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SSL and the oo-Laplacian

SSL and graph based algorithms
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SSL and the co-Laplacian

SSL - smoothness assumption

min Y . |u)-u@)|

u:X—R
u=g on I' nyeX

muinf Vul?dx  — —div(Du) =0
Q
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SSL and the co-Laplacian

The infinity-Laplace equation

Aol = (D*uDu,Du)

n

Z ux,- ux]' uxixj
ij=1
0

e nonlinear and degenerate

e not in divergence form
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SSL and the oo-Laplacian

Lipschitz functions

Definition. Let X cR". A function f: X — R is Lipschitz continuous on
X, equivalently f € Lip(X), if there exists a constant L€ [0,00) such that

|f)-f|<Llx-yl, VYx,yeX. (1)

Any L€ [0,00) for which (1) holds is called a Lipschitz constant for f in X.
The least constant L€ [0,00) for which (1) holds is denoted by Lip £ (X).

If there is no L for which (1) holds, we write Lip ;(X) = co.
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SSL and the co-Laplacian

The Lipschitz Extension Problem

Given f € Lip(U), find ue Lip(U) such that
u=f onodU

and
Lip, (U) = Lip £ (0U)
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SSL and the oo-Laplacian

The McShane-Whitney extensions

Definition. The McShane-Whitney extensions of f € Lip(0U) are the
functions defined in U by

MW, (f)(x) := sup F,(x) = sup {f(z) ~Lip,(0U)|x - z|}
zeoU zeoU

and

MW (@)= inf Gy(x) = yie%{f(y) +Lip(0U)|x— y|}.
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SSL and the co-Laplacian

Problem solved?

Theorem. The McShane-Whitney extensions, 4%, (f) and 4W*(f),
solve the Lipschitz extension problem for f € Lip(dU) and if u is any other
solution to the problem then

MW (f)<u< MW*(f) in U.
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SSL and the oo-Laplacian

Absolutely Minimising Lipschitz

Definition. A function u € C(U) is absolutely minimising Lipschitz on U,
and we write u € AML(U), if

Lip, (V) = Lip,(@V), VVccU.

LEP: Given f e Lip(@U), find ue C(U) such that

ue AML(U) and u=f ondU.
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SSL and the oo-Laplacian

Comparison with Cones

Definition. A cone with vertex xo € R" is a function of the form
Cx)=a+blx—xgl, abeR.

The height of C is a and its slope is b.

Definition. A function w € C(U) enjoys comparison with cones from above
in U if, for every V cc U and every cone C whose vertex is not in V,

w<CondV — w=CinlV.
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SSL and the oo-Laplacian

CWC and AML

Theorem. A function u e C(U) is absolutely minimising Lipschitz in U if,
and only if, it enjoys comparison with cones in U.

Proof. Sufficiency only. Suppose u enjoys comparison with cones in U
and let Vcc U. We want to show that

Lip, (V) = Lip,,(dV).

Since ue C(V), we have Lip, (V) = Lip, (V) (exercise!). Then, as a4V cV,
we trivially have that Lip, (V) = Lip,(0V) and it remains to prove the other
inequality.
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SSL and the oo-Laplacian

First, observe that, for any xe V,
Lip, (0(V \ {x}) = Lip,(dV U {x}) = Lip,, (V). (2)
To see this holds we need only check that, for any yedV,
lu(y) — u(x)| = Lip, (0V) |y — xl,
which is equivalent to
u(y) —Lip, (V) |x -yl < u(x) < u(y) +Lip, (V) |x - yI. (3)

This clearly holds for any x € a3V but what we want to prove is that it holds
for xe V. Let's focus on the second inequality in (3). The right-hand side
can be regarded as the cone

C(x) = u(y) +Lip,0V) |x -yl
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SSL and the oo-Laplacian

centred at y€dV. Since y¢ V and u enjoys comparison with cones from
above in U, the inequality holds in V because it holds on V. To obtain
the first inequality in (3), we argue analogously, using comparison with
cones from below.

Now let x,y € V. Using (2) twice, we obtain
Lip,(@V) = Lip, (@(V \ {x})) =Lip, (0 (V \ {x,1})).
Since x,y€d(V \{x,y}) =0V U{x,y}, we have
lu(x) — u(y)| < Lip, (0(V \{x,y})) [x— y| = Lip,(0V) [x - yI.

Thus
Lip, (V) <Lip, (V).
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SSL and the oo-Laplacian

Viscosity solutions

Definition. A function w € C(U) is a viscosity subsolution of Asu=0 (or
a viscosity solution of Ay =0 or co—subharmonic) in U if, for every X e U
and every ¢ € C?(U) such that w —¢ has a local maximum at %, we have

Ao (%) = 0.
A function w € C(U) is co—superharmonic in U if —w is co—subharmonic in

U. A function w € C(U) is oo—harmonic in U if it is both co—subharmonic
and oo—superharmonic in U.
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SSL and the oo-Laplacian

Consistency

Lemma. If ue C?(U) then u is co—harmonic in U if, and only if, Agouu =0
in the pointwise sense.

Proof. Suppose u is co—harmonic. Then it is co—subharmonic and we
take ¢ = u in the definition. Since every point x € U will then be a local
maximum of u—¢@ =0, Axu(x) =0, for every x € U. Since also —u is
oco—subharmonic, we get in addition

Ao(—U)(x) =20 © —Aou(x)=0 © Asou(x)<0, VxeU

and so Ao u =0 in the pointwise sense.
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SSL and the oo-Laplacian

Reciprocally, suppose Aot = 0 in the pointwise sense and take % € U
and ¢ € C?>(U) such that u—¢ has a local maximum at . We want
to prove that Ax@(%) =0, thus showing that u is co—subharmonic (the
oco—superharmonicity is obtained in an analogous way).

We have, since u—(p€C2(U) and £ €U is a local maximum,
D(u—@)(X) =0 & Du(x)=De(X)
and

D*(u—)(X) <0 & (D*u(R)E, &) < (D*Q(R)E,E), VxeR™
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SSL and the co-Laplacian

Then

(D*@(£)De(%), D (%))
> (D*u(X)Dg(%), Dp(%))
= (D*u@)Du(®), Du())

Aoo(P(j:)

= Axu(X)

= 0.
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SSL and the oo-Laplacian

Aronsson’s example

4
3

u(x,y) = x5 -y

is co—subharmonic in R?. The proof that it is also co—superharmonic is
analogous.

Take any point (xg, yo) € R> and ¢ € C?(R?) such that u—¢ has a local
maximum at (xo, yo). We start by observing that, since ue C!'(R?),

D(u—¢)(x0,y0) =0
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SSL and the co-Laplacian

and, consequently,
1

4 1
(%0, yo) = (X0, o) = g (4)

and
4 1
@y (xo, yo) = uy(xo, yo) = —gyg. (5)

We first exclude the case xo = 0. If ¢ € C>(R?) is such that u—¢ has a
local maximum at (0, yp), then

(u—)(x,y0) = (u—)(0, yo)
& i <(x,y0) — (0, yo), (6)
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SSL and the oo-Laplacian

for every x in a neighbourhood of 0 and this simply can not happen. In
fact, letting F(x) = ¢(x, y0) — (0, yo), we have F(0) =0 and also

F'(0) = ¢,(0, yo) = ux(0, yo) = 0.

Then, by Taylor's theorem,

lim F(x) _ F"(0) _ ®xx(0, o) <
=0 x2 2 2

On the other hand, if (6) would hold,

+00

. Fx) ., x3 2
lim — =1lim — =lim x™ 3 = +oo,
x—0 x2 x—0 x2 x—0

a contradiction.
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SSL and the oo-Laplacian

We next consider the case xo #0 and y=0. If ¢ € C2(R?) is such that
u— @ has a local maximum at (x,0), then
(u—)(x,0) = (u—¢)(x0,0)
s 1
o xb -0 = x] - (x0,0), (7)

for every x in a neighbourhood of xy. This means that the function
G(x) = x7 — @(x,0)

has a local maximum at the point x,. Since it is of class C? in a neighbour-
hood of xp (small enough that it does not contain 0), we have G'(xp) =0
and ,

4 _2
G'(x0) <0 © @yx(x0,0)= 5% 3 >0. (8)
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SSL and the co-Laplacian

Then, using (4), (5) and (8),

Axotp(x9,0) = ((pfc(pxx + 2(px(py(pxy + (pi(pyy) (x0,0)
‘Pi(xoy 0)pxx(x0,0) =0

as required.

Finally, if both xg #0 and yg #0, u is C? in a neighbourhood of (xo, yo)
and the equation is satisfied in the pointwise sense, the calculation being
trivial.
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SSL and the co-Laplacian

CWC and oo-harmonic

Theorem. A function u € C(U) is co—subharmonic if, and only if, it enjoys
comparison with cones from above.

AML <— CWC(C < oo—harmonic
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SSL and the co-Laplacian

Regularity

Theorem [Harnack Inequality]. Let 0= ue C(U) satisfy

(u(w) - u(y)

: )|x—y|, 9)

u(x) = u(y)+ max
weoB, (y)

for x€ B, (y) cc U.
If ze U and R < d(z)/4, then

1.
sup u < — inf wu.
Bp(z) 3 Br2

José Miguel Urbano | KAUST and CMUC 29/33



SSL and the co-Laplacian

Proof. Take arbitrary x,y € Br(z). Then (9) holds for r sufficiently large.
Let r 1 d(y) to get, using the fact that u<0,

_ Ix—yl)
u(x) < u(y) (1 a0 ) (10)

We have
d(y)=3R and |x—yl<2R

and thus, from (10), we obtain

u(x)<u()(1—§)—lu()
SUYI R T3R) T 3MY

and the result follows.
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SSL and the oo-Laplacian

Local Lipschitz regularity

Theorem. If ue C(U) is co—harmonic then it is locally Lipschitz and hence
(by Rademacher's theorem) differentiable almost everywhere.

Proof. We know u satisfies (9), since it enjoys comparison with cones

from above.
Take ze U, R<d(z)/4 and x,y € Bp(z).

Assume first that u <0.
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SSL and the co-Laplacian

Then (10) and the Harnack inequality hold, and we get

ux)—uy) = —u(y)lx_y|
B d(y)
< —Inlu |x_y|
Bgr(2) 3R
< -—supu lx_yl.
Br(2)

If u is not non-positive, then this holds with u replaced by

v=u-— sup u=<0,
Byr(2)
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SSL and the co-Laplacian

since v = u+ C still enjoys comparison with cones from above. We thus
obtain

[x—yl

IA

ulx)—uly)=vx)—v(y —sup v

Br(2)
lx—yl
R

sup u-— sup u
Byr(2) Bgr(2)

and, interchanging x and y,

1
lu(x) —uy)l <= —= ( sup u— sup u) |x—yl.
Bur(2) Bg(2)
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