{2} \varphi(\hat{x}) D \varphi(\hat{x}), D \varphi(\hat{x})\right\rangle \\
& \geq\left\langle D^{2} u(\hat{x}) D \varphi(\hat{x}), D \varphi(\hat{x})\right\rangle \\
& =\left\langle D^{2} u(\hat{x}) D u(\hat{x}), D u(\hat{x})\right\rangle \\
& =\Delta_{\infty} u(\hat{x}) \\
& =0
\end{aligned}
$$

Aronsson's example

$$
u(x, y)=x^{\frac{4}{3}}-y^{\frac{4}{3}}
$$

is ∞-subharmonic in \mathbb{R}^{2}. The proof that it is also ∞-superharmonic is analogous.

Take any point $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ and $\varphi \in C^{2}\left(\mathbb{R}^{2}\right)$ such that $u-\varphi$ has a local maximum at $\left(x_{0}, y_{0}\right)$. We start by observing that, since $u \in C^{1}\left(\mathbb{R}^{2}\right)$,

$$
D(u-\varphi)\left(x_{0}, y_{0}\right)=0
$$

SSL and the ∞-Laplacian

and, consequently,

$$
\begin{equation*}
\varphi_{x}\left(x_{0}, y_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)=\frac{4}{3} x_{0}^{\frac{1}{3}} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi_{y}\left(x_{0}, y_{0}\right)=u_{y}\left(x_{0}, y_{0}\right)=-\frac{4}{3} y_{0}^{\frac{1}{3}} . \tag{5}
\end{equation*}
$$

We first exclude the case $x_{0}=0$. If $\varphi \in C^{2}\left(\mathbb{R}^{2}\right)$ is such that $u-\varphi$ has a local maximum at $\left(0, y_{0}\right)$, then

$$
\begin{align*}
& (u-\varphi)\left(x, y_{0}\right) \leq(u-\varphi)\left(0, y_{0}\right) \\
\Leftrightarrow & x^{\frac{4}{3}} \leq \varphi\left(x, y_{0}\right)-\varphi\left(0, y_{0}\right) \tag{6}
\end{align*}
$$

SSL and the ∞-Laplacian

for every x in a neighbourhood of 0 and this simply can not happen. In fact, letting $F(x)=\varphi\left(x, y_{0}\right)-\varphi\left(0, y_{0}\right)$, we have $F(0)=0$ and also

$$
F^{\prime}(0)=\varphi_{x}\left(0, y_{0}\right)=u_{x}\left(0, y_{0}\right)=0 .
$$

Then, by Taylor's theorem,

$$
\lim _{x \rightarrow 0} \frac{F(x)}{x^{2}}=\frac{F^{\prime \prime}(0)}{2}=\frac{\varphi_{x x}\left(0, y_{0}\right)}{2}<+\infty .
$$

On the other hand, if (6) would hold,

$$
\lim _{x \rightarrow 0} \frac{F(x)}{x^{2}} \geq \lim _{x \rightarrow 0} \frac{x^{\frac{4}{3}}}{x^{2}}=\lim _{x \rightarrow 0} x^{-\frac{2}{3}}=+\infty
$$

a contradiction.

SSL and the ∞-Laplacian

We next consider the case $x_{0} \neq 0$ and $y_{0}=0$. If $\varphi \in C^{2}\left(\mathbb{R}^{2}\right)$ is such that $u-\varphi$ has a local maximum at ($x_{0}, 0$), then

$$
\begin{align*}
& (u-\varphi)(x, 0) \leq(u-\varphi)\left(x_{0}, 0\right) \\
\Leftrightarrow \quad & x^{\frac{4}{3}}-\varphi(x, 0) \leq x_{0}^{\frac{4}{3}}-\varphi\left(x_{0}, 0\right) \tag{7}
\end{align*}
$$

for every x in a neighbourhood of x_{0}. This means that the function

$$
G(x)=x^{\frac{4}{3}}-\varphi(x, 0)
$$

has a local maximum at the point x_{0}. Since it is of class C^{2} in a neighbourhood of x_{0} (small enough that it does not contain 0), we have $G^{\prime}\left(x_{0}\right)=0$ and

$$
\begin{equation*}
G^{\prime \prime}\left(x_{0}\right) \leq 0 \quad \Leftrightarrow \quad \varphi_{x x}\left(x_{0}, 0\right) \geq \frac{4}{9} x_{0}^{-\frac{2}{3}} \geq 0 \tag{8}
\end{equation*}
$$

SSL and the ∞-Laplacian

Then, using (4), (5) and (8),

$$
\begin{aligned}
\Delta_{\infty} \varphi\left(x_{0}, 0\right) & =\left(\varphi_{x}^{2} \varphi_{x x}+2 \varphi_{x} \varphi_{y} \varphi_{x y}+\varphi_{y}^{2} \varphi_{y y}\right)\left(x_{0}, 0\right) \\
& =\varphi_{x}^{2}\left(x_{0}, 0\right) \varphi_{x x}\left(x_{0}, 0\right) \geq 0
\end{aligned}
$$

as required.
Finally, if both $x_{0} \neq 0$ and $y_{0} \neq 0, u$ is C^{2} in a neighbourhood of (x_{0}, y_{0}) and the equation is satisfied in the pointwise sense, the calculation being trivial.

SSL and the ∞-Laplacian

CWC and ∞-harmonic

Theorem. A function $u \in C(U)$ is ∞-subharmonic if, and only if, it enjoys comparison with cones from above.

$$
A M L \Longleftrightarrow C W C \Longleftrightarrow \infty \text { - harmonic }
$$

SSL and the ∞-Laplacian

Regularity

Theorem [Harnack Inequality]. Let $0 \geq u \in C(U)$ satisfy

$$
\begin{equation*}
u(x) \leq u(y)+\max _{w \in \partial B_{r}(y)}\left(\frac{u(w)-u(y)}{r}\right)|x-y|, \tag{9}
\end{equation*}
$$

for $x \in B_{r}(y) \subset \subset U$.
If $z \in U$ and $R<d(z) / 4$, then

$$
\sup _{B_{R}(z)} u \leq \frac{1}{3} \inf _{B_{R}(z)} u .
$$

SSL and the ∞-Laplacian

Proof. Take arbitrary $x, y \in B_{R}(z)$. Then (9) holds for r sufficiently large. Let $r \uparrow d(y)$ to get, using the fact that $u \leq 0$,

$$
\begin{equation*}
u(x) \leq u(y)\left(1-\frac{|x-y|}{d(y)}\right) \tag{10}
\end{equation*}
$$

We have

$$
d(y) \geq 3 R \quad \text { and } \quad|x-y| \leq 2 R
$$

and thus, from (10), we obtain

$$
u(x) \leq u(y)\left(1-\frac{2 R}{3 R}\right)=\frac{1}{3} u(y)
$$

and the result follows.

SSL and the ∞-Laplacian

Local Lipschitz regularity

Theorem. If $u \in C(U)$ is ∞-harmonic then it is locally Lipschitz and hence (by Rademacher's theorem) differentiable almost everywhere.

Proof. We know u satisfies (9), since it enjoys comparison with cones from above.

Take $z \in U, R<d(z) / 4$ and $x, y \in B_{R}(z)$.
Assume first that $u \leq 0$.

SSL and the ∞-Laplacian

Then (10) and the Harnack inequality hold, and we get

$$
\begin{aligned}
u(x)-u(y) & \leq-u(y) \frac{|x-y|}{d(y)} \\
& \leq-\inf _{B_{R}(z)} u \frac{|x-y|}{3 R} \\
& \leq-\sup _{B_{R}(z)} u \frac{|x-y|}{R}
\end{aligned}
$$

If u is not non-positive, then this holds with u replaced by

$$
v=u-\sup _{B_{4 R}(z)} u \leq 0
$$

SSL and the ∞-Laplacian

since $v=u+C$ still enjoys comparison with cones from above. We thus obtain

$$
\begin{aligned}
u(x)-u(y)=v(x)-v(y) & \leq-\sup _{B_{R}(z)} v \frac{|x-y|}{R} \\
& =\left(\sup _{B_{4 R}(z)} u-\sup _{B_{R}(z)} u\right) \frac{|x-y|}{R}
\end{aligned}
$$

and, interchanging x and y,

$$
|u(x)-u(y)| \leq \frac{1}{R}\left(\sup _{B_{4 R}(z)} u-\sup _{B_{R}(z)} u\right)|x-y| .
$$

