Semi-Supervised Learning and the ∞ -Laplacian

José Miguel Urbano (KAUST and CMUC)

Mini-course, IST - October 14, 2022

SSL and graph based algorithms

SSL - smoothness assumption

$$\min_{\substack{u:X \to \mathbb{R} \\ u=g \text{ on } \Gamma}} \sum_{x,y \in X} \omega_{xy} |u(x) - u(y)|^2$$

$$\min_{u} \int_{\Omega} |\nabla u|^2 \, dx \qquad \hookrightarrow \qquad -\operatorname{div}(Du) = 0$$

SSL and the ∞ -Laplacian

SSL - smoothness assumption

$$\min_{\substack{u:X\to\mathbb{R}\\u=g \text{ on } \Gamma}} \sum_{x,y\in X} \omega_{xy} |u(x) - u(y)|^p$$

$$\min_{u} \int_{\Omega} |\nabla u|^{p} dx \qquad \hookrightarrow \qquad -\operatorname{div}(|Du|^{p-2}Du) = 0$$

SSL and the ∞ -Laplacian

(b) p = 2.5

SSL - smoothness assumption

$$\min_{\substack{u:X\to\mathbb{R}\\u=g \text{ on }\Gamma}} \max_{\substack{x,y\in X\\ x,y\in X}} \omega_{xy} \left| u(x) - u(y) \right|$$

$$\min_{u} \|\nabla u\|_{\infty} \qquad \hookrightarrow \qquad \Delta_{\infty} u = 0$$

SSL and the ∞ -Laplacian

The infinity-Laplace equation

$$\Delta_{\infty} u := \langle D^2 u D u, D u \rangle$$
$$= \sum_{i,j=1}^n u_{x_i} u_{x_j} u_{x_i x_j}$$
$$= 0$$

- nonlinear and degenerate
- not in divergence form

Lipschitz functions

Definition. Let $X \subset \mathbb{R}^n$. A function $f: X \to \mathbb{R}$ is Lipschitz continuous on X, equivalently $f \in Lip(X)$, if there exists a constant $L \in [0, \infty)$ such that

$$\left| f(x) - f(y) \right| \le L |x - y|, \quad \forall x, y \in X.$$
(1)

Any $L \in [0,\infty)$ for which (1) holds is called a Lipschitz constant for f in X. The least constant $L \in [0,\infty)$ for which (1) holds is denoted by $\operatorname{Lip}_f(X)$.

If there is no L for which (1) holds, we write $\operatorname{Lip}_f(X) = \infty$.

The Lipschitz Extension Problem

Given $f \in Lip(\partial U)$, find $u \in Lip(\overline{U})$ such that

u = f on ∂U

and

 $\operatorname{Lip}_{u}(\overline{U}) = \operatorname{Lip}_{f}(\partial U)$

The McShane-Whitney extensions

Definition. The McShane-Whitney extensions of $f \in Lip(\partial U)$ are the functions defined in \overline{U} by

$$\mathcal{MW}_*(f)(x) := \sup_{z \in \partial U} F_z(x) = \sup_{z \in \partial U} \left\{ f(z) - \operatorname{Lip}_f(\partial U) | x - z | \right\}$$

and

$$\mathcal{MW}^*(f)(x) := \inf_{y \in \partial U} G_y(x) = \inf_{y \in \partial U} \left\{ f(y) + \operatorname{Lip}_f(\partial U) | x - y | \right\}.$$

Problem solved?

Theorem. The McShane-Whitney extensions, $\mathcal{MW}_*(f)$ and $\mathcal{MW}^*(f)$, solve the Lipschitz extension problem for $f \in Lip(\partial U)$ and if u is any other solution to the problem then

 $\mathcal{MW}_*(f) \le u \le \mathcal{MW}^*(f)$ in \overline{U} .

Absolutely Minimising Lipschitz

Definition. A function $u \in C(U)$ is absolutely minimising Lipschitz on U, and we write $u \in AML(U)$, if

 $\operatorname{Lip}_{u}(V) = \operatorname{Lip}_{u}(\partial V), \quad \forall V \subset \subset U.$

LEP: Given $f \in Lip(\partial U)$, find $u \in C(\overline{U})$ such that

 $u \in AML(U)$ and u = f on ∂U .

Comparison with Cones

Definition. A cone with vertex $x_0 \in \mathbb{R}^n$ is a function of the form

$$C(x) = a + b|x - x_0|, \quad a, b \in \mathbb{R}.$$

The height of C is a and its slope is b.

Definition. A function $w \in C(U)$ enjoys comparison with cones from above in U if, for every $V \subset U$ and every cone C whose vertex is not in V,

$$w \le C \text{ on } \partial V \implies w \le C \text{ in } V.$$

CWC and AML

Theorem. A function $u \in C(U)$ is absolutely minimising Lipschitz in U if, and only if, it enjoys comparison with cones in U.

Proof. Sufficiency only. Suppose u enjoys comparison with cones in U and let $V \subset U$. We want to show that

 $\operatorname{Lip}_{u}(V) = \operatorname{Lip}_{u}(\partial V).$

Since $u \in C(\overline{V})$, we have $\operatorname{Lip}_u(V) = \operatorname{Lip}_u(\overline{V})$ (exercise!). Then, as $\partial V \subset \overline{V}$, we trivially have that $\operatorname{Lip}_u(V) \ge \operatorname{Lip}_u(\partial V)$ and it remains to prove the other inequality.

First, observe that, for any $x \in V$,

$$\operatorname{Lip}_{u}(\partial(V \setminus \{x\})) = \operatorname{Lip}_{u}(\partial V \cup \{x\}) = \operatorname{Lip}_{u}(\partial V).$$
(2)

To see this holds we need only check that, for any $y \in \partial V$,

$$|u(y) - u(x)| \le \operatorname{Lip}_u(\partial V) |y - x|,$$

which is equivalent to

$$u(y) - \operatorname{Lip}_{u}(\partial V) |x - y| \le u(x) \le u(y) + \operatorname{Lip}_{u}(\partial V) |x - y|.$$
(3)

This clearly holds for any $x \in \partial V$ but what we want to prove is that it holds for $x \in V$. Let's focus on the second inequality in (3). The right-hand side can be regarded as the cone

$$C(x) = u(y) + \operatorname{Lip}_{u}(\partial V) |x - y|,$$

centred at $y \in \partial V$. Since $y \notin V$ and u enjoys comparison with cones from above in U, the inequality holds in V because it holds on ∂V . To obtain the first inequality in (3), we argue analogously, using comparison with cones from below.

Now let $x, y \in V$. Using (2) twice, we obtain

$$\operatorname{Lip}_{u}(\partial V) = \operatorname{Lip}_{u}(\partial (V \setminus \{x\})) = \operatorname{Lip}_{u}(\partial (V \setminus \{x, y\})).$$

Since $x, y \in \partial (V \setminus \{x, y\}) = \partial V \cup \{x, y\}$, we have

$$|u(x) - u(y)| \le \operatorname{Lip}_u(\partial(V \setminus \{x, y\})) |x - y| = \operatorname{Lip}_u(\partial V) |x - y|.$$

Thus

$$\operatorname{Lip}_{u}(V) \leq \operatorname{Lip}_{u}(\partial V).$$

Viscosity solutions

Definition. A function $w \in C(U)$ is a viscosity subsolution of $\Delta_{\infty} u = 0$ (or a viscosity solution of $\Delta_{\infty} u \ge 0$ or ∞ -subharmonic) in U if, for every $\hat{x} \in U$ and every $\varphi \in C^2(U)$ such that $w - \varphi$ has a local maximum at \hat{x} , we have

 $\Delta_{\infty}\varphi(\hat{x}) \ge 0.$

A function $w \in C(U)$ is ∞ -superharmonic in U if -w is ∞ -subharmonic in U. A function $w \in C(U)$ is ∞ -harmonic in U if it is both ∞ -subharmonic and ∞ -superharmonic in U.

Consistency

Lemma. If $u \in C^2(U)$ then u is ∞ -harmonic in U if, and only if, $\Delta_{\infty} u = 0$ in the pointwise sense.

Proof. Suppose u is ∞ -harmonic. Then it is ∞ -subharmonic and we take $\varphi = u$ in the definition. Since every point $x \in U$ will then be a local maximum of $u - \varphi \equiv 0$, $\Delta_{\infty}u(x) \ge 0$, for every $x \in U$. Since also -u is ∞ -subharmonic, we get in addition

$$\Delta_{\infty}(-u)(x) \ge 0 \iff -\Delta_{\infty}u(x) \ge 0 \iff \Delta_{\infty}u(x) \le 0, \quad \forall x \in U$$

and so $\Delta_{\infty} u = 0$ in the pointwise sense.

Reciprocally, suppose $\Delta_{\infty} u = 0$ in the pointwise sense and take $\hat{x} \in U$ and $\varphi \in C^2(U)$ such that $u - \varphi$ has a local maximum at \hat{x} . We want to prove that $\Delta_{\infty} \varphi(\hat{x}) \ge 0$, thus showing that u is ∞ -subharmonic (the ∞ -superharmonicity is obtained in an analogous way).

We have, since $u - \varphi \in C^2(U)$ and $\hat{x} \in U$ is a local maximum,

$$D(u-\varphi)(\hat{x}) = 0 \Leftrightarrow Du(\hat{x}) = D\varphi(\hat{x})$$

and

$$D^{2}(u-\varphi)(\hat{x}) \leq 0 \iff \langle D^{2}u(\hat{x})\xi,\xi\rangle \leq \langle D^{2}\varphi(\hat{x})\xi,\xi\rangle, \quad \forall x \in \mathbb{R}^{n}$$

Then

$$\Delta_{\infty} \varphi(\hat{x}) = \langle D^2 \varphi(\hat{x}) D \varphi(\hat{x}), D \varphi(\hat{x}) \rangle$$

$$\geq \langle D^2 u(\hat{x}) D \varphi(\hat{x}), D \varphi(\hat{x}) \rangle$$

$$= \langle D^2 u(\hat{x}) D u(\hat{x}), D u(\hat{x}) \rangle$$

$$= \Delta_{\infty} u(\hat{x})$$

= 0.

Aronsson's example

$$u(x, y) = x^{\frac{4}{3}} - y^{\frac{4}{3}}$$

is ∞ -subharmonic in \mathbb{R}^2 . The proof that it is also ∞ -superharmonic is analogous.

Take any point $(x_0, y_0) \in \mathbb{R}^2$ and $\varphi \in C^2(\mathbb{R}^2)$ such that $u - \varphi$ has a local maximum at (x_0, y_0) . We start by observing that, since $u \in C^1(\mathbb{R}^2)$,

 $D(u-\varphi)(x_0,y_0)=0$

and, consequently,

$$\varphi_x(x_0, y_0) = u_x(x_0, y_0) = \frac{4}{3} x_0^{\frac{1}{3}}$$
(4)

and

$$\varphi_{y}(x_{0}, y_{0}) = u_{y}(x_{0}, y_{0}) = -\frac{4}{3}y_{0}^{\frac{1}{3}}.$$
 (5)

We first exclude the case $x_0 = 0$. If $\varphi \in C^2(\mathbb{R}^2)$ is such that $u - \varphi$ has a local maximum at $(0, y_0)$, then

$$(u - \varphi)(x, y_0) \le (u - \varphi)(0, y_0)$$

 $\Leftrightarrow x^{\frac{4}{3}} \le \varphi(x, y_0) - \varphi(0, y_0),$
(6)

for every x in a neighbourhood of 0 and this simply can not happen. In fact, letting $F(x) = \varphi(x, y_0) - \varphi(0, y_0)$, we have F(0) = 0 and also

$$F'(0) = \varphi_x(0, y_0) = u_x(0, y_0) = 0.$$

Then, by Taylor's theorem,

$$\lim_{x \to 0} \frac{F(x)}{x^2} = \frac{F''(0)}{2} = \frac{\varphi_{xx}(0, y_0)}{2} < +\infty.$$

On the other hand, if (6) would hold,

$$\lim_{x \to 0} \frac{F(x)}{x^2} \ge \lim_{x \to 0} \frac{x^{\frac{4}{3}}}{x^2} = \lim_{x \to 0} x^{-\frac{2}{3}} = +\infty,$$

a contradiction.

We next consider the case $x_0 \neq 0$ and $y_0 = 0$. If $\varphi \in C^2(\mathbb{R}^2)$ is such that $u - \varphi$ has a local maximum at $(x_0, 0)$, then

$$(u - \varphi)(x, 0) \le (u - \varphi)(x_0, 0)$$

 $\Rightarrow \quad x^{\frac{4}{3}} - \varphi(x, 0) \le x_0^{\frac{4}{3}} - \varphi(x_0, 0),$
(7)

for every x in a neighbourhood of x_0 . This means that the function

$$G(x) = x^{\frac{4}{3}} - \varphi(x, 0)$$

has a local maximum at the point x_0 . Since it is of class C^2 in a neighbourhood of x_0 (small enough that it does not contain 0), we have $G'(x_0) = 0$ and

$$G''(x_0) \le 0 \quad \Leftrightarrow \quad \varphi_{xx}(x_0, 0) \ge \frac{4}{9} x_0^{-\frac{2}{3}} \ge 0.$$
 (8)

Then, using (4), (5) and (8),

$$\begin{split} \Delta_{\infty}\varphi(x_0,0) &= \left(\varphi_x^2\varphi_{xx} + 2\varphi_x\varphi_y\varphi_{xy} + \varphi_y^2\varphi_{yy}\right)(x_0,0) \\ &= \varphi_x^2(x_0,0)\varphi_{xx}(x_0,0) \ge 0 \end{split}$$

as required.

Finally, if both $x_0 \neq 0$ and $y_0 \neq 0$, u is C^2 in a neighbourhood of (x_0, y_0) and the equation is satisfied in the pointwise sense, the calculation being trivial.

CWC and ∞ -harmonic

Theorem. A function $u \in C(U)$ is ∞ -subharmonic if, and only if, it enjoys comparison with cones from above.

$AML \iff CWC \iff \infty - harmonic$

Regularity

Theorem [Harnack Inequality]. Let $0 \ge u \in C(U)$ satisfy

$$u(x) \le u(y) + \max_{w \in \partial B_r(y)} \left(\frac{u(w) - u(y)}{r} \right) |x - y|, \tag{9}$$

for $x \in B_r(y) \subset \subset U$.

If $z \in U$ and R < d(z)/4, then

$$\sup_{B_R(z)} u \leq \frac{1}{3} \inf_{B_R(z)} u.$$

Proof. Take arbitrary $x, y \in B_R(z)$. Then (9) holds for r sufficiently large. Let $r \uparrow d(y)$ to get, using the fact that $u \le 0$,

$$u(x) \le u(y) \left(1 - \frac{|x - y|}{d(y)} \right).$$
 (10)

We have

$$d(y) \ge 3R$$
 and $|x-y| \le 2R$

and thus, from (10), we obtain

$$u(x) \le u(y)\left(1 - \frac{2R}{3R}\right) = \frac{1}{3}u(y)$$

and the result follows.

Local Lipschitz regularity

Theorem. If $u \in C(U)$ is ∞ -harmonic then it is locally Lipschitz and hence (by Rademacher's theorem) differentiable almost everywhere.

Proof. We know u satisfies (9), since it enjoys comparison with cones from above.

```
Take z \in U, R < d(z)/4 and x, y \in B_R(z).
```

```
Assume first that u \leq 0.
```

Then (10) and the Harnack inequality hold, and we get

$$u(x) - u(y) \leq -u(y)\frac{|x - y|}{d(y)}$$
$$\leq -\inf_{B_R(z)} u \frac{|x - y|}{3R}$$
$$\leq -\sup_{B_R(z)} u \frac{|x - y|}{R}.$$

If u is not non-positive, then this holds with u replaced by

 $v = u - \sup_{B_{4R}(z)} u \le 0,$

since v = u + C still enjoys comparison with cones from above. We thus obtain

$$u(x) - u(y) = v(x) - v(y) \leq -\sup_{B_R(z)} v \frac{|x - y|}{R}$$
$$= \left(\sup_{B_{4R}(z)} u - \sup_{B_R(z)} u\right) \frac{|x - y|}{R}$$

and, interchanging x and y,

$$|u(x)-u(y)| \leq \frac{1}{R} \left(\sup_{B_{4R}(z)} u - \sup_{B_{R}(z)} u \right) |x-y|.$$