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Introduction

The spaces we study are called complex manifolds

Locally are like open subsets of Cn

i.e. locally with coordinates (z1, ..., zn), with zi complex numbers

We then know how to do analysis in these subsets

These local coordinates are related(glued) in a way

that allows us to do analysis consistently globally
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Introduction

Symmetric differentials are analytic objects that exist on a complex
manifold X

On open piece U ⊂ X with a chart (z1, ..., zn)

We have the differential 1-forms dzi (dual of vector fields)

A symmetric differential w on U is a polynomial on the dzi ’s
whose coefficients ai1...in are holomorphic functions on U

w =
∑

ai1...indz
i1
1 ...dz

in
n
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More abstractly, to each point x ∈ X associate a vector space

Ω1
X ,x = Cdz1,x + ...+ Cdzn,x

Together they make up the intrinsic cotangent bundle on X , Ω1
X

A differential 1-form is a section of this vector bundle

Associated to the vector bundle Ω1
X we have other intrinsic bundles, e.g:

1 Alternating powers: ∧kΩ1
X , k = 0, ..., n, sections are k-forms

2 Symmetric powers: SmΩ1
X , m ≥ 0, sections are symmetric

m-differentials

3 powers of the canonical line bundle: Km
X := (∧nΩ1

X )⊗m
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Differential k-forms are essential for the theory of integration on
manifolds.

The canonical bundle is the intrinsic line bundle on a complex manifold.
Their powers play a central role on the classification theory.

Symmetric m-differentials are algebraic differential equations of order 1
which are homogeneous of degree m

Let w be a symmetric 2-differential on C2:

w = a2,0(dz1)2 + a1,1dz1dz2 + a0,2(dz2)2

Let ∆ ⊂ C, f : ∆ ↪→ C2 a curve given by f (t) = (f1(t), f2(t)).

f ∗w = (a2,0f
′

1
2

+ a1,1f
′

1f
′

2 + a0,2f
′

2
2
)(dt)2
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Geometrically: Individually a symmetric m-differential defines a
homogeneous polynomial of degree m at each TxX , that varies with x .

Hence, defines at each TxX a cone with center x .

A collection of sym. m-diff {w1, ...,wk} defines global system of functions
on TX that tries to differentiate the tangent directions at all points in X .
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- When do we have the presence of symmetric differentials?

Locally they exist with abundance, as we saw.
Globally they are constrained by the geometry, next section.

There are several forms of measuring and describing the abundance of
symmetric differentials.

The symmetric m-genera: qm(X ) := dimH0(X ,SmΩ1
X )

The symmetric algebra: Q(X ) =
⊕∞

m=0 H
0(X ,SmΩ1

X )

Asymptotic growth: the cotangent Kodaira dimension
kΩ(X ) := limm→∞ logm qm(X )
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The Kodaira cotangent dimension varies:

from −∞, convention for no symmetric differentials.

to 2 dimX − 1, when for the exception of a measure zero set all other
tangent directions are separated by sym. diff.

The extreme of abundance is when symmetric differentials distinguish all
tangent directions.
We say then that Ω1

X is ample.
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Analytic geometry

The most well known application of symmetric differentials is to use them
to control the existence of special subvarieties.

Example (Special subvarieties)

Rational curves

Elliptic curves

entire curves, i.e. non pointwise images of holomorphic maps from C

Symmetric differentials are also seen as obstructions to embeddings

Theorem (Kobayashi, Schneider, distinct proof (Bogomolov and -) )

If X (n) ⊂ PN smooth projective subvariety with n > 1/2N, then X has no
symmetric differentials.

Bruno De Oliveira The Geometry of Symmetric Differentials July 17 10 / 44



Symmetric differentials on curves

- The abundance of symmetric differentials on curves is simply determined
by the degree of the line bundle, deg(Ω1

X ).

- Rational curves, genus 0 , degΩ1
X < 0, no

symmetric differentials.

- Elliptic curves, genus 1, degΩ1
X = 0, only

one symm. differential of each degree, they
are nowhere zero.

- General type, genus g ≥ 2, degΩ1
X > 0,

plenty of symm. differentials.

qm(X ) = (2g − 2)m + 1− g (topological)
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Hyperbolicity

A manifold X is said to be analytically hyperbolic if it has no entire
curves (no non-constant holomorphic map f : C→ X ).

Examples:

1 Open subsets of C: C and C \ {p} are not hyperbolic, but C \ S with
#S > 1 is hyperbolic (Picard’s theorem).

2 Riemann surfaces: P1 and elliptic curves are not hyperbolic, but
curves of general type are. Products of R.S of general type.

3 Complements in P2: The complement of any 4 lines in P2 is not hyp.,
but there are complements of 5 lines that are.
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Ample Cotangent Bundle =⇒ Hyperbolic

X is weakly algebraically hyperbolic if X has no rational or elliptic
curves (weaker than analytically hyperbolic).

If the cotangent bundle Ω1
X is ample, then X is analytically hyperbolic.
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Conjectures

Conjecture (Kobayashi):

A general smooth hypersurface in P3 of degree ≥ 5 is analytically
hyperbolic.

Problem: we saw before that there are no symmetric differentials on
hypersurfaces hence one can not use them.

Using jet-differentials which are algebraic differential equations of order
≥ 1, the work of Demailly, Siu, Rousseau, Merker, Diverio, Paun and many
others dealt with d > 18.

Conjecture (Green-Griffiths):

A variety of general type X has a proper subvariety Y ⊂ X such that all
entire curves are contained in Y .
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Surfaces with c2
1 (X )− c2(X ) > 0

If X is a surface, then Riemann-Roch gives:
h0(X ,SmΩ)−h1(X ,SmΩ)+h2(X ,SmΩ) = 1/6(c2

1 (X )−c2(X ))m3+O(m2)

[Bogomolov 78] showed that if a surface X of general type satisfies
c2

1 (X )− c2(X ) > 0, then:

1 kΩ(X ) = 3 (maximal, we say Ω1
X is big).

2 Enough symmetric differentials to force that there are only finitely
many rational and elliptic curves on X .

But for hypersurfaces X ⊂ P3 of d ≥ 5, c2
1 (X )− c2(X ) < 0.
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Symmetric Differentials on Deformations of Hypersurfaces

Idea: consider nodal hypersurfaces X ⊂ P3 and their minimal resolutions
X̃ .

X̃ can be view as deformations of smooth hypersurfaces of the same
degree as X (Atiyah).

Hence 1/6(c2
1 (X̃ )− c2(X̃ )) = 1/6(c2

1 (X )− c2(X )) < 0 still.

But one can show that the presence of sufficiently many nodes can make:

h1(X , SmΩ) + 1/6(c2
1 (X )− c2(X ))m3 > km3, k > 0
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Symmetric Differentials on Deformations of Hypersurfaces

Theorem (Bogomolv,-, 06)

There are nodal hypersurfaces X ⊂ P3 of degree d ≥ 13 whose minimal
resolution X̃ is such that:

1 Ω1
X̃

is big.

2 X̃ satisfies the Green-Griffths conjecture.

3 X̃ is a deformation of smoth hypersurfaces of degree d .

Corollary: The symmetric pluri-genera is not a deformation invariant.
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Interplay with Topology

Question:

To what extent does Q(X ) =
⊕∞

m=0 H
0(X , SmΩ1

X ) determine or is
determined by the topology of X?

In the case of curves (dimX = 1) we saw that Q(X ) determines the
topology.

Are the symmetric pluri-genera, qm(X ) = dimH0(X ,SmΩ1
X ), topological?

q1(X ) = 1/2b1(X ), by Hodge theory, hence is topological.

qm(X ), with m > 1 are not necessary deformation invariants (our and
Brotbek’s examples) hence not necessarily topological.

(they depend on the complex struture on the underlying topological space).
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π1(X ) 6= 0 =⇒ ∃ Symmetric Differentials?

There are projective manifolds with π1(X ) 6= 0 but finite with no sym. diff.

Simple case: if the H1(X ,C) 6= 0, then there many sym. diff., in particular
products of diff. 1-forms (Hodge Theory).

Conjecture (Esnault) A projective manifold with π1(X ) infinite has
symmetric differentials.

Theorem (Brunebarbe,Klingler,Totaro 13) If the π1(X ) has representation
in a linear group with infinite image, then X has symmetric differentials.
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∃ Symmetric Differentials =⇒ π1(X ) 6= 0?

Our example shows that X can have abundance of symm. diff. but
π1(X ) = 0.

But if q1(X ) 6= 0, then b1(X ) 6= 0 hence π1(X ) 6= 0 (Hodge Theory).

So the existence of certain type of symm. diff. =⇒ large π1(X ).

Essential: 1-diff on projective manifolds (always compact) must be closed,
i.e. dµ = 0.
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∃ closed 1-diff =⇒ π1(X ) infinite
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Closed Symmetric Differentials

A symmetric m-diff. w is closed if near a general point x ∈ X it is:

locally the product of closed homorphic 1-forms.

A closed sym. m-diff defines a global k-web (k foliations), k ≤ m is called
the rank
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When X is a Surface

The fundamental groups of curves are special among those of projective
varieties but by Lefschetz those of surfaces encompass all.

Near a general point on a surface any symmetric m-differential, w , has the
form:

w = Fdf1...dfm

w is closed iff F = F1(f1)...Fm(fm).

Question: Find the characterizing (non-linear) differential operators.

Description of these operators has been done for degree 2 and 3 for
surfaces [Bogomolov, - 13],[Buonerba, Zakharov 17]
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Examples

0) Basic: w = µ1...µm ∈ SmH0(X ,Ω1
X )

- They come from maps to complex tori and hence =⇒ π1(X ) =∞.

1)

Theorem (Bogomolov,- 11)

X projective manifold and w a sym m-diff of rank 1. Then:

1 w is closed.

2 w comes from a map to a Zd -quotient (d|m) of a complex torus.

3 π1(X \ E ) =∞, where E is a nonpositive divisor or emply.
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Examples

2) Such w can exist on X without the existence of 1-diff on X .

4) Next we look at certain types of closed sym diff. and derive the
corresponding geometry.
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Closed of the 1st Kind and Abelian Rank

w is of the 1st kind if w is everywhere locally the product of closed 1-diff.

The abelian rank of w is the abelian rank of the associated web.

It is the dimension of the space of decompositions of a constant function
as the sum of non-constant functions constant along the foliations.

-A sym. m-diff. of 1st kind and rank 2 has trivial abelian rank.

- locally a general sym m-diff of 1st kind has trivial abelian rank.
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Geometry and Local Systems

Theorem (Bogomolov,- 13)

X projective manifold with w sym. 2-diff. of rank 2 and of 1st kind. Then:

1 w = φ1φ2 with φi 1-diff twisted by a local system Cρi .
2 The local systems Cρi i = 1, 2 are dual and torsion.

3 w comes from a map to a quotient of an complex torus by a cyclic or
dihedral group.

4 π1(X ) is infinite.

Recurent theme: closed sym diff on a projective variety X are associated
to maps from X to a quotient of a complex torus by a finite group.
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Products of Two Closed Meromorphic 1-forms

Apriori, such examples do not necessarily force π1(X ) large since
logarithmic differentials can exist on simply connected manifolds.

Provide examples of global closed sym 2-diff that are not of 1st kind.

Theorem (Bogomolov,- 13)

X projective manifold with w sym. 2-diff. of rank 2 of the form:

w = φ1φ2, µi ∈ H0(X ,Ω1
X ,cl(∗))

Ω1
X ,cl(∗) is the sheaf of closed meromorphic 1-diff. Then π1(X ) is infinite,

moreover the Albanese dimension ≥ 2 and one of the follwing holds:

1 w is of 1st kind, i.e. φi are holomorphic.

2 w = (f ∗ϕ+ u)µ, where f : X → C , C smooth curve of genus g ≥ 1,
(f ∗ϕ+ u) is not holomorphic with ϕ ∈ H0(C ,Ω1

C (∗)) and
u ∈ H0(X ,Ω1

X ), and µ ∈ H0(C ,Ω1
C ).
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Extrinsic Geometry

-We study symmetric differentials whose coefficients are meromorphic
(instead of holomorphic) functions with a bound on the type of poles.

- We consider poles defined extrinsically in terms hyperplane sections of a
given embedding of X on PN .

Theorem (Schneider 92)

If X (n) ⊂ PN smooth and n > N/2, then no symmetric m-differentials even
if poles of order ”smaller” than m hyperplane sections are allowed, i.e.

Q(X , α) =
⊕
mα∈Z

H0(X ,Sm[Ω1
X (α)]) = C, α ∈ Q, α < 1

The boundary case Q(X , 1) =
⊕

m≥0 H
0(X , Sm[Ω1

X (1)]) becomes of
interest!
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Understanding the maps of sections in the structural exact sequences
enveloping Ω1

X have a clear meaning once twisted with O(1)

0 0y y
N∗
X/PN (1)

id−−−−→ N∗
X/PN (1)y y

0 −−−−→ Ω1
PN |X (1) −−−−→

⊕N+1
i=1 OX −−−−→ OX (1) −−−−→ 0y q

y id

y
0 −−−−→ Ω1

X (1) −−−−→ Ω̃1
X (1) −−−−→ OX (1) −−−−→ 0y y

0 0
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π∗OP(Ω1
X (1))(m) ' OTX (m) ' τ∗OPN (m)
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sections of OP(Ω1
X (1))(m) are the twisted sym. m-differentials.

sections of OPN (m) are the homogeneous polynomials of degree m on
CN+1.

Question:

Which polynomials correspond to twisted symmetric differentials on X?
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Tangentially Homogeneous Polynomials

Let H ∈ C[Z0, ...,ZN ](m), h a dehomogenezation of H and hx := h|TxX .

hx = h
(0)
x + ...+ h

(m)
x (Taylor exp. at x)

H is tangentially homogenous relative to X ⊂ PN if:

hx = h
(m)
x , ∀x ∈ X

C[X0, ...,XN ]
(m)
TX = {H tang. hom. relative to X of degree m}

The algebra generated by tang. hom. polynomials:

C[X0, ...,XN ]hTX =
⊕
m∈N0

C[X0, ...,XN ]
(m)
TX

.
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Theorem (Langdon, -, 17)

If the tangent map τ : TX → PN is surjective and with connected fibers,
then

Q(X , 1) = C[Z0, ...,ZN ]hTX

Theorem (Bogomolov, -, 08)

The tangent map τ : TX → PN is surjective and with connected fibers if
dimX > 2/3(N − 1).

n > 2/3(N − 1) remind us of the Hartshorne conjecture dimensional range:

If X (n) ⊂ PN is smooth with n > 2/3N, then X is a complete intersection.
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Tangentially Homogeneous Polynomials

Question: which polynomials are tangentially homogeneous relative to X?

Trivially, polynomials H whose zero locus V (H) contains the tangent
variety of X , Tan(X ):=τ(TX ).

Quadratic polynomials Q such that X ⊂ V (Q).

qx = q
(2)
x , since q

(0)
x = 0 (X ⊂ V (Q)) and q

(1)
x = 0 (TxX ⊂ TxV (Q)).
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Theorem (Langdon,-, 17)

Let X (n) ⊂ PN be a nondegenerate smooth complete intersection with
n > 2/3(N − 1) (and n > 1). Then:

∞⊕
m=0

H0(X ,Sm[Ω1
X (1)]) ' C[Q0, ...,Qr ]

where {Q0, ...,Qr} is any basis of H0(PN , IX (2)).

I (X ) = (F1, ...,Fc) with deg Fi = di , d1 ≥ d2 ≥ ... ≥ dc .

{Fk , ...,Fc} form a basis for H0(PN , IX (2)).

H tang. hom., H =
∑

(i1,...,ic )∈I Gi1...icF
i1
1 ...F

ic
c , with Gi1...ic /∈ I (X ).
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x ∈ X general, what can we say about hx?

hx is homogeneous and deg hx =deg H

The lowest possible term of hx involves powers of the quadratic terms f
(2)
i ,x

and 0-order terms g
(0)
i1...ic ,x

.

If the lowest possible term is non-vanishing, then:

Gi1...ic ∈ C and only quadratic Fi are involved for H.

The lowest possible term is non-vanishing if the f
(2)
i ,x are algebraically

independent.
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What is the geometrical meaning of the f
(2)
i ,x ?

They are the quadratic forms coming from the 2nd fundamental form of X
(curvature).

Using the work of Terracini and then later of Griffiths and Harris on
projective differential geometry, we get:

If X is a complete intersection, then the f
(2)
i ,x are algebraically independent

iff Tan(X ) = PN .

In motivational terms: if the f
(2)
i ,x are not algebraically independent, then

the bending is not maximal making the tangent variety smaller than the
ambient PN .
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More Geometry

What to do if X is not known to be a complete intersection?

Remarks:

- If X (n) ⊂ PN has codimension 1, then it is a complete intersection, but
already if codimension is 2 this is not known (n > 2/3N).

- The twisted cubic C ⊂ P3 is of degree 3 and not contained in a plane. If
it was a complete intersection C = V (F1,F2) its degree would be d1.d2

which is not prime, contradiction.

Goal: understand the locus where tang. homo. polynomials vanish?
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Trisecant variety

If H tangentially homogeneous rel. to X , then H vanishes on the cones
Cx(TxX ∩ X ) ⊂ TxX for all x in X .

This implies that H vanishes on the (tangent-secant)-trisecant variety of
X , ts-Trisec(X).
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Q(E ) the intersection of all quadrics containing X

Theorem (Langdon,-, 17)

If X (n) ⊂ PN , nondegenerate, codimension 2 and n ≥ 3, then

ts-Trisec(X ) = QE (X )

By Severi, Ran and Kwak the quadratic envelope QE(X ) is one of the
following:
(i) PN , h0(PN , IX (2)) = 0.
(ii) Q, the single quadric X ⊂ Q, h0(PN , IX (2)) = 1.
(iii) X, where X must be a complete intersection or X = P1 × P2 ⊂ P5,
h0(PN , IX (2)) > 1.
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Theorem (Langdon,-, 17)

If X (n) ⊂ PN , nondegenerate, codimension 2 and n ≥ 3, then

∞⊕
m=0

H0(X ,Sm[Ω1
X (1)]) ' C[Q0, ...,Qr ]
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