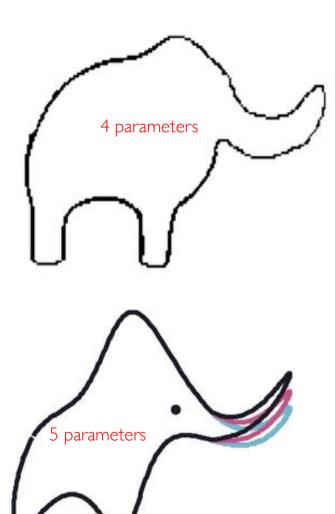
Deep neural networks have an inbuilt Occam's razor

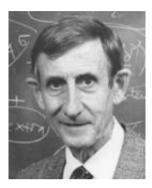
Ard Louis

•

Physicists are taught: more parameters than data points is bad



Enrico Fermi 1901-1954



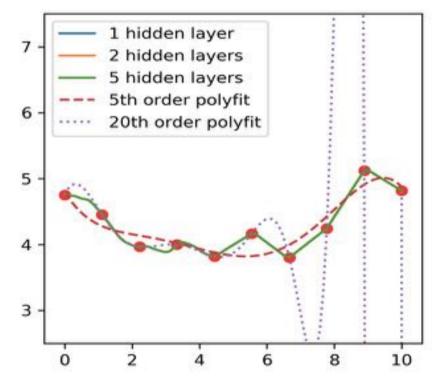
F. Dyson, A meeting with Enrico Fermi, Nature. 427, 287 (2004)

Freeman Dyson 1923-2020

John von Neumann 1903-1957 With four parameters I can fit an elephant, and with five I can make him wiggle his trunk -- John von Neuman (according to Fermi)

Drawing an elephant with four complex parameters Jürgen Mayer; Khaled Khairy; Jonathon Howard; American Journal of Physics 78, 648-649 (2010)

Deep neural networks (DNNs) are heavily overparameterized



polynomial fit : $y(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \dots + a_nx^n$

compared to

simple DNNs (FCN with layer width of 1000 units)

CENTRAL THEORETICAL CONUNDRUM of DNNs: Why do they generalise so well?

I) DNNs are used in the over-parameterised regime with many more parameters than data points.

- 2) DNNs are highly expressive (there is a universal approximation theorem (Cybenko, Hornik etc..)
- 3) Classical learning theory, based on model capacity, predicts poor generalisation. (bias-variance tradeoff)

Deep learning and Physics

Comment | Published: 26 May 2020

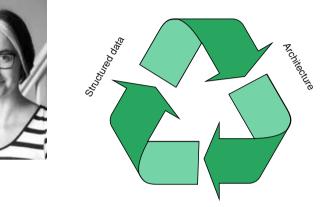
Understanding deep learning is also a job for physicists

Lenka Zdeborová 🖂

Nature Physics 16, 602–604(2020) | Cite this article 4148 Accesses | 170 Altmetric | Metrics

Automated learning from data by means of deep neural networks is finding use in an ever-increasing number of applications, yet key theoretical questions about how it works remain unanswered. A physics-based approach may help to bridge this gap.

To understand deep learning, the machine-learning community needs to fill the gap between the mathematically rigorous works and the end-product-driven engineering progress, all while keeping the scientific rigour intact. And this is where the physics approach and experience comes in handy. The virtue of physics research is that it strives to design and perform refined experiments that reveal unexpected (yet reproducible) behaviour, yet has a framework to critically re-examine and improve theories explaining the empirically observed behaviour.



Algorithm

Algorithm

Fig. 1 | Interplay of key ingredients. Building theory of deep learning requires an understanding of the intrinsic interplay between the architecture of the neural network, the behaviour of the algorithm used for learning and the structure in the data.

In 1995, the influential statistician Leo Breiman summarized three main open problems in machine learning theory⁷: "Why don't heavily parameterized neural networks overfit the data?

While Breiman formulated thes questions 25 years ago, they are still open today and subject to most of the ongoing works in the learning-theory community,

Model problem: Supervised learning of a Boolean function with DNNs

Doctor's decision table for COVID-19

	Send to hospital?	Fever?	Cough?	Lost sense of smell?	Over 50?	Heart problem?	Obese?	Diabetes?
Boolean function	I	1	1	T	1	1	1	1
	I		1	1	0	1	1	1
	0	1	1	1	0	0	0	0
	1		1	1	1	0	1	1
	0	1	1	0	1	0	1	1

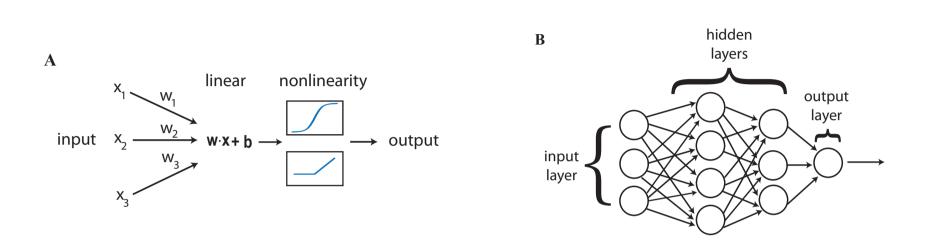
Given some examples, can we learn the rest of the function?

A function maps all possible answers to outputs.

n questions; 2^n possible answers; 2^{2^n} possible Boolean functions

For n=7 $2^7 = 128$ answers; $2^{128} = 3.4 \times 10^{38}$ possible functions

Parameter-function map



Let the space of functions that the model can express be \mathcal{F} . If the model has p real valued parameters, taking values within a set $\Theta \subseteq \mathbb{R}^p$, **the parameter-function map**, \mathcal{M} , is defined as:

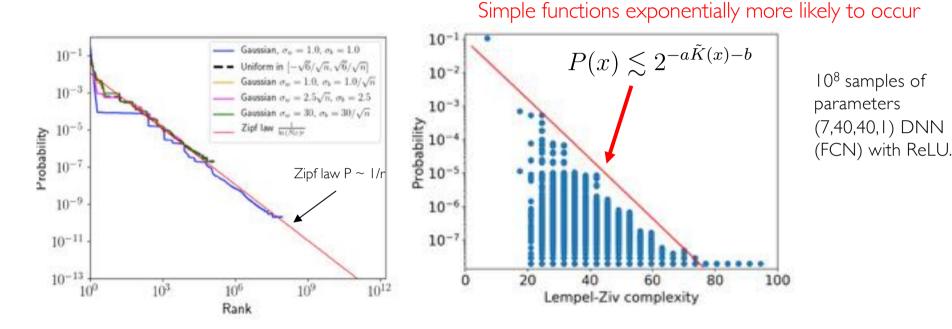
$$\mathcal{M}:\Theta
ightarrow\mathcal{F}\ heta
ightarrow f_ heta$$

where f_{θ} is the function implemented by the model with choice of parameter vector θ .

G.Valle-Perez, C. Camargo and A.A. Louis, arxiv: 1805.08522 – ICLR 2019

Simplicity bias in the parameter-function map

Prior P(f): upon randomly sampling parameters, how likely to find Boolean function f?



Boolean functions for n=7. $2^7 = 128$ possible answers & $2^{128} \simeq 3.4 \times 10^{38}$ possible functions.

"Entropy" of simpler functions is larger than that of complex functions.

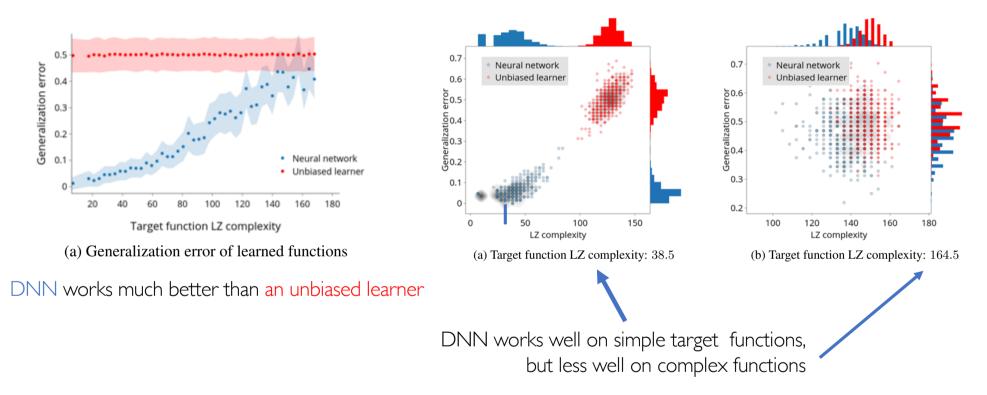
Boolean system is a key simplified model, akin to the Ising model is in physics.

Guillermo Valle Perez

G. Valle Perez, C. Camargo and A.A. Louis, arxiv: 1805.08522 – ICLR 2019

Simplicity bias aids generalisation (Occam)

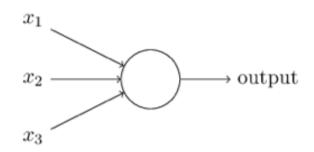
Supervised learning: 1) Pick a target function; 2) Train with SGD to zero training error on half the inputs; 3) Measure the error for the other half of inputs.



DNNs have an inbuilt "Occam's razor" – they work well on structured data.

Proving simplicity bias in the parameter-function map

P(f): If we randomly sample parameters θ , how likely are we to produce a particular function f?



Chris Mingard

Theorem 4.1. For a perceptron f_{θ} with b = 0 and weights w sampled from a distribution which is symmetric under reflections along the coordinate axes, the probability measure $P(\theta : \mathcal{T}(f_{\theta}) = t)$ is given by

 $P(\theta: \mathcal{T}(f_{\theta}) = t) = \begin{cases} 2^{-n} & \text{if } 0 \le t < 2^{n} \\ 0 & \text{otherwise} \end{cases}.$

We can also prove theorems that bias towards simple function gets stronger with more layers!

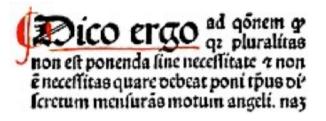
Neural networks are a priori biased towards Boolean functions with low entropy, Chris Mingard, Joar Skalse, Guillermo Valle-Pérez, David Martínez-Rubio, Vladimir Mikulik, Ard A. Louis arxiv: 1909.11522

Ockham's Razor and DNNs

Entities are not to be multiplied without necessity"

Ockham, according John Punch's 1639 commentary on Duns Scotus.

What Ockham actually said:



Pluralitas non est ponenda sine necessitate'' "Plurality is not to be posited without necessity"

William of Ockham 1287-1347

Modern approaches (the rabbit hole is deep ...)

-possibly at Merton?

Bayes (e.g. David MacKay "Information Theory, Inference, and Learning Algorithms", ch 28)

AIT (e.g. Solomonoff, Hutter etc.. (AIT), but see Tom Sterkenberg for a critique)

Philosophers disagree \dots Aristotle \rightarrow Elliot Sober

Is this simplicity bias more universal ?

Why do DNNs exhibit an inbuilt Occam's razor?

(why the simplicity bias?)

MONKEY INTUITION: What is the probability that a monkey types out M digits of π on an N key typewriter ?

 $P(X) = (1/N)^{(M+1)}$

3.14159265358979323846264338327950288419716939 937510582097494459230781640628620899862803482 534211706798214808651328230664709384460955058 223172535940812848111745028410270193852110555 964462294895493038196442

But what if the monkey types into C ?

 $P(M) \lesssim (1/N)^{133}$

133 character (obfuscated) C code to calculate first 15,000 digits of π

```
 \begin{array}{l} \texttt{a[52514],b,c=52514,d,e,f=1e4,g,h;} \\ \texttt{main()}\{\texttt{for(;b=c-=14;h=printf("\$04d", e+d/f))} \\ \texttt{for(e=d\$=f;g=--b*2;d/=g)d=d*b+f*(h?a[b]:f/5),a[b]=d\$--g;} \end{array} \\ \pi = \sum_{i=0}^{\infty} \frac{(i!)^2 2^{i+1}}{(2i+1)!} \\ \end{array}
```

C program due to Dik Winter and Achim Flammenkamp (See Unbounded Spigot Algorithms for the Digits of Pi, by Jeremy Gibbons (Oxford CS), Math. Monthly, April 2006, pages 318-328.)

Formalising the Monkey Intuition AIT: Kolmogorov Complexity

AIT = Algorithmic Information Theory

A.N. Kolgomorov G.J 1903-1987 194

G.J. Chaitin 1947--

Kolmogorov/Chaitin complexity K(X) is the length in bits of the shortest program on a UTM that generates X

K is universal, (not UTM dependent) because you can always write a compiler => O(1) terms.

$$K_U(X) = K_W(X) + O(I) \approx K(X)$$
 asymptotically

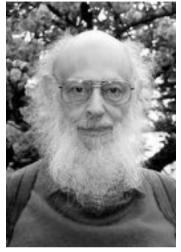
K is not computable due to Halting problem.

new intuitions

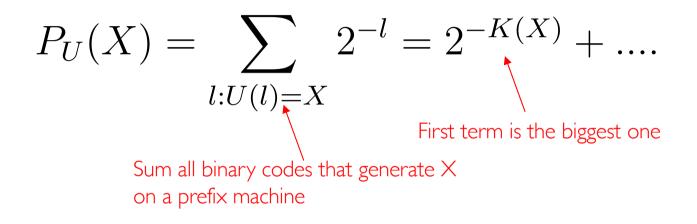
- -- A random number is one for which $K(X) \gtrsim |X|$
- -- The complexity of a set can be << than complexity of elements of the set

Formalising the Monkey Intuition using AIT: Algorithmic Probability

Algorithmic Probability P(x) = probability a random program on a (prefix) UTM generates x



R. Solomonoff 1926-2009



Intuitively: simpler (small K(X)) outputs are much more likely to appear

It seems to me that the most important discovery since Gödel was the discovery by Chaitin, Solomonoff and Kolmogorov of the concept called Algorithmic Probability,. Everybody should learn all about that and spend the rest of their lives working on it. Marvin Minsky (2014)

https://www.youtube.com/watch?v=DfY-DRsE86s&feature=youtu.be&t=1h30m02s

Formalising the Monkey Intuition using AIT: Levin's Coding Theorem

L. Levin. 1948 --

We should teach this much more widely!

 $2^{-K(x)} < P(x) < 2^{-K(x) + O(1)}$

Intuitively: simpler (small K(X)) outputs are much more likely to appear

Serious problems for applying coding theorem

- 1) Many systems of interest are not Universal Turing Machines
- 2) Kolmogorov complexity K(x) is formally incomputable
- 3) Only holds in in the asymptotic limit of large x...

L. A. Levin. Laws of information conservation (non-growth) and aspects of the foundation of probability theory. Problems of Information Transmission, 10:206–210, 1974.

Proof sketch:

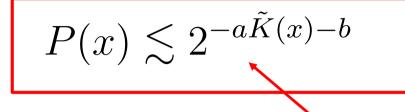
- 1) For simple maps **f**, with input size **n** we can calculate the whole set of input \rightarrow output pairs at O(1) cost (complexity of a set << elements of set)
- 2) Encode this with a Shannon-Fano-Elias (SFE) code for which $P(x) \sim \frac{1}{2}$ length
- 3) This procedure gives a bound on the Kolmogorov complexity, given f and n: K(x|f,n)

$$\begin{split} K(x|f,n) &\leq l(E(x)) + O(1) \\ &= \log_2\left(\frac{1}{P(x)}\right) + O(1) \\ &\Rightarrow P(x) \leq 2^{-K(x|f,n) + O(1)} &\longleftarrow \text{ NOTE: upper bound only!} \end{split}$$

K. Dingle, C. Camargo and A.AL, Nature Communications 9,761 (2018)

Simplicity bias for computable input-output maps

(2 Dphils of work)

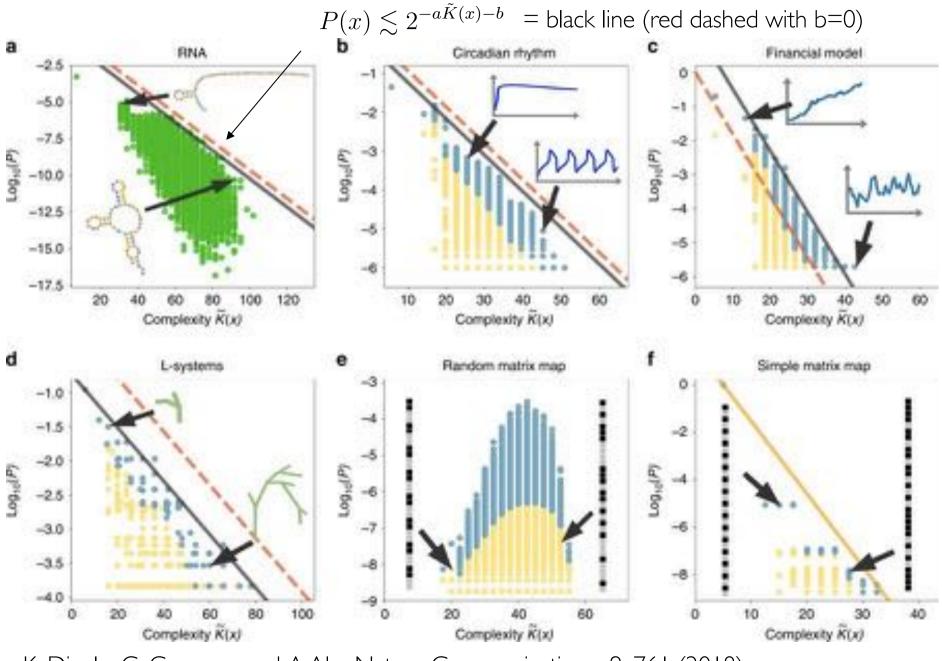


NOTE: upper bound only!

Chico Camargo

- 1) Computable input-output map f: $I \rightarrow O$
- 2) Map f must be simple e.g. K(f) grows slowly with system size then $K(x|f,n) \approx K(x) + O(1)$
- 3) K(x) is approximated, for example by Lempel Ziv compression or some other suitable measure.
- 4) Bound is tight for most inputs, but not most outputs.
- 5) Maps must be a) simple, b) redundant, c) non-linear, d) well-behaved (e.g. not a pseudorandom number generator) many maps satisfy these conditions.
- 6) There is also a statistical lower bound.

Simpliciy bias works in many different maps

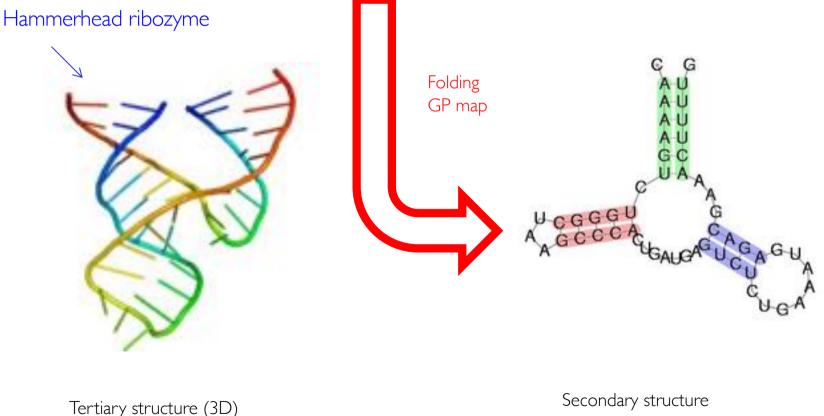


K. Dingle, C. Camargo and A.AL, Nature Communications 9, 761 (2018)

Evolution has an inbuilt Occam's razor

Mapping from RNA sequences to RNA structures

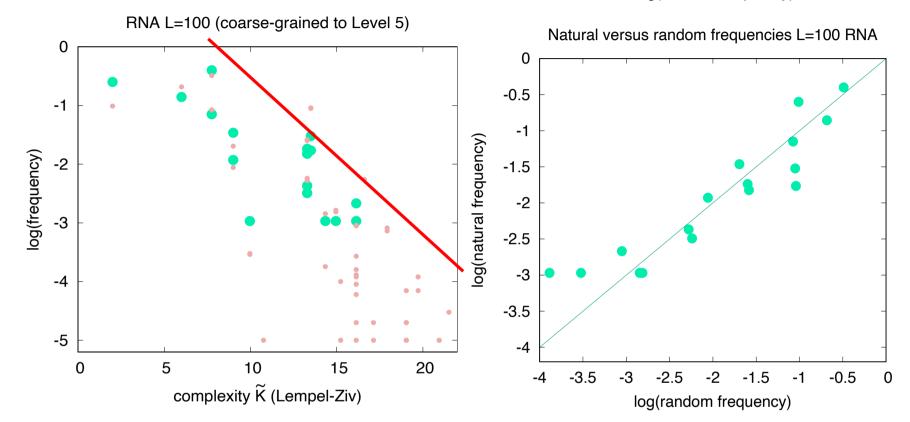
GAAAGUCUGGGCUAAGCCACUGAUGGUGUCUGAAAUGAGAGGAAAACUUUUG



(who bonds to whom)

Evolution has an inbuilt Occam's razor

log(random frequency)



-3.5

932 non-coding functional RNA of length 100 found in nature (from fRNAdb bioinformatic database)

K Dingle, F. Ghaddar, P. Sulc and AA Louis, bioarxiv /2020.12.03.410605

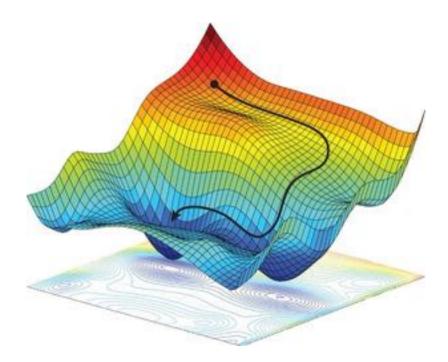
Simpliciy bias is found in DNNs



Simplicity bias for a CNN on CIFAR10

(a) Probability (using GP approximation) versus critical sample ratio (CSR) of labelings of 1000 random CIFAR10 inputs, produced by 250 random samples of parameters. The network is a 4 layer CNN.

G. Valle Perez, C. Camargo and A.A. Louis, arxiv: 1805.08522 – ICLR 2019

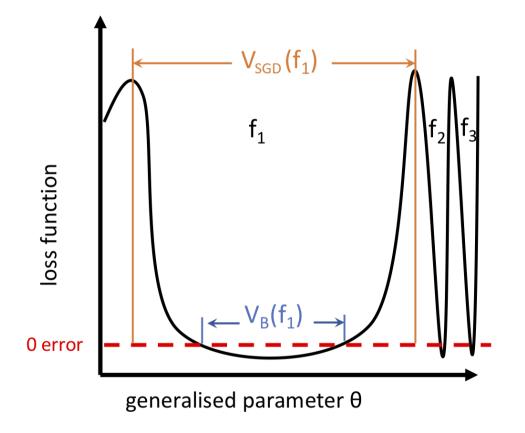


DNNs are trained using Stochastic gradient descent (SGD) on a loss function.

Dominant hypothesis in the field is that SGD has special properties that enhance generalization

Problem: why should parameter function map predict outcomes?

Intuition: for very strong bias: Basin of attraction \sim Basin size (P(f))



Similar effect in evolutionary theory under strong bias:

The arrival of the frequent: how bias in genotype-phenotype maps can steer populations to local optima

Steffen Schaper and Ard A. Louis, PLoS ONE 9 (2): e86635 (2014)

Is SGD a Bayesian sampler? Well, almost, Chris Mingard, Guillermo Valle-Pérez, Joar Skalse, Ard A. Louis, Journal of Machine Learning Research 22 (79), 1-64 (2021)

A function based picture

Definition 2.2 (Representation of Functions). Consider a DNN \mathcal{N} , a training set $S = \{(x_i, y_i)\}_{i=1}^m$ and test set $E = \{(x'_i, y'_i)\}_{i=1}^{|E|}$. We *represent* the function $f(\mathbf{w})$ with parameters \mathbf{w} associated with \mathcal{N} as a string of length (|S| + |E|), where the values are the labels \hat{y}_i and \hat{y}' that \mathcal{N} produces on the concatenation of training inputs and testing inputs.

Example on 5 MNIST inputs:

 $\begin{array}{l} f(w) = (5,0,4,1,9) \ (0 \ errors) \\ f(w) = (5,0,4,7,9) \ (1 \ error) \end{array}$

Bayesian function picture for supervised learning on S

Posterior for functions conditioned on training set S follows from Bayes rule

$$P(f|S) = \frac{P(S|f)P(f)}{P(S)},$$

Prior over functions P(f)

If we wish to infer (i.e. no noise) at some points, then we need a 0-1 likelihood on training data $S = \{(x_i, y_i)\}_{i=1}^{m}$

$$P(S|f) = \begin{cases} 1 \text{ if } \forall i, \ f(x_i) = y_i \\ 0 \text{ otherwise }. \end{cases}$$

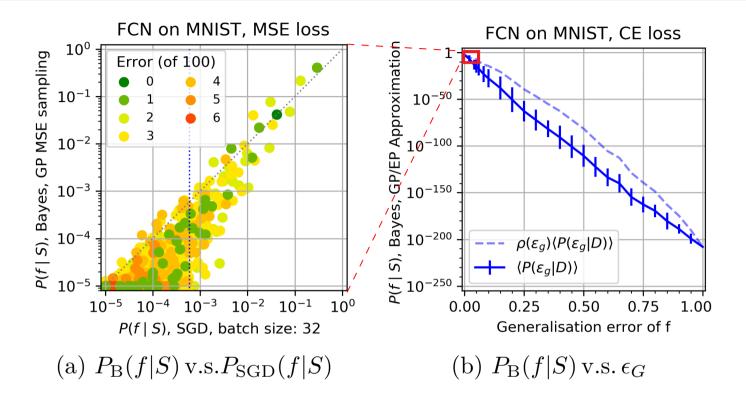
P(S) = marginal likelihood or evidence

Functions that fit S

$$P(S) = \sum_{f} P(S|f) P(f) = \sum_{f \in C(S)} P(f)$$

P(f|S) = P(f)/P(S) or 0, so bias in prior translates over to bias in posterior <u>Is SGD a Bayesian sampler? Well, almost, Chris Mingard, Guillermo Valle-Pérez, Joar Skalse, Ard A. Louis, Journal of Machine Learning Research 22 (79), 1-64 (2021)</u>

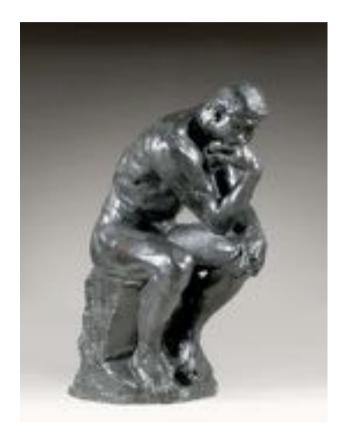
SGD acts like a Bayesian optimiser



FCN on binarized MNIST – training set=10,000, test set=100 images $2^{100} = 10^{30}$ possible functions fit the test set.

We use Gaussian Processes (GP)s to calculate $P_B(f|S)$ –

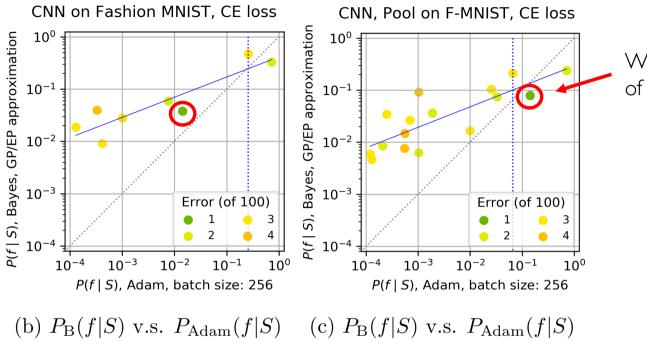
Two kinds of questions about generalisation:



 Why do DNNs generalise at all in the overparameterised regime?
 Because the parameter-function map is highly biased towards simple solutions.

2) Given DNNs that generalise, can we further fine-tune the hyperparameters to improve generalisation? (engineers).

2nd order effects beyond simplicity bias: changing the network

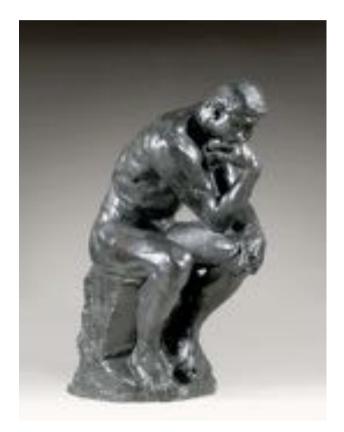


With max-pooling probability of low error function increases

CNN on binarized Fashion-MNIST – training set=10,000, test set=100 images $2^{100} = 10^{30}$ possible functions fit the test set.

Similar results for CNN, LSTM, other data sets, etc....

Can we do any control experiments?



I)Can we break the simplicity bias?

DNNs can exhibit an order-to-chaos transition

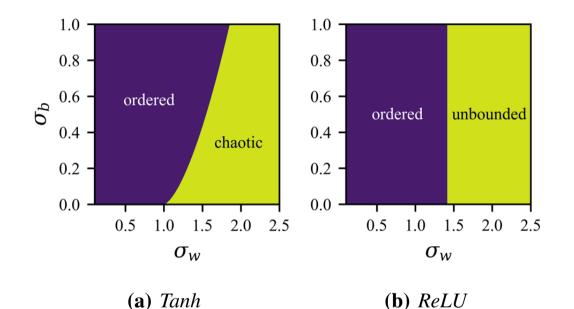


Figure 3: Mean field phase diagrams for tanh and ReLU activation functions showing various phase regimes as a function of σ_w and σ_b .

Chaotic regime for some activation functions (not ReLU!) – for wider initial parameters

Deep Information Propogation, S. S. Schoenholz et al. arXiv:1611.01232

Chaotic regime reduces bias in prior P(f)

J. Empirical probability versus LZ complexity plots

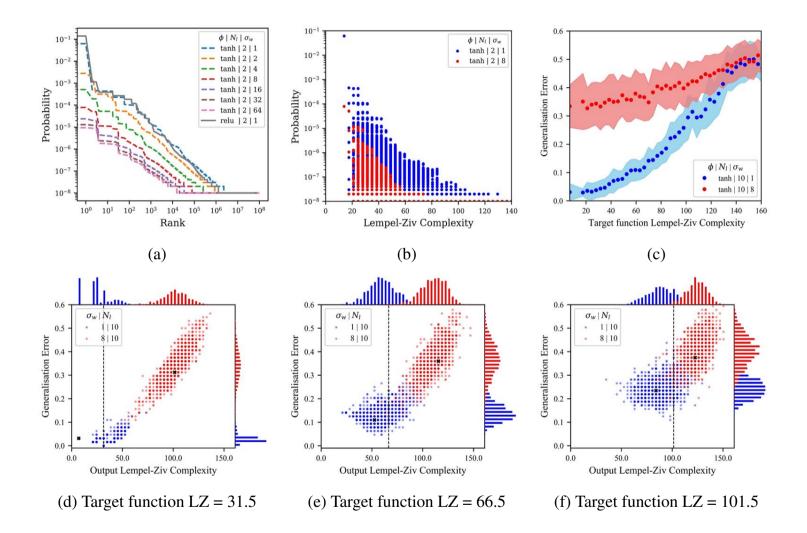
FCN on Boolean system

5 Layers 10 Layers 2 Layers 1.0 141 187 0..... 1.0 141 140 1.45 1.87 147 1.0 1 187 1.00 o....8 187 1.00 1.04 1134 50 100 158 14 1.004 Lempel-Ziv Complexity Lempel-Ziv Complexity Lempel-Ziv Complexity More biased

Figure 17: Empirical probability of individual functions versus their LZ complexity for networks initialised with various σ_w and numbers of layers. Despite suffering from finite-size effects, points with a probability of 10^{-8} are not removed since in plots ($\sigma_w = 4, d = 10$) and ($\sigma_w = 8, d = 10$) only points of this type are found. Details are the same as Figure 6.

Less biased No Occam

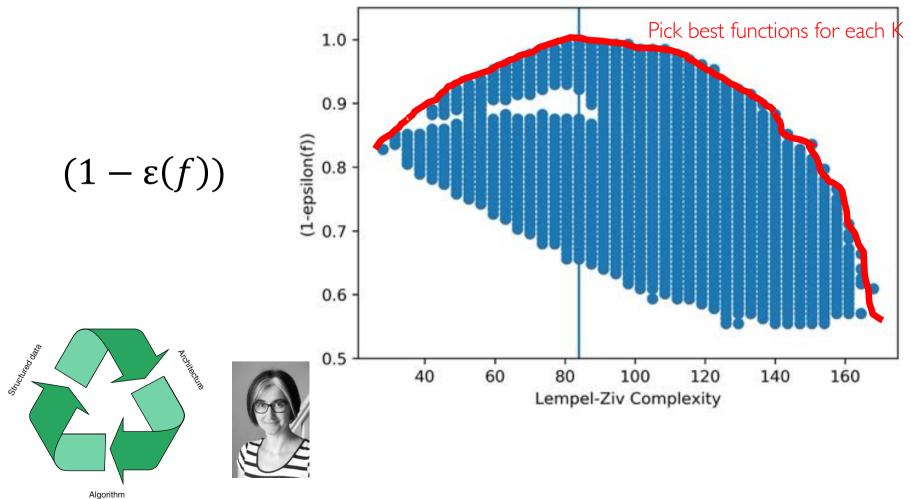
Chaotic regime changes the bias in prior P(f)



Greg Yang and Hadi Salman. A fine-grained spectral perspective on neural networks. arXiv preprint arXiv:1907.10599, 2019.

Bayesian picture and the data

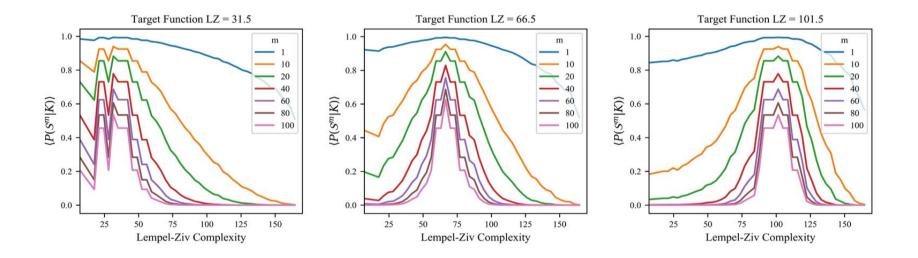
$$\langle P(f|\mathcal{S}) \rangle_S = P(f) \left\langle \frac{P(\mathcal{S}_i|f)}{P(\mathcal{S}_i)} \right\rangle_{\mathcal{S}_i} \approx \frac{P(f) \left(1 - \epsilon(f)\right)^m}{\langle P(\mathcal{S}) \rangle} =$$



Lenka Zdeborová. Nature Physics 16, 602 (2020)

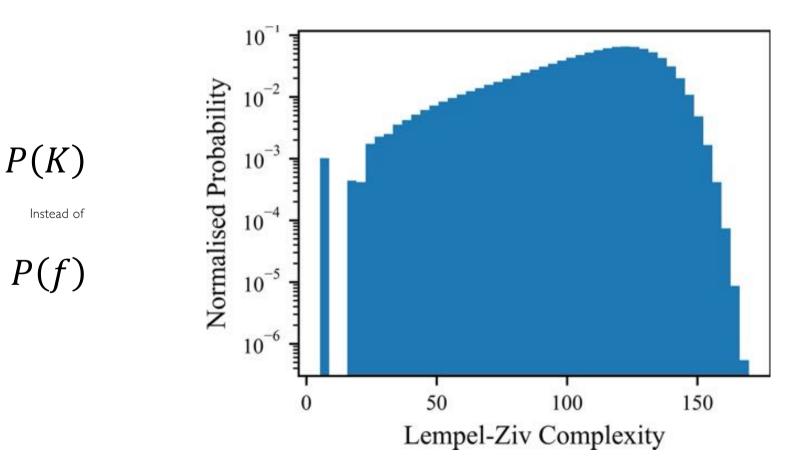
Bayesian picture and data

$$\langle P(f|\mathcal{S})\rangle_S = P(f)\left\langle \frac{P(\mathcal{S}_i|f)}{P(\mathcal{S}_i)}\right\rangle_{\mathcal{S}_i} \approx \frac{P(f)\left(1-\epsilon(f)\right)^m}{\langle P(\mathcal{S})\rangle} =$$

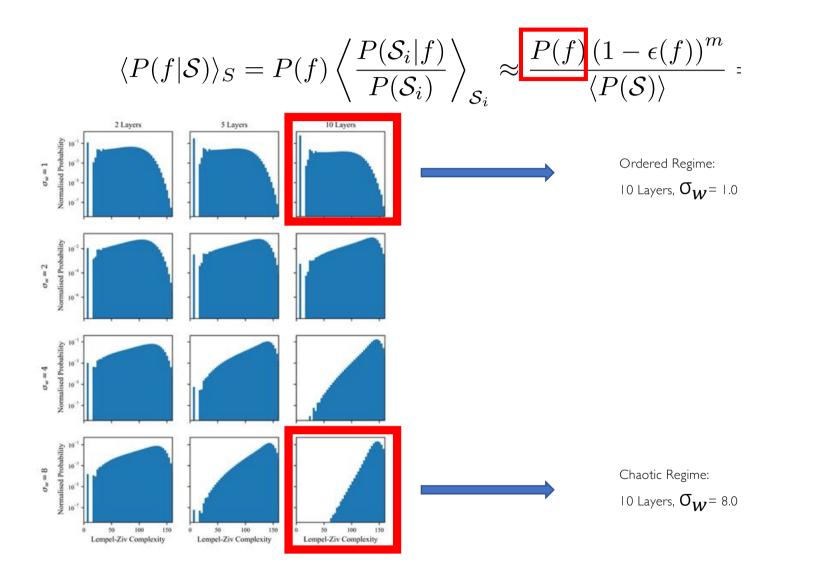


Bayesian picture and prior P(K)

$$\langle P(f|\mathcal{S}) \rangle_S = P(f) \left\langle \frac{P(\mathcal{S}_i|f)}{P(\mathcal{S}_i)} \right\rangle_{\mathcal{S}_i} \approx \frac{P(f) \left(1 - \epsilon(f)\right)^m}{\langle P(\mathcal{S}) \rangle} =$$

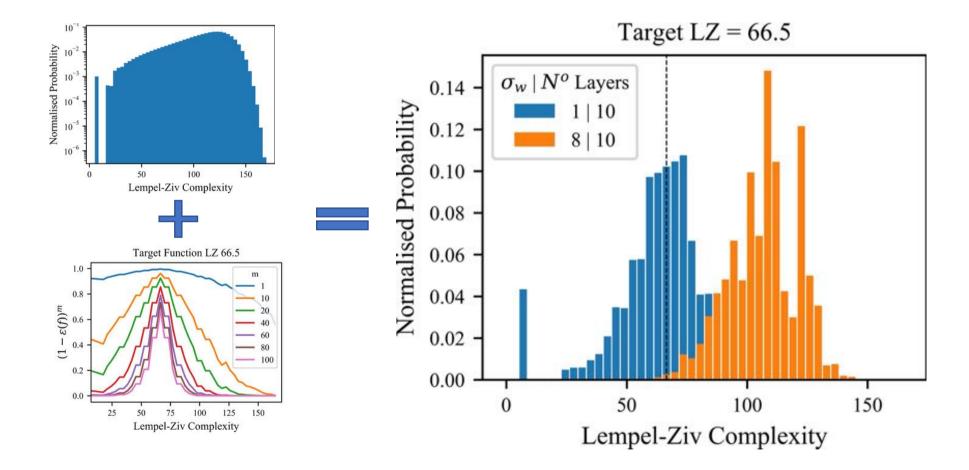


Bayesian picture and prior P(K)

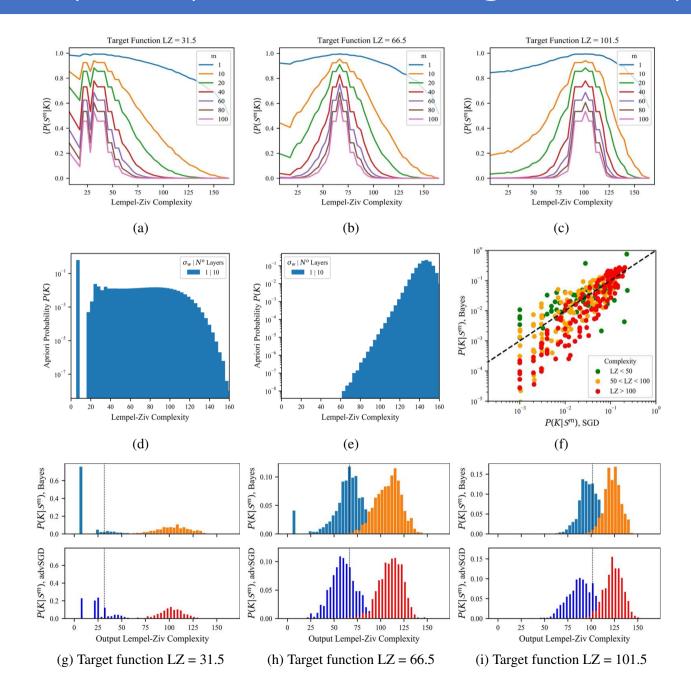


Bayesian picture: combining data and prior

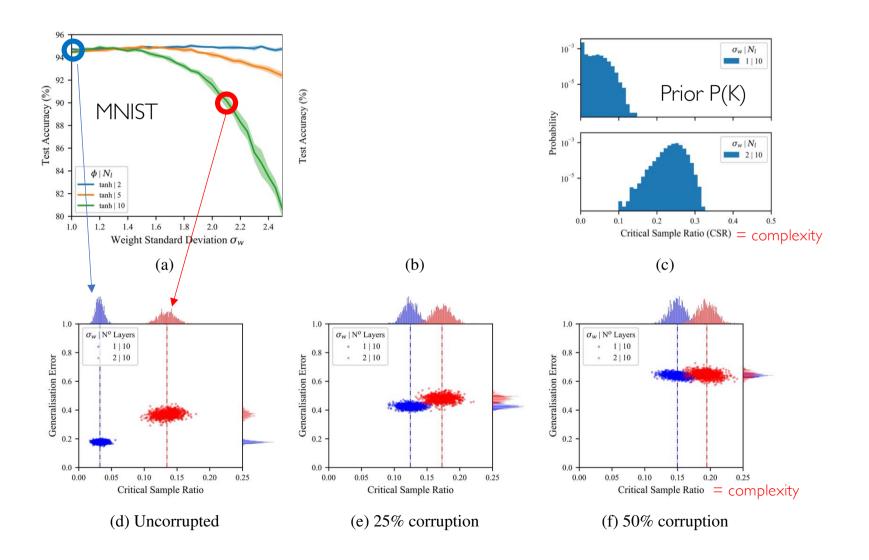
$$\langle P(f|S) \rangle_S = P(f) \left\langle \frac{P(S_i|f)}{P(S_i)} \right\rangle_{S_i} \approx \frac{P(f) \left(1 - \epsilon(f)\right)^m}{\langle P(S) \rangle} \propto P(K) (1 - \epsilon(f))^m$$



Bayesian picture combining data and prior



Bayesian picture: prior and data for MNIST/CIFAR-10



Summary: Bayesian picture: prior and data

Average posterior over training sets

0.2

0.0

25

50

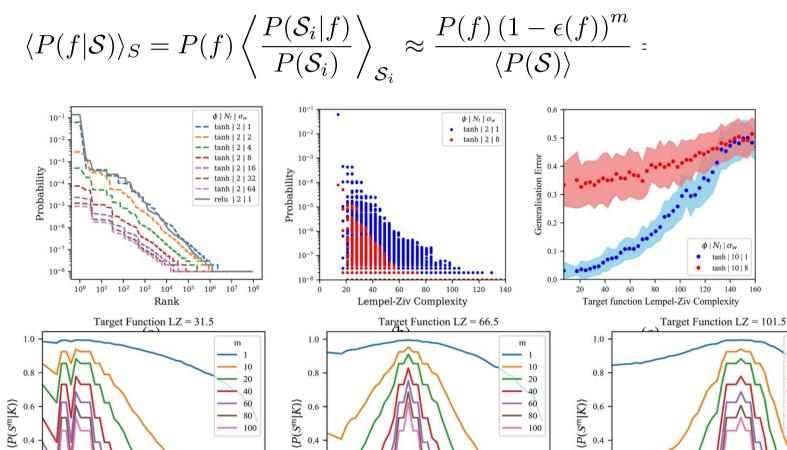
75

100

Lempel-Ziv Complexity

125

150



75

100

Lempel-Ziv Complexity

125

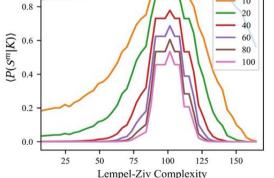
150

0.2

0.0

25

50



Function based picture and generalisation bounds

Big literature on bounds –

Concepts such as PAC learning, VC dimension, Rademacher complexity etc....

$$\forall \mathcal{D}, \ \mathbf{P}_{S \sim \mathcal{D}^m} \left[\sup_{h \in \mathcal{H}} |\epsilon(h) - \hat{\epsilon}(h)| \le C \sqrt{\frac{\operatorname{VC}(\mathcal{H}) + \ln \frac{1}{\delta}}{m}} \right] \ge 1 - \delta$$

Big review paper on generalization bounds, includes 7 desiderata bounds should satisfy and a classification Generalization bounds for deep learning Guillermo Valle-Pérez and AAL, arxiv:arXiv:2012.04115

Function based picture and generalisation bounds

	Algorithm-independent (section 4.1)		Algorithm-dependent (section 4.2)	
	Based on uniform convergence		on-uniform rgence	Other
Data- independent	VC dimension bound [*] (section 4.1.1)	SRM-based bounds ^{\dagger} (section 4.2.1.1)	-	uniform stability bounds [‡] and compression bounds [§] (section 4.3.1)
Data-dependent	Rademacher complexity bound¶ (section 4.1.2)	data-dependent SRM-based bounds ^{**} (section 4.2.1.1)	margin bounds ^{††} (4.2.1.2), sensitivity-based bounds ^{‡‡} (section 4.2.1.4), NTK-based bounds ^{§§} (section 4.2.1.3), other PAC-Bayes bounds ^{¶¶} (section 4.2.2)	non-uniform stability bounds ^{***} (section 4.3.1), marginal-likelihood PAC-Bayes bound ^{†††} (section 5)

Guillermo Valle Perez

Table 1: Classification of the main types of generalization bounds treated in this paper. Roughly speaking, the number of assumptions grows going from left to right, and from top to bottom. Note that, as we discussed in section 3.3.4, algorithm dependent bounds based on non-uniform convergence are automatically data-dependent, which is why there is an empty cell. *Vapnik and Chervonenkis (1974); Blumer et al. (1989); Harvey et al. (2017) *Vapnik (1995); McAllester (1998) *Bousquet and Elisseeff (2002); Hardt et al. (2016); Mou et al. (2018)

- ⁸Littlestone and Warmuth (1986); Brutzkus et al. (2018)
- [¶]Bartlett and Mendelson (2002)
- **Shawe-Taylor et al. (1998); Shawe-Taylor and Williamson (1997)
- †† Bartlett (1997, 1998); Bartlett et al. (2017); Neyshabur et al. (2018a); Golowich et al. (2018);
- Neyshabur et al. (2018b); Barron and Klusowski (2019)
- ^{‡‡}Neyshabur et al. (2017); Dziugaite and Roy (2017); Arora et al. (2018); Banerjee et al. (2020)
- \$\$ Arora et al. (2019); Cao and Gu (2019)
- ^{¶¶}Zhou et al. (2018); Dziugaite and Roy (2018)
- **** Kuzborskij and Lampert (2017)
- $^{\dagger\,\dagger\,}{}^{\dagger}$ Valle-Pérez et al. (2018)

Big review paper on generalization bounds, includes 7 desiderata bounds should satisfy and a classification Generalization bounds for deep learning Guillermo Valle-Pérez and AAL, arxiv:arXiv:2012.04115

Function based picture and PAC-Bayes bounds

PAC-Bayes bound

$$\forall \mathcal{D}, \ \mathbf{P}_{S \sim \mathcal{D}^m} \left[\forall Q \ KL(\mathbf{E}_{h \sim Q}[\epsilon(h)], \mathbf{E}_{h \sim Q}[\hat{\epsilon}(h)]) \le \frac{KL(Q||P) + \ln\frac{1}{\delta} + \ln(2m)}{m-1} \right] \ge 1 - \delta$$
(13)

where KL(Q||P) is the KL-divergence between Q and P. On the left hand side we use the standard abuse of notation to define $KL(a, b) \equiv a \ln (a/b) + (1-a) \ln ((1-a)/(1-b))$, for $a, b \in [0, 1]$.

David McAllester COLT (1998)

We prove that function based will (in principle) always be better than parameter based PAC-Bayes bounds

$$KL(Q||P) \le KL(Q_{\text{par}}||P_{\text{par}})$$

Function based picture and PAC-Bayes bounds

Guillermo Valle Perez

Theorem 5.1. (marginal-likelihood PAC-Bayes bound)

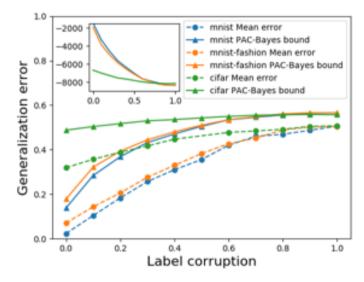
For any distribution P on any hypothesis space \mathcal{H} and any realizable distribution \mathcal{D} on a space of instances we have, for $0 < \delta \leq 1$, and $0 < \gamma \leq 1$, that with probability at least $1 - \delta$ over the choice of sample S of m instances, that with probability at least $1 - \gamma$ over the choice of h:

$$-\ln\left(1-\epsilon(h)\right) < \frac{\ln\frac{1}{P(C(S))} + \ln m + \ln\frac{1}{\delta} + \ln\frac{1}{\gamma}}{m-1}$$

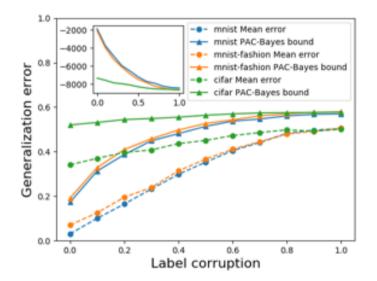
where h is chosen according to the posterior distribution $Q(h) = \frac{P(h)}{\sum_{h \in C(S)} P(h)}$, C(S) is the set of hypotheses in \mathcal{H} consistent with the sample S, and where $P(C(S)) = \sum_{h \in C(S)} P(h)$

Marginal-likelihood = sum over functions (hypotheses) h

Tight PAC-Bayes bounds: error with complexity



(a) for a 4 hidden layers convolutional network



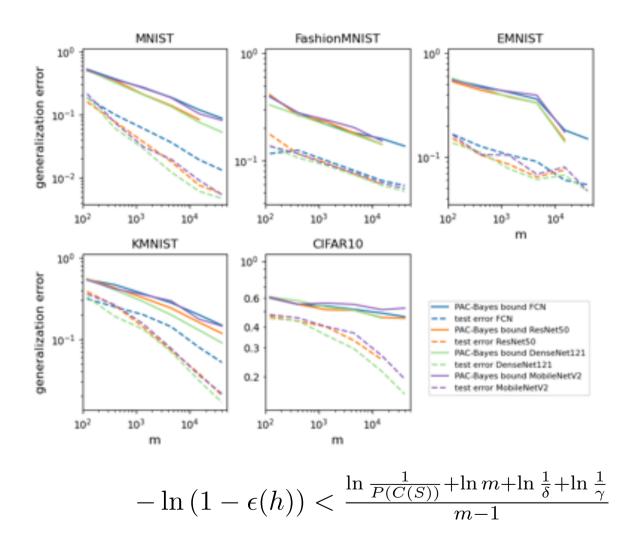
(b) for a 1 hidden layer fully connected network

Marginal-likelihood PAC-Bayes bound

$$-\ln\left(1-\epsilon(h)\right) < \frac{\ln\frac{1}{P(C(S))} + \ln m + \ln\frac{1}{\delta} + \ln\frac{1}{\gamma}}{m-1}$$

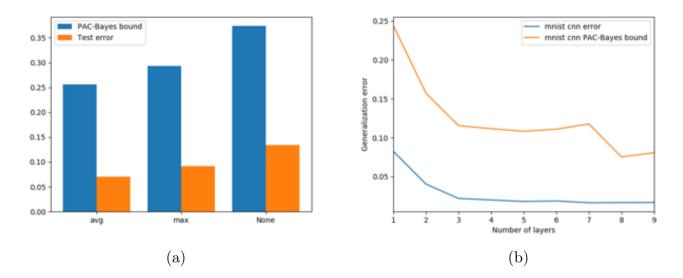
Guillermo Valle Perez

Tight PAC-Bayes bounds: learning curves with m



Guillermo Valle Perez

Tight PAC-Bayes bounds: comparing architectures



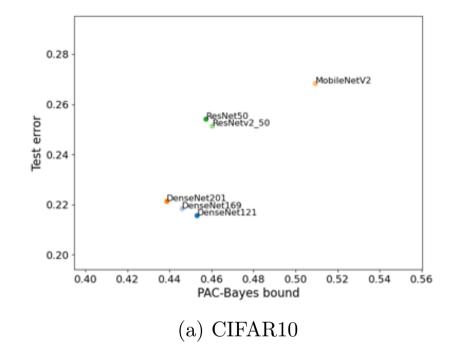
Guillermo Valle Perez

Figure 6: **PAC-Bayes bound and generalization error versus different architecture hyperparameters**. (a) Error versus pooling type, for a CNN trained on a sample of 1k images from KMNIST. (b) Error versus number of layers for a CNN trained on a sample of size 10k from MNIST. Training set error is 0 in all experiments. We used SGD with batch 32 for both of these experiments.

Marginal-likelihood bound

$$-\ln\left(1-\epsilon(h)\right) < \frac{\ln\frac{1}{P(C(S))} + \ln m + \ln\frac{1}{\delta} + \ln\frac{1}{\gamma}}{m-1}$$

Tight PAC-Bayes bounds: comparing architectures



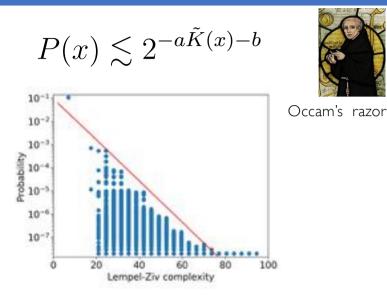
Guillermo Valle Perez

Error at m=15,000 training set for some SOTA networks

Marginal-likelihood bound

$$-\ln\left(1-\epsilon(h)\right) < \frac{\ln\frac{1}{P(C(S))} + \ln m + \ln\frac{1}{\delta} + \ln\frac{1}{\gamma}}{m-1}$$

Thanks!



Conclusions:

 DNNs generalize because they have an implicit bias towards simple functions, as predicted by AIT
 SGD acts as a Bayesian optimizer, it is not the source of the good generalization performance
 Many common intuitions from learning theory, such as bias-variance tradeoff etc... don't work for DNNs, but:
 Our marginal-likelihood PAC-Bayes bound performs well

