
Deep neural networks have
an inbuilt Occam’s razor

Ard Louis

Drawing an elephant with four complex parameters
Jürgen Mayer; Khaled Khairy; Jonathon Howard; American Journal of Physics 78, 648-649 (2010)

Physicists are taught: more parameters than data points is bad
F. Dyson, A meeting with Enrico Fermi, Nature. 427, 287 (2004)

Enrico Fermi
1901-1954

With four parameters I can fit an
elephant, and with five I can make
him wiggle his trunk
-- John von Neuman (according
to Fermi)

John von Neumann
1903-1957

5 parameters

4 parameters

Freeman Dyson
1923-2020

Deep neural networks (DNNs) are heavily overparameterized

CENTRAL THEORETICAL CONUNDRUM of DNNs: Why do they generalise so well?

1) DNNs are used in the over-parameterised regime with many more parameters than data points.
2) DNNs are highly expressive (there is a universal approximation theorem (Cybenko, Hornik etc..)
3) Classical learning theory, based on model capacity, predicts poor generalisation. (bias-variance tradeoff)

polynomial fit : y(x) = a0 + a1x + a2x2 + a3x3 + … anxn

compared to

simple DNNs (FCN with layer width of 1000 units)

Deep learning and Physics

602

comment

Understanding deep learning is also a job for
physicists
Automated learning from data by means of deep neural networks is finding use in an ever-increasing number of
applications, yet key theoretical questions about how it works remain unanswered. A physics-based approach may
help to bridge this gap.

Lenka Zdeborová

Imagine an event for which thousands of
tickets get sold out in under 12 minutes.
We are not speaking of a leading show

on Broadway or a concert of a rockstar, but
about the Conference on Neural Information
Processing Systems (NeurIPS) — the
principal gathering for research in machine
learning and artificial intelligence. The
fields related to automated learning from
data are experiencing a surge in research
activity, as well as in investment. This is
largely thanks to developments in a subfield
called deep learning, which has led to a
myriad of successes in many applications1,2.
Research in physics is no exception to this
claim, and indeed in the recent years we
have seen numerous applications of machine
learning to various physics problems3,4,
and even more predictions regarding
which physics problems we will be able to
solve with machine learning in the near
future. Some even wonder whether future
machine-learning systems will be able to
collect suitable data and infer the laws of
nature from them entirely automatically.

All this activity and progress naturally
comes with many open questions — not
least that deep neural networks are often
described as black boxes: hard to interpret
and without a solid understanding of
when they provide satisfactory answers
and when they do not. When applying
machine learning to problems in physics
(and other areas) researchers often wonder:
What is the best way to take into account
the corresponding domain knowledge,
constraints and symmetries? How do we
adapt the existing machine-learning tools
to new problems, and how to interpret
their results in a scientific manner? How do
we reliably quantify the uncertainties and
errors stemming from the fact that training
and testing data may not come from the
same source?

One might argue that researchers in
mathematics, computer science, statistics
and other related fields are working hard
to answer such questions, and so for us

physicists it is a matter of sitting tight
waiting for tools and answers that we can
subsequently put to use. In this Comment, I
argue that, instead, we need to join the race
of searching for these answers, because it
is precisely the physicists’ perspective and
approach that is needed to enable progress
in this endeavour.

Three ingredients to decipher deep
learning
The engineering details of current
deep-learning systems, such as the ones
deployed by Google to translate languages5,
can be dauntingly complicated. Yet the basic
principle of how learning with deep neural
networks works is, in fact, pleasantly simple.

A basic example of a task in machine
learning is supervised learning, where the
machine learns to associate the correct
outputs to input data, based on a database
of examples of input–output pairs. Deep
learning then uses multi-layer neural
networks in which the input data are fed
into the first layer, its output then fed as
input into the next layer, and so on. Each
layer is a multiplication of the input by a
matrix of so-called weights, followed by a
component-wise non-linear function. This
is repeated a number of times corresponding
to the number of layers.

For problems with binary output data
(for example, 1 for a picture of a dog and
−1 for a picture of a cat), the last layer then
aims to find a hyperplane separating these
output labels. This described structure
is called a feed-forward fully connected
neural network and is mathematically seen
as a function of the input data outputting
the labels and being parameterized by the
matrices of weights. The weights are then
adjusted using a simple gradient descent
of a so-called loss function that quantifies
the amount of mismatch between the
current and desired outputs. Finally, the
performance is evaluated against a so-called
test dataset that was not seen during the
training. Interestingly, the basic design

principles of multi-layer neural networks
have been known since the early days of
research on artificial neural networks6.
Arguably, the unprecedented engineering
progress of the last two decades is largely
due to better and larger training datasets
and faster computing, such as highly
parallelizable GPU processors, rather than
due to fundamental improvements in
the network architectures or the training
algorithms themselves.

In 1995, the influential statistician Leo
Breiman summarized three main open
problems in machine learning theory7:
“Why don’t heavily parameterized neural
networks overfit the data? What is the
effective number of parameters? Why
doesn’t back-propagation — the term used
for the gradient-descent-based algorithm
used to train the state-of-the-art neural
networks — get stuck in poor local minima
with low value of the loss function, yet bad
test error?” While Breiman formulated these
questions 25 years ago, they are still open
today and subject to most of the ongoing
works in the learning-theory community,

Architecture

St
ru

ct
ur

ed
 d

at
a

Algorithm

Fig. 1 | Interplay of key ingredients. Building
theory of deep learning requires an understanding
of the intrinsic interplay between the architecture
of the neural network, the behaviour of the
algorithm used for learning and the structure in
the data.

NATURE PHYSICS | VOL 16 | JUNE 2020 | 602–604 | www.nature.com/naturephysics

To understand deep learning, the machine-learning community
needs to fill the gap between the mathematically rigorous
works and the end-product-driven engineering progress, all
while keeping the scientific rigour intact. And this is where the
physics approach and experience comes in handy. The virtue of
physics research is that it strives to design and perform refined
experiments that reveal unexpected (yet reproducible)
behaviour, yet has a framework to critically re-examine and
improve theories explaining the empirically observed behaviour.

602

comment

Understanding deep learning is also a job for
physicists
Automated learning from data by means of deep neural networks is finding use in an ever-increasing number of
applications, yet key theoretical questions about how it works remain unanswered. A physics-based approach may
help to bridge this gap.

Lenka Zdeborová

Imagine an event for which thousands of
tickets get sold out in under 12 minutes.
We are not speaking of a leading show

on Broadway or a concert of a rockstar, but
about the Conference on Neural Information
Processing Systems (NeurIPS) — the
principal gathering for research in machine
learning and artificial intelligence. The
fields related to automated learning from
data are experiencing a surge in research
activity, as well as in investment. This is
largely thanks to developments in a subfield
called deep learning, which has led to a
myriad of successes in many applications1,2.
Research in physics is no exception to this
claim, and indeed in the recent years we
have seen numerous applications of machine
learning to various physics problems3,4,
and even more predictions regarding
which physics problems we will be able to
solve with machine learning in the near
future. Some even wonder whether future
machine-learning systems will be able to
collect suitable data and infer the laws of
nature from them entirely automatically.

All this activity and progress naturally
comes with many open questions — not
least that deep neural networks are often
described as black boxes: hard to interpret
and without a solid understanding of
when they provide satisfactory answers
and when they do not. When applying
machine learning to problems in physics
(and other areas) researchers often wonder:
What is the best way to take into account
the corresponding domain knowledge,
constraints and symmetries? How do we
adapt the existing machine-learning tools
to new problems, and how to interpret
their results in a scientific manner? How do
we reliably quantify the uncertainties and
errors stemming from the fact that training
and testing data may not come from the
same source?

One might argue that researchers in
mathematics, computer science, statistics
and other related fields are working hard
to answer such questions, and so for us

physicists it is a matter of sitting tight
waiting for tools and answers that we can
subsequently put to use. In this Comment, I
argue that, instead, we need to join the race
of searching for these answers, because it
is precisely the physicists’ perspective and
approach that is needed to enable progress
in this endeavour.

Three ingredients to decipher deep
learning
The engineering details of current
deep-learning systems, such as the ones
deployed by Google to translate languages5,
can be dauntingly complicated. Yet the basic
principle of how learning with deep neural
networks works is, in fact, pleasantly simple.

A basic example of a task in machine
learning is supervised learning, where the
machine learns to associate the correct
outputs to input data, based on a database
of examples of input–output pairs. Deep
learning then uses multi-layer neural
networks in which the input data are fed
into the first layer, its output then fed as
input into the next layer, and so on. Each
layer is a multiplication of the input by a
matrix of so-called weights, followed by a
component-wise non-linear function. This
is repeated a number of times corresponding
to the number of layers.

For problems with binary output data
(for example, 1 for a picture of a dog and
−1 for a picture of a cat), the last layer then
aims to find a hyperplane separating these
output labels. This described structure
is called a feed-forward fully connected
neural network and is mathematically seen
as a function of the input data outputting
the labels and being parameterized by the
matrices of weights. The weights are then
adjusted using a simple gradient descent
of a so-called loss function that quantifies
the amount of mismatch between the
current and desired outputs. Finally, the
performance is evaluated against a so-called
test dataset that was not seen during the
training. Interestingly, the basic design

principles of multi-layer neural networks
have been known since the early days of
research on artificial neural networks6.
Arguably, the unprecedented engineering
progress of the last two decades is largely
due to better and larger training datasets
and faster computing, such as highly
parallelizable GPU processors, rather than
due to fundamental improvements in
the network architectures or the training
algorithms themselves.

In 1995, the influential statistician Leo
Breiman summarized three main open
problems in machine learning theory7:
“Why don’t heavily parameterized neural
networks overfit the data? What is the
effective number of parameters? Why
doesn’t back-propagation — the term used
for the gradient-descent-based algorithm
used to train the state-of-the-art neural
networks — get stuck in poor local minima
with low value of the loss function, yet bad
test error?” While Breiman formulated these
questions 25 years ago, they are still open
today and subject to most of the ongoing
works in the learning-theory community,

A
rchitecture

S
tru

ct
ur

ed
 d

at
a

Algorithm

Fig. 1 | Interplay of key ingredients. Building
theory of deep learning requires an understanding
of the intrinsic interplay between the architecture
of the neural network, the behaviour of the
algorithm used for learning and the structure in
the data.

NATURE PHYSICS | VOL 16 | JUNE 2020 | 602–604 | www.nature.com/naturephysics

602

comment

Understanding deep learning is also a job for
physicists
Automated learning from data by means of deep neural networks is finding use in an ever-increasing number of
applications, yet key theoretical questions about how it works remain unanswered. A physics-based approach may
help to bridge this gap.

Lenka Zdeborová

Imagine an event for which thousands of
tickets get sold out in under 12 minutes.
We are not speaking of a leading show

on Broadway or a concert of a rockstar, but
about the Conference on Neural Information
Processing Systems (NeurIPS) — the
principal gathering for research in machine
learning and artificial intelligence. The
fields related to automated learning from
data are experiencing a surge in research
activity, as well as in investment. This is
largely thanks to developments in a subfield
called deep learning, which has led to a
myriad of successes in many applications1,2.
Research in physics is no exception to this
claim, and indeed in the recent years we
have seen numerous applications of machine
learning to various physics problems3,4,
and even more predictions regarding
which physics problems we will be able to
solve with machine learning in the near
future. Some even wonder whether future
machine-learning systems will be able to
collect suitable data and infer the laws of
nature from them entirely automatically.

All this activity and progress naturally
comes with many open questions — not
least that deep neural networks are often
described as black boxes: hard to interpret
and without a solid understanding of
when they provide satisfactory answers
and when they do not. When applying
machine learning to problems in physics
(and other areas) researchers often wonder:
What is the best way to take into account
the corresponding domain knowledge,
constraints and symmetries? How do we
adapt the existing machine-learning tools
to new problems, and how to interpret
their results in a scientific manner? How do
we reliably quantify the uncertainties and
errors stemming from the fact that training
and testing data may not come from the
same source?

One might argue that researchers in
mathematics, computer science, statistics
and other related fields are working hard
to answer such questions, and so for us

physicists it is a matter of sitting tight
waiting for tools and answers that we can
subsequently put to use. In this Comment, I
argue that, instead, we need to join the race
of searching for these answers, because it
is precisely the physicists’ perspective and
approach that is needed to enable progress
in this endeavour.

Three ingredients to decipher deep
learning
The engineering details of current
deep-learning systems, such as the ones
deployed by Google to translate languages5,
can be dauntingly complicated. Yet the basic
principle of how learning with deep neural
networks works is, in fact, pleasantly simple.

A basic example of a task in machine
learning is supervised learning, where the
machine learns to associate the correct
outputs to input data, based on a database
of examples of input–output pairs. Deep
learning then uses multi-layer neural
networks in which the input data are fed
into the first layer, its output then fed as
input into the next layer, and so on. Each
layer is a multiplication of the input by a
matrix of so-called weights, followed by a
component-wise non-linear function. This
is repeated a number of times corresponding
to the number of layers.

For problems with binary output data
(for example, 1 for a picture of a dog and
−1 for a picture of a cat), the last layer then
aims to find a hyperplane separating these
output labels. This described structure
is called a feed-forward fully connected
neural network and is mathematically seen
as a function of the input data outputting
the labels and being parameterized by the
matrices of weights. The weights are then
adjusted using a simple gradient descent
of a so-called loss function that quantifies
the amount of mismatch between the
current and desired outputs. Finally, the
performance is evaluated against a so-called
test dataset that was not seen during the
training. Interestingly, the basic design

principles of multi-layer neural networks
have been known since the early days of
research on artificial neural networks6.
Arguably, the unprecedented engineering
progress of the last two decades is largely
due to better and larger training datasets
and faster computing, such as highly
parallelizable GPU processors, rather than
due to fundamental improvements in
the network architectures or the training
algorithms themselves.

In 1995, the influential statistician Leo
Breiman summarized three main open
problems in machine learning theory7:
“Why don’t heavily parameterized neural
networks overfit the data? What is the
effective number of parameters? Why
doesn’t back-propagation — the term used
for the gradient-descent-based algorithm
used to train the state-of-the-art neural
networks — get stuck in poor local minima
with low value of the loss function, yet bad
test error?” While Breiman formulated these
questions 25 years ago, they are still open
today and subject to most of the ongoing
works in the learning-theory community,

A
rchitecture

S
tru

ct
ur

ed
 d

at
a

Algorithm

Fig. 1 | Interplay of key ingredients. Building
theory of deep learning requires an understanding
of the intrinsic interplay between the architecture
of the neural network, the behaviour of the
algorithm used for learning and the structure in
the data.

NATURE PHYSICS | VOL 16 | JUNE 2020 | 602–604 | www.nature.com/naturephysics

Send to
hospital?

Fever? Cough? Lost sense
of smell?

Over 50? Heart
problem?

Obese? Diabetes?

1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1
0 1 1 1 0 0 0 0
1 1 1 1 1 0 1 1
0 1 1 0 1 0 1 1

A function maps all possible answers to outputs.

n questions; 2n possible answers; 2!! possible Boolean functions

For n=7 27 = 128 answers; 2128 =3.4 X 1038 possible functions

Bo
ol

ea
n

fun
cti

on

Given some examples, can we learn the rest of the function?

Doctor’s decision table for COVID-19

Model problem: Supervised learning of a Boolean function with DNNs

46

et al., 2017; Saito and Kato, 2017) and quantum state
tomography (Torlai et al., 2017) are among some of the
impressive achievements to reveal the potential of DNNs
to facilitate the study of quantum systems. Machine
learning techniques involving neural networks were also
used to study quantum and fault-tolerant error correc-
tion (Baireuther et al., 2017; Breuckmann and Ni, 2017;
Chamberland and Ronagh, 2018; Davaasuren et al., 2018;
Krastanov and Jiang, 2017; Maskara et al., 2018), es-
timate rates of coherent and incoherent quantum pro-
cesses (Greplova et al., 2017), to obtain spectra of 1/f -
noise in spin-qubit devices (Zhang and Wang, 2018), and
the recognition of state and charge configurations and
auto-tuning in quantum dots (Kalantre et al., 2017). In
quantum information theory, it has been shown that one
can perform gate decompositions with the help of neural
nets (Swaddle et al., 2017). In lattice quantum chromo-
dynamics, DNNs have been used to learn action param-
eters in regions of parameter space where principal com-
ponent analysis fails (Shanahan et al., 2018). Last but
not least, DNNs also found place in the study of quan-
tum control (Yang et al., 2017), and in scattering theory
to learn s-wave scattering length (Wu et al., 2018) of po-
tentials.

A. Neural Network Basics

Neural networks (also called neural nets) are neural-
inspired nonlinear models for supervised learning. As
we will see, neural nets can be viewed as natural, more
powerful extensions of supervised learning methods such
as linear and logistic regression and soft-max methods.

1. The basic building block: neurons

The basic unit of a neural net is a stylized “neu-
ron” i that takes a vector of d input features x =
(x1, x2, . . . , xd) and produces a scalar output ai(x). A
neural network consists of many such neurons stacked
into layers, with the output of one layer serving as the
input for the next (see Figure 34). The first layer in the
neural net is called the input layer, the middle layers are
often called “hidden layers”, and the final layer is called
the output layer.

The exact function ai varies depending on the type of
non-linearity used in the neural network. However, in
essentially all cases ai can be decomposed into a linear
operation that weights the relative importance of the var-
ious inputs and a non-linear transformation �i(z) which
is usually the same for all neurons. The linear trans-
formation in almost all neural networks takes the form
of a dot product with a set of neuron-specific weights
w(i) = (w(i)

1 , w(i)
2 , . . . , w(i)

d
) followed by re-centering with

input w x

linear nonlinearity

output

x1

x2

x3

w1

w2

w3

{

{
{

input
layer

hidden
layers

output
layer

B

A

. + b

FIG. 34 Basic architecture of neural networks. (A)
The basic components of a neural network are stylized neu-
rons consisting of a linear transformation that weights the
importance of various inputs, followed by a non-linear activa-
tion function. (b) Neurons are arranged into layers with the
output of one layer serving as the input to the next layer.

a neuron-specific bias b(i):

z(i) = w(i) · x + b(i) = xT · w(i), (117)

where x = (1,x) and w(i) = (b(i),w(i)). In terms of z(i)

and the non-linear function �i(z), we can write the full
input-output function as

ai(x) = �i(z
(i)), (118)

see Figure 34.
Historically in the neural network literature, common

choices of nonlinearities included step-functions (percep-
trons), sigmoids (i.e. Fermi functions), and the hyper-
bolic tangent. More recently, it has become more com-
mon to use rectified linear units (ReLUs), leaky recti-
fied linear units (leaky ReLUs), and exponential linear
units (ELUs) (see Figure 35). Different choices of non-
linearities lead to different computational and training
properties for neurons. The underlying reason for this is
that we train neural nets using gradient descent based
methods, see Sec. IV, that require us to take derivatives
of the neural input-output function with respect to the
weights w(i) and the bias b(i). Notice that the derivatives
of the aforementioned non-linearities �(z) have very dif-
ferent properties. The derivative of the perceptron is zero
everywhere except where the input is zero. This discon-
tinuous behavior makes it impossible to train perceptrons
using gradient descent. For this reason, until recently the
most popular choice of non-linearity was the tanh func-
tion or a sigmoid/Fermi function. However, this choice
of non-linearity has a major drawback. When the input
weights become large, as they often do in training, the
activation function saturates and the derivative of the

46

et al., 2017; Saito and Kato, 2017) and quantum state
tomography (Torlai et al., 2017) are among some of the
impressive achievements to reveal the potential of DNNs
to facilitate the study of quantum systems. Machine
learning techniques involving neural networks were also
used to study quantum and fault-tolerant error correc-
tion (Baireuther et al., 2017; Breuckmann and Ni, 2017;
Chamberland and Ronagh, 2018; Davaasuren et al., 2018;
Krastanov and Jiang, 2017; Maskara et al., 2018), es-
timate rates of coherent and incoherent quantum pro-
cesses (Greplova et al., 2017), to obtain spectra of 1/f -
noise in spin-qubit devices (Zhang and Wang, 2018), and
the recognition of state and charge configurations and
auto-tuning in quantum dots (Kalantre et al., 2017). In
quantum information theory, it has been shown that one
can perform gate decompositions with the help of neural
nets (Swaddle et al., 2017). In lattice quantum chromo-
dynamics, DNNs have been used to learn action param-
eters in regions of parameter space where principal com-
ponent analysis fails (Shanahan et al., 2018). Last but
not least, DNNs also found place in the study of quan-
tum control (Yang et al., 2017), and in scattering theory
to learn s-wave scattering length (Wu et al., 2018) of po-
tentials.

A. Neural Network Basics

Neural networks (also called neural nets) are neural-
inspired nonlinear models for supervised learning. As
we will see, neural nets can be viewed as natural, more
powerful extensions of supervised learning methods such
as linear and logistic regression and soft-max methods.

1. The basic building block: neurons

The basic unit of a neural net is a stylized “neu-
ron” i that takes a vector of d input features x =
(x1, x2, . . . , xd) and produces a scalar output ai(x). A
neural network consists of many such neurons stacked
into layers, with the output of one layer serving as the
input for the next (see Figure 34). The first layer in the
neural net is called the input layer, the middle layers are
often called “hidden layers”, and the final layer is called
the output layer.

The exact function ai varies depending on the type of
non-linearity used in the neural network. However, in
essentially all cases ai can be decomposed into a linear
operation that weights the relative importance of the var-
ious inputs and a non-linear transformation �i(z) which
is usually the same for all neurons. The linear trans-
formation in almost all neural networks takes the form
of a dot product with a set of neuron-specific weights
w(i) = (w(i)

1 , w(i)
2 , . . . , w(i)

d
) followed by re-centering with

input w x

linear nonlinearity

output

x1

x2

x3

w1

w2

w3

{
{

{

input
layer

hidden
layers

output
layer

B

A

. + b

FIG. 34 Basic architecture of neural networks. (A)
The basic components of a neural network are stylized neu-
rons consisting of a linear transformation that weights the
importance of various inputs, followed by a non-linear activa-
tion function. (b) Neurons are arranged into layers with the
output of one layer serving as the input to the next layer.

a neuron-specific bias b(i):

z(i) = w(i) · x + b(i) = xT · w(i), (117)

where x = (1,x) and w(i) = (b(i),w(i)). In terms of z(i)

and the non-linear function �i(z), we can write the full
input-output function as

ai(x) = �i(z
(i)), (118)

see Figure 34.
Historically in the neural network literature, common

choices of nonlinearities included step-functions (percep-
trons), sigmoids (i.e. Fermi functions), and the hyper-
bolic tangent. More recently, it has become more com-
mon to use rectified linear units (ReLUs), leaky recti-
fied linear units (leaky ReLUs), and exponential linear
units (ELUs) (see Figure 35). Different choices of non-
linearities lead to different computational and training
properties for neurons. The underlying reason for this is
that we train neural nets using gradient descent based
methods, see Sec. IV, that require us to take derivatives
of the neural input-output function with respect to the
weights w(i) and the bias b(i). Notice that the derivatives
of the aforementioned non-linearities �(z) have very dif-
ferent properties. The derivative of the perceptron is zero
everywhere except where the input is zero. This discon-
tinuous behavior makes it impossible to train perceptrons
using gradient descent. For this reason, until recently the
most popular choice of non-linearity was the tanh func-
tion or a sigmoid/Fermi function. However, this choice
of non-linearity has a major drawback. When the input
weights become large, as they often do in training, the
activation function saturates and the derivative of the

G. Valle-Perez, C. Camargo and A.A. Louis, arxiv:1805.08522 – ICLR 2019

Parameter-function map

Prior P(f): upon randomly sampling parameters, how likely to find Boolean function f?

G. Valle Perez, C. Camargo and A.A. Louis, arxiv:1805.08522 – ICLR 2019

Boolean functions for n=7. 27 = 128 possible answers & 2128⋍3.4 X1038 possible functions.

108 samples of
parameters
(7,40,40,1) DNN
(FCN) with ReLU.

Zipf law P ~ 1/r

Guillermo
Valle Perez

Simplicity bias in the parameter-function map

Simple functions exponentially more likely to occur

Boolean system is a key simplified model, akin to the Ising model is in physics.

assumption that the exponent in Eq. (4.17) is related to our approximation K̃(x) by

K(x|A) +O(1) ⇡ aK̃(x) + b (4.23)

for constants a > 0 and b. These constants account for the O(1) term, potential

idiosyncrasies of the complexity approximation K̃, and other possible factors arising

from our approximations. Hence we approximate Eq. (4.17) as

P (x) . 2�aK̃(x)�b (4.24)

Note that the constants a and b depend on the mapping, but not on x.

As we discuss in the next Section and the example maps below, the values of a

and b can often be inferred a priori using one or more of: The complexity values of all

the outputs, the number of outputs (NO), the probability of the simplest structure,

or other values.

4.5 Making predictions for P (x) in computable maps

We can often make predictions about the values of a and b (Eq. (4.24)), via various

methods. Essentially we use any piece of information about the outputs or their

probabilities that is available to estimate, bound or approximate the values of a and

b. We now describe some methods, which we apply to various maps in the next

Section of this Chapter.

4.5.1 Estimating the range of K(x|A)

We will now estimate the range of values that we expect K(x|A) to assume. We

begin with a lower bound on possible complexity values: Given A we can compute

all the inputs, and produce all NO outputs. Hence, we can describe any x 2 O by its

index 1  j  NO in the set of outputs O. Therefore

K(x|A)  log(j) +O(log(log(j))) (4.25)

95

“Entropy” of simpler functions is larger than that of complex functions.

(a) Target function LZ complexity: 38.5 (b) Target function LZ complexity: 164.5

Figure 2: Generalization error versus learned function LZ complexity, for 500 random initialization
and training sets of size 64, for a target function with (a) lower complexity and (b) higher complexity.
Generalization error is defined with respect to off-training set samples. The blue circles and blue
histograms correspond to the (7, 40, 40, 1) neural network, and the red dots and histograms to an
unbiased learner which also fits the training data perfectly. The histograms on the sides of the plots
show the frequency of generalization errors and complexities. Overlaid on the red and blue symbols
there is a black histogram depicting the density of dots (darker is higher density).

always 2n�m functions consistent with the training set. Because the number of simple functions
will typically be much less than 2n�m, for a simple enough target function, the functions consistent
with the training set will include simple and complex functions. Because of simplicity bias, the
low-complexity functions are much more likely to be considered than the high complexity ones. On
the other hand, for a complex target function, the functions consistent with the training set are all
of high complexity. Among these, the simplicity bias does not have as large an effect because there
is a smaller range of probabilities. Thus the network effectively considers a larger set of potential
functions. This difference in effective hypothesis class causes the difference in generalization. This
intuition is formalized in the next section, using PAC-Bayes Theory.

4 PAC-Bayes generalization error bounds

In order to obtain a more quantitative understanding of the generalization behaviour we observe,
we turn to PAC-Bayes theory, an extension of the probably approximately correct (PAC) learning
framework. In particular, we use Theorem 1 from the classic work by McAllester [32], which gives a
bound on the expected generalization error, when sampling the posterior over concepts. It uses the
standard learning theory terminology of concept space for a hypothesis class of Boolean functions
(called concepts), and instance for any element of the input space.
Theorem 1. (PAC-Bayes theorem [32]) For any measure P on any concept space and any measure
on a space of instances we have, for 0 < �  1, that with probability at least 1� � over the choice
of sample of m instances all measurable subsets U of the concepts such that every element of U is
consistent with the sample and with P (U) > 0 satisfies the following:

✏(U) 
ln 1

P (U) + ln 1
� + 2 lnm+ 1

m

where P (U) =
P

c2U P (c), and where ✏(U) := Ec2U ✏(c), i.e. the expected value of the general-
ization errors over concepts c in U with probability given by the posterior P (c)

P (U) . Here, ✏(c) is the
generalization error (probability of the concept c disagreeing with the target concept, when sampling
inputs).

5

Published as a conference paper at ICLR 2019

F.4 EFFECTS OF TARGET FUNCTION COMPLEXITY ON LEARNING FOR DIFFERENT
COMPLEXITY MEASURES

Here we show the effect of the complexity of the target function on learning, as well as other com-
plementary results. Here we compare neural network learning to random guessing, which we call
“unbiased learner”. Note that both probably have the same hypothesis class as we tested that the
neural network used here can fit random functions.

The functions in these experiments were chosen by randomly sampling parameters of the neural
network used, and so even the highest complexity ones are probably not fully random12. In fact,
when training the network on truly random functions, we obtain generalization errors equal or above
those of the unbiased learner. This is expected from the No Free Lunch theorem, which says that no
algorithm can generalize better (for off-training error) uniformly over all functions than any other
algorithm (Wolpert & Waters (1994)).

(a) Generalization error of learned functions (b) Complexity of learned functions

(c) Number of iterations to perfectly fit training set (d) Net Euclidean distance traveled in parameter space
to fit training set

Figure 13: Different learning metrics versus the LZ complexity of the target function, when learning
with a network of shape (7, 40, 40, 1). Dots represent the means, while the shaded envelope corre-
sponds to piecewise linear interpolation of the standard deviation, over 500 random initializations
and training sets.

F.5 LEMPEL-ZIV VERSUS ENTROPY

To check that the correlation between LZ complexity and generalization is not only because of
a correlation with function entropy (which is just a measure of the fraction of inputs mapping to

12The fact that non-random strings can have maximum LZ complexity is a consequence of LZ complexity
being a less powerful complexity measure than Kolmogorov complexity, see e.g. Estevez-Rams et al. (2013).
The fact that neural networks do well for non-random functions, even if they have maximum LZ, suggests that
their simplicity bias captures a notion of complexity stronger than LZ.

27

DNN works much better than an unbiased learner

DNN works well on simple target functions,
but less well on complex functions

Simplicity bias aids generalisation (Occam)
Supervised learning: 1) Pick a target function; 2) Train with SGD to zero training error on half the inputs;
3) Measure the error for the other half of inputs.

DNNs have an inbuilt “Occam’s razor” – they work well on structured data.

Theorem 4.1. For a perceptron f✓ with b = 0 and weights w sampled from a distribution which is

symmetric under reflections along the coordinate axes, the probability measure P (✓ : T (f✓) = t) is

given by

P (✓ : T (f✓) = t) =

⇢
2�n

if 0  t < 2n

0 otherwise
.

Proof sketch. We consider the sampling of the normal vector w as a two-step process: we first
sample the absolute values of the elements, giving us a vector wpos with positive elements, and then
we sample the signs of the elements. Our assumption on the probability distribution implies that
each of the 2n sign assignments is equally probable, each happening with a probability 2�n. The
key of the proof is to show that for any wpos, each of the sign assignments gives a distinct value of
T (and because there are 2n possible sign assignments, for any value of T , there is exactly one sign
assignment resulting in a normal vector with that value of T). This implies that, provided all sign
assignments of any wpos are equally likely, the distribution on T is uniform.

A consequence of Theorem 4.1 is that the average probability of the perceptron producing a partic-
ular function f with T (f) = t is given by

hP (f)it =
2�n

|Ft|
, (3)

where Ft denotes the set of Boolean functions that the perceptron can express which satisfy T (f) =
t, and h·it denotes the average (under uniform measure) over all functions f 2 Ft.

We expect |Ft| to be much smaller for more extreme values of t, as there are fewer distinct possible
functions with extreme values of t. This would imply a bias towards low entropy functions. By
way of an example, |F0| = 1 and |F1| = n (since the only Boolean functions f a perceptron can
express which satisfy T (f) = 1 have f(x) = 1 for a single one-hot x 2 {0, 1}n), implying that
hP (f)i0 = 2�n and hP (f)i1 = 2�n

/n.

Nevertheless, the probability of functions within a set Ft is unlikely to be uniform. We find that,
in contrast to the overall entropy bias, which is independent of the shape of the distribution (as
long as it satisfies the right symmetry conditions), the probability P (f) of obtaining function f

within a set Ft can depend on distribution shape. Nevertheless, for a given distribution shape, the
probabilities P (f) are independent of scale of the shape, e.g. they are independent of the variance
of the Gaussian, or the width of the uniform distribution. This is because the function is invariant
under scaling all weights by the same factor (true only in the case of no threshold bias). We will
address the probabilities of functions within a given Ft further in Section 4.3.

4.2 SIMPLICITY BIAS OF THE b = 0 PERCEPTRON

The entropy bias of Theorem 4.1 entails an overall bias towards low Boolean complexity. In Theo-
rem B.1 in Appendix B we show that the Boolean complexity of a function f is bounded by1

KBool(f) < 2⇥ n⇥min(T (f), 2n � T (f)). (4)

Using Theorem 4.1 and Equation (4), we have that the probability that a randomly initialised per-
ceptron expresses a function f of Boolean complexity k or greater is upper bounded by

P (KBool(f) � k) < 1� k ⇥ 2�n ⇥ 2

2⇥ n
= 1� k

2n ⇥ n
. (5)

Uniformly sampling functions would result in P (KBool(f) � k) ⇡ 1�2k�2n which for intermediate
k is much larger than Equation (5). Thus from entropy bias alone, we see that the perceptron is much
more likely to produce simple functions than complex functions: it has an inductive bias towards
simplicity. This derivation is complementary to the AIT arguments from simplicity bias (Dingle
et al., 2018; Valle-Pérez et al., 2018), and has the advantage that it also proves that bias exists,
whereas AIT-based simplicity bias arguments presuppose bias.

1A tighter bound is given in Theorem B.2, but this bound lacks any obvious closed form expression.

5

Neural networks are a priori biased towards Boolean functions with low entropy, Chris Mingard, Joar Skalse, Guillermo Valle-
Pérez, David Martínez-Rubio, Vladimir Mikulik, Ard A. Louis arxiv:1909.11522

Chris Mingard

P(f): If we randomly sample parameters θ, how likely are we to produce a
particular function f?

We can also prove theorems that bias towards simple function gets stronger with more layers!

Proving simplicity bias in the parameter-function map

Pluralitas non est ponenda sine necessitate”
"Plurality is not to be posited without necessity"

Entities are not to be multiplied without necessity”
Ockham, according John Punch’s 1639 commentary on Duns Scotus.

William of Ockham
1287-1347

-possibly at Merton?Modern approaches (the rabbit hole is deep …)

Bayes (e.g. David MacKay “Information Theory, Inference, and Learning Algorithms”, ch 28)

AIT (e.g. Solomonoff, Hutter etc.. (AIT), but see Tom Sterkenberg for a critique)

Philosophers disagree …..Aristotle à Elliot Sober

Ockham’s Razor and DNNs

What Ockham actually said:

Why do DNNs exhibit an inbuilt
Occam’s razor?

(why the simplicity bias?)

Is this simplicity bias more universal ?

P(X) = (1/N)^(M+1)

But what if the monkey types into C ? P(M) ≲ (1/N)^133

3.14159265358979323846264338327950288419716939
937510582097494459230781640628620899862803482
534211706798214808651328230664709384460955058
223172535940812848111745028410270193852110555
964462294895493038196442

3.14159265358979323846264338327950288419716939
937510582097494459230781640628620899862803482
534211706798214808651328230664709384460955058
223172535940812848111745028410270193852110555
964462294895493038196442

C program due to Dik Winter and Achim Flammenkamp (See Unbounded Spigot Algorithms for the Digits of Pi, by Jeremy
Gibbons (Oxford CS), Math. Monthly, April 2006, pages 318-328.)

133 character (obfuscated) C code to calculate first 15,000 digits of π

2/17/2016 Pi the Number, not the Movie

http://ZZZ.cs.utsa.edu/aZagner/pi/pi.html 1/3

Pi the Number, not the Movie

RefeUeQceV aQd digiWV Rf Pi:

HHUH DUH WZR H[FHOOHQW UHIHUHQFHV DERXW SL:

TKe LLfe Rf PL, E\ J.M. BRUZHLQ.
LLfe Rf PL RQ VOLdeV, E\ J.M. BRUZHLQ.

HHUH DUH OLVWLQJV RI GLJLWV RI SL WR GLIIHUHQW EDVHV:

SL WR 40000 decLPaO dLJLWV,¬
SL WR 20000 Ke[dLJLWV,¬
SL WR 10000 baVe 36 dLJLWV,
SL WR 10000 baVe 62 dLJLWV (XVLQJ 0-9,A-=,D-]).

7KH MD\ 6, 1993 HSLVRGH RI The SiPSVRQV KDV WKH FKDUDFWHU ASX ERDVW "I FDQ UHFLWH SL WR 40,000
SODFHV. 7KH ODVW GLJLW LV RQH." 6HH WKH 40000 GLJLWV DERYH, ZKHUH WKH 40000WK RQH LV UHG. (A FROOHDJXH
RI BRUZHLQ DFWXDOO\ VXSSOLHG WKLV LQIRUPDWLRQ WR WKH 6LPSVRQ'V SURJUDP: VHH "LLIH RI PL RQ VOLGHV"
DERYH.)

7KH PRVW LQWHUHVWLQJ GHFLPDO UXQ LQ Si VWDUWV LQ SRVLWLRQ 762 (URZ 7, FROXPQ 7), ZKHUH 9999998 RFFXUV.

E[SUHVVLRQV JLYLQJ DQ DSSUR[LPDWLRQ RI SL: SL fURP aQ e[SUeVVLRQ.

C SURgUaP giYiQg 15000 digiWV Rf Si:

5DELQRZLW] DQG :DJRQ JDYH DQ DPD]LQJ DOJRULWKP WR FRPSXWH GHFLPDO GLJLWV RI SL, EDVHG RQ WKH VHULHV
JLYHQ EHORZ. 7KH "DOJRULWKP XVHV RQO\ ERXQGHG LQWHJHU DULWKPHWLF DQG LV VXUSULVLQJO\ HIILFLHQW.
MRUHRYHU, LW DGPLWV H[WUHPHO\ FRQFLVH LPSOHPHQWDWLRQV. :LWQHVV, IRU H[DPSOH, WKH IROORZLQJ
(GHOLEHUDWHO\ REIXVFDWHG) C SURJUDP GXH WR DLN :LQWHU DQG AFKLP FODPPHQNDPS" (6HH
UQbRXQded SSigRW AlgRUiWhPV fRU Whe DigiWV Rf Pi, E\ JHUHP\ GLEERQV, MDWK. MRQWKO\, ASULO 2006,
SDJHV 318-328.)

C SURgUaP WR caOcXOaWe 15000 digiWV Rf Si The FRUPXOa XVed

a[52514],b,c=52514,d,e,f=1e4,g,h;
PaiQ()^fRU(;b=c-=14;h=SUiQWf("%04d", e+d/f))
fRU(e=d%=f;g=--b*2;d/=g)d=d*b+f*(h?a[b]:f/5),a[b]=d%--g;`

OXWSXW Rf a UXQ

KeUe (ZLWK QHZOLQHV LQVHUWHG E\ KDQG), RU KeUe

7KLV LV FDOOHG D VSigRW algRUiWhP EHFDXVH LW VSLWV RXW GLJLWV DV LI IURP D VSLJRW. OWKHU YHUVLRQV RI WKLV
SURJUDP FDQ EH IRXQG RQ WKH IQWHUQHW. 6WLOO, ZLWK WKLV PHWKRG RQH KDV WR FRPPLW DKHDG RI WLPH WR D
VSHFLILF QXPEHU RI GLJLWV WR FDOFXODWH. 7KH QH[W PHWKRG GRHVQ'W KDYH WKLV ZHDNQHVV.

CaOcXOaWiQg aUbiWUaUiO\ PaQ\ digiWV Rf Si:

2/17/2016 Pi the Number, not the Movie

http://ZZZ.cs.utsa.edu/aZagner/pi/pi.html 1/3

Pi the Number, not the Movie

RefeUeQceV aQd digiWV Rf Pi:

HHUH DUH WZR H[FHOOHQW UHIHUHQFHV DERXW SL:

TKe LLfe Rf PL, E\ J.M. BRUZHLQ.
LLfe Rf PL RQ VOLdeV, E\ J.M. BRUZHLQ.

HHUH DUH OLVWLQJV RI GLJLWV RI SL WR GLIIHUHQW EDVHV:

SL WR 40000 decLPaO dLJLWV,¬
SL WR 20000 Ke[dLJLWV,¬
SL WR 10000 baVe 36 dLJLWV,
SL WR 10000 baVe 62 dLJLWV (XVLQJ 0-9,A-=,D-]).

7KH MD\ 6, 1993 HSLVRGH RI The SiPSVRQV KDV WKH FKDUDFWHU ASX ERDVW "I FDQ UHFLWH SL WR 40,000
SODFHV. 7KH ODVW GLJLW LV RQH." 6HH WKH 40000 GLJLWV DERYH, ZKHUH WKH 40000WK RQH LV UHG. (A FROOHDJXH
RI BRUZHLQ DFWXDOO\ VXSSOLHG WKLV LQIRUPDWLRQ WR WKH 6LPSVRQ'V SURJUDP: VHH "LLIH RI PL RQ VOLGHV"
DERYH.)

7KH PRVW LQWHUHVWLQJ GHFLPDO UXQ LQ Si VWDUWV LQ SRVLWLRQ 762 (URZ 7, FROXPQ 7), ZKHUH 9999998 RFFXUV.

E[SUHVVLRQV JLYLQJ DQ DSSUR[LPDWLRQ RI SL: SL fURP aQ e[SUeVVLRQ.

C SURgUaP giYiQg 15000 digiWV Rf Si:

5DELQRZLW] DQG :DJRQ JDYH DQ DPD]LQJ DOJRULWKP WR FRPSXWH GHFLPDO GLJLWV RI SL, EDVHG RQ WKH VHULHV
JLYHQ EHORZ. 7KH "DOJRULWKP XVHV RQO\ ERXQGHG LQWHJHU DULWKPHWLF DQG LV VXUSULVLQJO\ HIILFLHQW.
MRUHRYHU, LW DGPLWV H[WUHPHO\ FRQFLVH LPSOHPHQWDWLRQV. :LWQHVV, IRU H[DPSOH, WKH IROORZLQJ
(GHOLEHUDWHO\ REIXVFDWHG) C SURJUDP GXH WR DLN :LQWHU DQG AFKLP FODPPHQNDPS" (6HH
UQbRXQded SSigRW AlgRUiWhPV fRU Whe DigiWV Rf Pi, E\ JHUHP\ GLEERQV, MDWK. MRQWKO\, ASULO 2006,
SDJHV 318-328.)

C SURgUaP WR caOcXOaWe 15000 digiWV Rf Si The FRUPXOa XVed

a[52514],b,c=52514,d,e,f=1e4,g,h;
PaiQ()^fRU(;b=c-=14;h=SUiQWf("%04d", e+d/f))
fRU(e=d%=f;g=--b*2;d/=g)d=d*b+f*(h?a[b]:f/5),a[b]=d%--g;`

OXWSXW Rf a UXQ

KeUe (ZLWK QHZOLQHV LQVHUWHG E\ KDQG), RU KeUe

7KLV LV FDOOHG D VSigRW algRUiWhP EHFDXVH LW VSLWV RXW GLJLWV DV LI IURP D VSLJRW. OWKHU YHUVLRQV RI WKLV
SURJUDP FDQ EH IRXQG RQ WKH IQWHUQHW. 6WLOO, ZLWK WKLV PHWKRG RQH KDV WR FRPPLW DKHDG RI WLPH WR D
VSHFLILF QXPEHU RI GLJLWV WR FDOFXODWH. 7KH QH[W PHWKRG GRHVQ'W KDYH WKLV ZHDNQHVV.

CaOcXOaWiQg aUbiWUaUiO\ PaQ\ digiWV Rf Si:

MONKEY INTUITION:
What is the probability that a monkey types out M digits of π on an N key typewriter ?

A.N. Kolgomorov
1903-1987

G.J. Chaitin
1947--

01

0111010100110010111101111011010100001000101110101010011010111110111010010100011101110110110111010

Kolmogorov/Chaitin complexity K(X) is the length in bits
of the shortest program on a UTM that generates X

K is universal, (not UTM dependent) because you can
always write a compiler => O(1) terms.

K_U(X) = K_W(X) + O(1) ≈ K(X)

K is not computable due to Halting problem.

new intuitions
-- A random number is one for which K(X) ≳ |X|
-- The complexity of a set can be << than complexity of elements of the set

asym
ptotically

simple

complex

Warning: you don’t know for sure that it is complex, t could be encoding π= 3.141592653589793238462 …..

Formalising the Monkey Intuition AIT: Kolmogorov Complexity
AIT = Algorithmic Information Theory

R. Solomonoff
1926-2009

Intuitively: simpler (small K(X)) outputs are much more likely to appear

Solomonoff, R., "A Preliminary Report on a General Theory of Inductive Inference", Report V-131, Zator Co., Cambridge, Ma. Feb 4, 1960, revision, Nov., 1960.

PU(X) =
X

l:U(l)=X

2�l = 2�K(X) +

K(X)  log2PU(X)  K(X) +O(1)

PU(X)  2�K(X)+O(1)

1

First term is the biggest one
Sum all binary codes that generate X
on a prefix machine

It seems to me that the most important discovery since Gödel was the discovery by Chaitin,
Solomonoff and Kolmogorov of the concept called Algorithmic Probability,. Everybody should learn all
about that and spend the rest of their lives working on it.
Marvin Minsky (2014)
https://www.youtube.com/watch?v=DfY-DRsE86s&feature=youtu.be&t=1h30m02s

Formalising the Monkey Intuition using AIT: Algorithmic Probability
Algorithmic Probability P(x) = probability a random program on a (prefix) UTM generates x

https://www.youtube.com/watch?v=DfY-DRsE86s&feature=youtu.be&t=1h30m02s

L. Levin, 1948 --

L. A. Levin. Laws of information conservation (non-growth) and aspects of the foundation of probability theory.
Problems of Information Transmission, 10:206–210, 1974.

A priori probability estimates from structural descriptional? complexity

Kamaludin Dingle1 and Ard A. Louis1

1
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, UK

(Dated: September 7, 2016)

Many real world systems can be described using finite discrete input-output maps.
If an input is selected at random, what is the probability P (x) that a given map
generates a particular output x? Without knowing details of the map it may seem
hard to do better than a uniform a priori probability for generating any possible
output. Here, by extending fundamental results from algorithmic information theory,
we show instead that for many real world maps, the a priori probability decays
exponentially with the descriptional complexity K(x) of output x, with an upper
bound P (x) . 2�aK(x)�b which is tight for most inputs. The constants a and b and
many other properties, such as the number of outputs, or whether P (x) > P (y) or vice
versa for two di↵erent outputs x and y, can be predicted with only minimal knowledge
of the mapping. We demonstrate the generality of these principles for applications
ranging from the folding of RNA secondary structures to the Black-Scholes equation
from financial mathematics.

Discrete input-output maps are widely used in science and engi-
neering. Many systems are intrinsically discrete, such as mod-
els of the mapping from genotypes to phenotypes in biology, or
networks of Boolean logic functions in computer science. But
discrete maps can also arise by coarse-graining continuous sys-
tems. Examples include di↵erential equations, where the inputs
are discretised values of the equation parameters, and the out-
puts are discretised values of the solutions for a given set of
boundary conditions. Such a wide diversity of possible maps
might at first sight suggest that, without known details of a
particular map, there are no grounds for predicting one output
to be more likely than another. Thus the a priori expectation
for the probability of obtaining a certain output upon random
sampling of inputs would be given by a uniform distribution.

On the other hand, this problem has been studied, albeit in
in a very abstract way, in a field called algorithmic informa-
tion theory (AIT), founded by Solomono↵1, Kolmogorov2 and
Chaitin3,4. Their fundamental insight was to describe the infor-
mation content or descriptional complexity of a discrete object
such as a binary string x in terms of the length of the shortest
program that generates x on universal Turing machine (UTM).
This measure is called the Kolmogorov-Chaitin complexity or
simply Kolmogorov complexity K(x) of x.

One of the many beautiful properties of K(x) is that it is
asymptotically independent of the UTM that is used. More
precisely if we define KU (x) as the the length of the shortest
program that generates x on UTM U , and define KV (x) in an
analogous way for UTM V , then |KU (x)�KV (x)| < M , where
M is a constant independent of x. Very loosely speaking, M
is the length of a program (compiler) that one UTM can use
to simulate the other. This invariance theorem can also be ex-
pressed as KU (x) = KV (x) + O(1). In the asymptotic limit
of large complexities these di↵erences can be neglected (i.e. the
O(1) terms, which are independent of x, can be ignored) and the
subscript U or V is dropped so that we speak simply of K(x)
which is a property of x only. In this way AIT di↵ers funda-
mentally from Shannon information theory because the latter is
fundamentally a statistical theory about distributions, whereas
the former is a theory about the information content of indi-
vidual objects. We provide a longer description of AIT, with
some further technical definitions, in Supplementary Informa-

tion ??. More complete descriptions can be found in standard
textbooks5,6.
Coding theorem connects probability and complexity
Interestingly, the earliest formulation of AIT (by Solomono↵1)
was in terms of the probability P (x) that a UTM generates an
output x upon random input programs. If one assumes that the
probability of generating a binary input program of length l is
simply 2�l (which is true for prefix codes, see Supplementary
Information ??) then the most likely way to obtain output x by
random sampling of inputs is with the shortest program that
generates it, a string of length K(x). Since there may also be
longer input programs that generate x, this provides a lower
bound 2�K(x)

 P (x). Later, Levin’s coding theorem7 also set
an upper bound, and so established a more general connection
between the probability P (x) and the (prefix) Kolmogorov com-
plexity K(x) of the output:

2�K(x)
 P (x)  2�K(x)+O(1) (1)

This fundamental result means that ‘simple’ outputs, with
smaller K(x), have an exponentially higher probability of be-
ing generated by random input programmes for a UTM than
complex outputs with larger K(x) do.

Unfortunately, the direct application of these results from
AIT to many practical systems in science or engineering suf-
fers from a number of well known problems. Firstly, due to
the halting problem8, K(x) is formally incomputable, meaning
that in general there cannot exist any method that takes x and
computes K(x)6. Secondly, many key AIT results, such as the
invariance theorem or the coding theorem, only hold up to O(1)
or logarithmic terms which are unknown, and therefore can only
be proven to be negligible in the asymptotic limit of large K(x)
values. Thirdly, many of the input-output maps from science or
engineering are computable, that is they are not UTMs. Thus
while the results of AIT are extremely general and elegant, it is
not obvious how well they translate to many real world systems.

On the other hand, the intuition behind the coding theorem
– complex outputs are harder to generate by random sampling
of inputs than simpler ones are – seems very general. Moreover,
the prediction is very strong: an exponential decrease in prob-
ability upon a linear increase in complexity. Intuitively, such a
strong relationship might be expected to have influence even in

Serious problems for applying coding theorem

1) Many systems of interest are not Universal Turing Machines
2) Kolmogorov complexity K(x) is formally incomputable
3) Only holds in in the asymptotic limit of large x…

We should teach this much more widely!

Intuitively: simpler (small K(X)) outputs are much more likely to appear

Formalising the Monkey Intuition using AIT: Levin’s Coding Theorem

Proof sketch:
1) For simple maps f, with input size n we can calculate the whole set of input à output

pairs at O(1) cost (complexity of a set << elements of set)
2) Encode this with a Shannon-Fano-Elias (SFE) code for which P(x) ~ ½^length
3) This procedure gives a bound on the Kolmogorov complexity, given f and n: K(x|f,n)

10

We follow a general method outlined in Ref. (10), which applies to any computable function. Consider the algorithm:
(i) Enumerate all inputs using n
(ii) Map these inputs to their outputs according to the rules specifying the map f
(iii) Print the resulting list of each output x and its corresponding probability P (x) (i.e. frequency/NI).

Now, it is well known (10) from information theory that given a discrete distribution, one can e�ciently encode outputs
using a Shannon-Fano-Elias (SFE) code, which consists of prefix-free code words E(x) of length (in bits)

l(E(x)) =

⇠
log2

✓
1

P (x)

◆⇡
+ 1 (B1)

where d·e denotes taking the integer part. In this manner, we have a method for assigning bit strings to outputs x. So,
using a SFE code, and given f and n, we can describe any output x using l(E(x))+O(1) bits, where the O(1) term accounts
for the fixed program to generate the SFE code. Because Kolmogorov complexity gives the shortest possible description
length (within O(1) terms) for a given UTM, we must have that K(x) of a given output x is no larger than the SFE code
description just derived, i.e.

K(x|f, n)  l(E(x)) +O(1) (B2)

= log2

✓
1

P (x)

◆
+O(1) (B3)

) P (x)  2�K(x|f,n)+O(1) (B4)

as required.
Note: Abusing notation slightly, we have used the letter f to denote both the function, as well as to denote the program

for implementing the function f .

2. Lower bound

A known probabilistic lower bound for computable functions is as follows (9; 11): With probability at least 1� 1/r

2�K(x|f,n)+O(1)

r
 P (x) (B5)

which implies that K(x|f, n) predicts P (x) with high probability (i.e. for most inputs) (9; 11), even if possibly for many
outputs P (x) ⌧ 2�K(x|f,n). In other words, this means that for random inputs we can expect P (x) ⇡ 2�K(x|f,n), or by

ansatz P (x) ⇡ 2�aK̃(x)�b, but that possibly P (x) ⌧ 2�aK̃(x)�b also for many inputs and outputs.
In terms of a logP (x) vs. complexity plot, this means that we can expect that the upper bound is tightest for complexity

values which are most probable, i.e. the modal complexity value. In particular, the maximum probability among outputs
with modal complexity is likely to be very close to the upper bound. This does not necessarily mean that the outputs which
individually have highest probability will be closest to the bound, and indeed they could be far from the bound. Rather, if
sampling yields that outputs of complexity 20 bits, say, are most likely to be generated, then the highest probability output
for complexity 20 can be expected to be close to the upper bound.

3. Many outputs must have probabilities below their upper bounds

We always expect some outputs to have probabilities below their upper bounds: If P is uniform, then for simple x

P (x) =
1

NO
⌧ 2�K(x|f,n)+O(1) (B6)

so simple outputs are below their upper bounds. On the other hand, if the distribution is non-uniform, with many simple
outputs having high probability, then necessarily many outputs must have below-average probabilities, i.e.

P (x) ⌧ 1

NO
 2�K(x|n)+O(1) (B7)

Or in short, 2�K(x|f,n) is a good estimate of P (x) for x from random inputs, but x from non-random will be far below
the 2�K(x|f,n). Alternatively, because K(x|f, n)  log2(x) + O(1), we can estimate the total probability if all ouputs were

NOTE: upper bound only!

K. Dingle, C. Camargo and A.AL, Nature Communications 9, 761 (2018)

Formalising the Monkey Intuition using AIT: a new coding theorem for non UTM maps

assumption that the exponent in Eq. (4.17) is related to our approximation K̃(x) by

K(x|A) +O(1) ⇡ aK̃(x) + b (4.23)

for constants a > 0 and b. These constants account for the O(1) term, potential

idiosyncrasies of the complexity approximation K̃, and other possible factors arising

from our approximations. Hence we approximate Eq. (4.17) as

P (x) . 2�aK̃(x)�b (4.24)

Note that the constants a and b depend on the mapping, but not on x.

As we discuss in the next Section and the example maps below, the values of a

and b can often be inferred a priori using one or more of: The complexity values of all

the outputs, the number of outputs (NO), the probability of the simplest structure,

or other values.

4.5 Making predictions for P (x) in computable maps

We can often make predictions about the values of a and b (Eq. (4.24)), via various

methods. Essentially we use any piece of information about the outputs or their

probabilities that is available to estimate, bound or approximate the values of a and

b. We now describe some methods, which we apply to various maps in the next

Section of this Chapter.

4.5.1 Estimating the range of K(x|A)

We will now estimate the range of values that we expect K(x|A) to assume. We

begin with a lower bound on possible complexity values: Given A we can compute

all the inputs, and produce all NO outputs. Hence, we can describe any x 2 O by its

index 1  j  NO in the set of outputs O. Therefore

K(x|A)  log(j) +O(log(log(j))) (4.25)

95

NOTE: upper bound only!

1) Computable input-output map f: I à O
2) Map f must be simple – e.g. K(f) grows slowly with system size – then

K(x|f,n) ≈ K(x) + O(1)
3) K(x) is approximated, for example by Lempel Ziv compression or some other

suitable measure.
4) Bound is tight for most inputs, but not most outputs.
5) Maps must be a) simple, b) redundant, c) non-linear, d) well-behaved (e.g. not a

pseudorandom number generator) – many maps satisfy these conditions.
6) There is also a statistical lower bound.

K. Dingle, C. Camargo and A.AL, Nature Comm 9, 761 (2018); K. Dingle, G. Valle-Perez, AAL, Sci. Rep. 10, 4415 (2020)

Kamal Dingle Chico Camargo

(2 Dphils of work)

Simplicity bias for computable input-output maps

K. Dingle, C. Camargo and A.AL, Nature Communications 9, 761 (2018)

assumption that the exponent in Eq. (4.17) is related to our approximation K̃(x) by

K(x|A) +O(1) ⇡ aK̃(x) + b (4.23)

for constants a > 0 and b. These constants account for the O(1) term, potential

idiosyncrasies of the complexity approximation K̃, and other possible factors arising

from our approximations. Hence we approximate Eq. (4.17) as

P (x) . 2�aK̃(x)�b (4.24)

Note that the constants a and b depend on the mapping, but not on x.

As we discuss in the next Section and the example maps below, the values of a

and b can often be inferred a priori using one or more of: The complexity values of all

the outputs, the number of outputs (NO), the probability of the simplest structure,

or other values.

4.5 Making predictions for P (x) in computable maps

We can often make predictions about the values of a and b (Eq. (4.24)), via various

methods. Essentially we use any piece of information about the outputs or their

probabilities that is available to estimate, bound or approximate the values of a and

b. We now describe some methods, which we apply to various maps in the next

Section of this Chapter.

4.5.1 Estimating the range of K(x|A)

We will now estimate the range of values that we expect K(x|A) to assume. We

begin with a lower bound on possible complexity values: Given A we can compute

all the inputs, and produce all NO outputs. Hence, we can describe any x 2 O by its

index 1  j  NO in the set of outputs O. Therefore

K(x|A)  log(j) +O(log(log(j))) (4.25)

95

= black line (red dashed with b=0)

Simpliciy bias works in many different maps

Tertiary structure (3D) Secondary structure
(who bonds to whom)

GAAAGUCUGGGCUAAGCCACUGAUGGUGUCUGAAAUGAGAGGAAAACUUUUG

Folding
GP map

Hammerhead ribozyme

Evolution has an inbuilt Occam’s razor

Mapping from RNA sequences to RNA structures

4

-5

-4

-3

-2

-1

 0

 0 10 20 30 40 50 60 70

lo
g(

fre
qu

en
cy

)

complexity K~ (Lempel-Ziv)

RNA L=30

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

-8 -7 -6 -5 -4 -3 -2 -1 0

lo
g(

na
tu

ra
l f

re
qu

en
cy

)

log(random frequency)

Natural versus random frequencies L=30 RNA

-5

-4

-3

-2

-1

 0

 0 5 10 15 20

lo
g(

fre
qu

en
cy

)

complexity K~ (Lempel-Ziv)

RNA L=100 (coarse-grained to Level 5)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

lo
g(

na
tu

ra
l f

re
qu

en
cy

)

log(random frequency)

Natural versus random frequencies L=100 RNA

FIG. 3. Probability P (p) versus complexity K̃(p) for (a) L = 30 RNA full
SS and (b) L = 100 SS coarse-grained to level 5 (Methods). Probabilities
for structures taken from random sampling of sequences (red) compare well
to the frequency found in the fRNA database [21] (green dots) for 40,554
functional L = 30 RNA sequences with 17,603 unique dot-bracket SS and
for 932 natural L = 100 RNA sequences mapping to 16 unique coarse-
grained level 5 structures. For both lengths, complexity and the log of the
probability are inversely correlated as predicted. In (c) and (d) we directly
compare the frequency of RNA structures in the fRNAdb database to the
frequency of structures upon uniform random sampling of genotypes for
L = 30 and L = 100 respectively. The lines are y = x. Correlation co-
efficients = 0.71 and 0.92, for L=30 and L=100 respectively, and p-value<
10�6 for both. Sampling errors are larger at low frequencies for L=30. Figs
need labelling a, b, c , d.

are not fundamental. The AIT formalism also suggests that similar
systems should have similar probability complexity relationships,
which helps further explain why the the polyominoes and proteins
have similar P (p) v.s. K̃(p) plots.

Importantly, many GP maps satisfy the conditions for simplic-
ity bias, including those where symmetry may be harder to define.
We therefore hypothesise that a bias towards simplicity may also
strongly affect evolutionary outcomes for many other GP maps in
nature. We test this hypothesis for RNA secondary structure and a
model model gene regulatory network (GRN).
Simplicity bias in RNA secondary structure

Because it can fold into well-defined structures, RNA is a versa-
tile molecule that performs many biologically functional roles be-
sides encoding information. While the full sequence to 3D structure
problem is hard to solve, a simpler problem of predicting secondary
structure (SS), which describes the bonding pattern of the bases,
can be both accurately and efficiently calculated [22, 23]. The map
from sequences to SS is perhaps the best studied GP map and has
provided many conceptual insights into the role of structured vari-
ation in evolution [7, 24–29]. It has already been shown [26, 29]
that the RNA GP map strongly determines the distributions of RNA
shape properties in the fRNAdb database [21] of naturally occuring
non-coding RNA (ncRNA). Although natural selection still plays a
role (see [26, 29] for further discussions), the dominant determinant
of these structural properties is strong bias in the arrival of varia-
tion [7]. It was recently shown [9] that the RNA SS GP map is well
described by Eq. (1). Combining these observations leads to the
hypothesis that functional ncRNA in nature should also be expo-

nentially biased towards low K̃(p) (more compressible) structures.
To test this hypothesis, we first, for length L=30, calculate K̃(p)

by directly measuring the complexity of the dot-bracket notation
of a SS using a standard Lempel-Ziv compression technique [9]
(Methods and SM V.B). In Fig. 3a we show that for both naturally
occurring and randomly sampled phenotypes, there is a strong in-
verse correlation between frequency and complexity. We note that
L = 30 is short enough that finite size effects are expected to affect
the correlation with Eq. (1). For longer RNA, the agreement with
Eq. (1) is expected to be better, see e.g. [9], Fig. S10 and Table SII.
Fig. 3c shows that randomly sampling sequences provides a good
predictor for the frequency with which these structures are found in
the database, consistent with previous observations [26, 29]. We es-
timate that for L = 30 there are 3 ⇥ 106 possible SS [26], but only
17,603 are found in the fRNAdb database [21], and they are much
more likely to be compressible structures.

For lengths longer than L=30, the databases of natural RNAs
show little to no repeated SS, so individual frequencies can’t be
extracted. To make progress, we apply a well established coarse-
graining strategy that recursively groups together RNA structures
by basic properties of their shapes [30], which was applied to nat-
urally occurring RNA SS in [29]. At the highest level of coarse-
graining (level 5) there are many repeat structures in the fRNAdb
database, allowing for frequencies to be directly measured (Meth-
ods). For L = 100 we compare the empirical frequencies to P (p)
estimated by random sampling. As can be seen in Fig. 3b, there is
again a strong negative correlation between frequency and complex-
ity. Fig. 3d shows that natural frequencies are well predicted by the
random sampling. Again, only a tiny fraction (we estimate about
⇡ 1/108) Needs citation or explanation of all possible phenotypes
is explored by nature. The RNA SS GP map therefore exhibits simi-
lar simplicity bias phenomenology to the protein complexes and the
polyomino GP map. While the simpler group-theory based symme-
tries discussed for protein complexes and polyominoes do not ap-
ply here, the bias towards lower K̃(p) reflects the more generalised
symmetries in the RNA SS structures. As for the proteins complexes
and polyominoes, simple structures spontaneously emerge because
they are exponentially more likely to occur as variation. Is this last
sentence supposed to be here? It feels out of place.
Model gene regulatory network

The protein and RNA phenotypes both describe shapes. Can a
similar strong preference for simplicity be seen for other classes of
phenotypes? To this end we also studied a celebrated model for the
budding yeast cell-cycle [31], where the interactions between the
biomolecules that regulate the cell-cycle are modelled by 60 coupled
ordinary differential equations (ODE). As a proxy for the genotypes,
we randomly sample the 156 biochemical parameters of the ODEs
(Methods). For each set of parameters, we calculate the complexity
of the concentration versus time curve of the CLB2/SIC1 complex
(a key part of the cycle) using the up-down method [32] (Methods).
Fig. 4 shows that the P (p) exhibits an exponential bias towards low
complexity time curves, as hypothesised. Of course many of these
phenotypes may not satisfy the biological function needed for the
budding yeast cell-cycle. But interestingly, the wild-type phenotype
has the lowest complexity of all the phenotypes we found, and is
also the most likely to arise by random variation. While the evo-
lutionary origins of this GRN are complex, we again suggest that a
bias towards simplicity in the arrival of variation played a key role
in its emergence.
Discussion

The two main hypotheses in this paper are: (1) GP maps are,
under random mutations, exponentially biased towards phenotypic
variation with low descriptional complexity, as predicted by AIT.
Maybe better to say “...as predicted by results derived from AIT

932 non-coding functional RNA of length 100 found in nature (from fRNAdb bioinformatic database)

K Dingle, F. Ghaddar, P. Sulc and AA Louis, bioarxiv /2020.12.03.410605

Evolution has an inbuilt Occam’s razor

Published as a conference paper at ICLR 2019

(a) (b)

Figure 2: (a) Probability (using GP approximation) versus critical sample ratio (CSR) of labelings
of 1000 random CIFAR10 inputs, produced by 250 random samples of parameters. The network
is a 4 layer CNN. (b) Comparing the empirical frequency of different labelings for a sample of m
MNIST images, obtained from randomly sampling parameters from a neural neural network, versus
that obtained by sampling from the corresponding GP. The network has 2 fully connected hidden
layers of 784 ReLU neurons each. �w = �b = 1.0. Sample size is 107, and only points obtained in
both samples are displayed. These figures also demonstrate significant (simplicity) bias for P (f).

In order to use the PAC-Bayes approach, we need a method to calculate P (U) for large systems, a
problem we now turn to.

5.1 GAUSSIAN PROCESS APPROXIMATION TO THE PRIOR OVER FUNCTIONS

In recent work (Lee et al. (2017); Matthews et al. (2018); Garriga-Alonso et al. (2018); Novak et al.
(2018)), it was shown that infinitely-wide neural networks (including convolutional and residual
networks) are equivalent to Gaussian processes. This means that if the parameters are distributed
i.i.d. (for instance with a Gaussian with diagonal covariance), then the (real-valued) outputs of the
neural network, corresponding to any finite set of inputs, are jointly distributed with a Gaussian
distribution. More precisely, assume the i.i.d. distribution over parameters is P̃ with zero mean,
then for a set of n inputs (x1, ..., xn),

P
✓⇠P̃

(f✓(x1) = ỹ1, ..., f✓(xn) = ỹn) / exp

✓
�1

2
ỹTK�1ỹ

◆
, (3)

where ỹ = (ỹ1, ..., ỹn). The entries of the covariance matrix K are given by the kernel function
k as Kij = k(xi, xj). The kernel function depends on the choice of architecture, and properties
of P̃ , in particular the weight variance �

2
w
/n (where n is the size of the input to the layer) and the

bias variance �
2
b
. The kernel for fully connected ReLU networks has a well known analytical form

known as the arccosine kernel (Cho & Saul (2009)), while for convolutional and residual networks
it can be efficiently computed5.

The main quantity in the PAC-Bayes theorem, P (U), is precisely the probability of a given set of out-
put labels for the set of instances in the training set, also known as marginal likelihood, a connection
explored in recent work (Smith & Le (2017); Germain et al. (2016)). For binary classification, these
labels are binary, and are related to the real-valued outputs of the network via a nonlinear function
such as a step functionwhich we denote �. Then, for a training set U = {(x1, y1), ..., (xm, ym)},
P (U) = P

✓⇠P̃
(�(f✓(x1)) = y1, ...,�(f✓(xm)) = ym).

This distribution no longer has a Gaussian form because of the output nonlinearity �. We will discuss
how to circumvent this. But first, we explore the more fundamental issue of neural networks not

5We use the code from Garriga-Alonso et al. (2018) to compute the kernel for convolutional networks

7

Simpliciy bias is found in DNNs

G. Valle Perez, C. Camargo and A.A. Louis, arxiv:1805.08522 – ICLR 2019

(a) Probability (using GP approximation) versus critical sample ratio (CSR) of labelings of 1000 random
CIFAR10 inputs, produced by 250 random samples of parameters. The network is a 4 layer CNN.

Simplicity bias for a CNN on CIFAR10

DNNs are trained using Stochastic gradient
descent (SGD) on a loss function.

Dominant hypothesis in the field is that SGD has
special properties that enhance generalization

Hold on: why should parameter function map predict DNN outcomes?

Is SGD a Bayesian sampler? Well, almost, Chris Mingard, Guillermo Valle-Pérez, Joar Skalse, Ard A. Louis, arxiv.org: 2006.15191

https://arxiv.org/abs/2006.15191

Intuition: for very strong bias: Basin of attraction ~ Basin size (P(f))

Problem: why should parameter function map predict outcomes?

and doesn’t exactly converge to the Bayesian posterior (Stephan et al., 2017; Brosse et al.,
2018). Nevertheless, it has been conjectured that with small step size, SGD may approximate
the Bayesian posterior (Naveh et al., 2020; Cohen et al., 2019), as we empirically find in
our experiments. These connections are rich and worth exploring further in this context.
Nevertheless, some caution is needed with these analogies to statistical mechanics because
they depend on assumptions which may only to hold on prohibitively long time-scales.

(a) Schematic loss landscape (b) Corrupted data, CE loss (c) PB(f |S) v.s. PSGD(f |S)

Figure 8: Schematic landscape and e�ects of randomising training labels. (a)
Cartoon of a biased loss-landscape. The three functions f1, f2 and f3 all reach zero
classification error (dashed red line), but due to bias in the parameter-function map,
the “basin size” VB(f1) ∫ VB(f2), VB(f3), which typically implies that for the “basins
of attraction” VSGD(f1) ∫ VSGD(f2), VSGD(f3). PB(f |S) is proportional to VB(f), and
PSGD(f |S) is proportional to VSGD(f). (b) PB(f |S) (solid) and fl(‘G)PB(f |S) (dashed) v.s.
‘G, for test set of size 100 and CE loss (as in Figure 1b) but including label corruption
c. (b) PSGD(f |S) v.s. PB(f |S) on MNIST with a 2-layer 1024 node wide FCN with MSE
loss, test set size 50, and 20% of the training labels randomised (È‘GÍSGD = 13.4% and
È‘GÍGP = 5.80%). Here functions with frequency < 10 are also shown on the plot. The
correlation is much less pronounced than for the unrandomised case shown in Figure 1a.
Dots on the axes denote functions found by just one of the two methods. Let F be the set of
functions found by both the optimiser and under GP sampling. Then

q
fœF PB(f |S) = 99.3%,

and
q

fœF PSGD(f |S) = 24.3%. In other words, while the Adam optimiser finds almost all
functions with high PB(f |S), it also finds many functions with low PB(f |S). The much
weaker bias under label corruption observed in (b) likely explains the weaker correlation
between the Bayesian results and that of the optimiser found here.

A better analogy may be to the “arrival of the frequent” phenomenon in evolutionary
dynamics (Schaper and Louis, 2014), which, like the “basin of attraction” arguments, does
not require steady state. Instead it predicts which structures are likely to be reached first
by an evolutionary process. For RNA secondary structures, for example, it predicts that a
stochastic evolutionary process will reach structures with a probability that to first order
is proportional to the likelihood that uniform random sampling of genotypes produces
the structure. Indeed, this phenomenon – where the probability upon random sampling
predicts the outcomes of a complex search process – can be observed in naturally occurring

19

Similar effect in evolutionary theory under strong bias:
The arrival of the frequent: how bias in genotype-phenotype maps can steer populations to local optima
Steffen Schaper and Ard A. Louis, PLoS ONE 9 (2): e86635 (2014)

Is SGD a Bayesian sampler? Well, almost, Chris Mingard, Guillermo Valle-Pérez, Joar Skalse, Ard A. Louis, Journal of Machine Learning Research 22 (79), 1-64 (2021)

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0086635
https://arxiv.org/abs/2006.15191

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

WHY FLATNESS CORRELATES WITH GENERALIZATION FOR DEEP NEURAL NETWORKS

flatness and generalisation in light of the “volume” V (f)
of a function f , defined as a weighted integral over all
parameters for which the DNN maps to f . Intuitively, we
expect local flatness measures to typically be smaller (flatter)
for systems with larger volumes. Nevertheless, there may be
regions of parameter space where local derivatives are very
large. these are probed, for example, with the alpha-scaling
transformation. Since the volume is parameter independent,
it is invariant to alpha-scaling re-parameterization.

In the context of supervised learning with training to zero
error on a training set, we show that the volume is directly
proportional to the Bayesian posterior. Following Mingard
et al. (2020) we therefore expect log(V (f)) to correlate lin-
early with generalisation performance. We show empirically
that volume is indeed a robust predictor of generalisation.
By contrast, while the flatness-generalisation correlation
works for vanilla SGD, it can be broken, for example, by al-
pha scaling, or else in some cases by the use of certain SGD
variants such as Adam (Kingma & Ba, 2014) or entropy-
SGD (Chaudhari et al., 2019).

2. Definitions and notation
2.1. Supervised learning

For a typical supervised learning problem, the inputs live
in an input domain X , and the outputs belong to an output
space Y . For a data distribution D on the set of input-output
pairs X⇥Y , the training set S is a sample of m input-output
pairs sampled i.i.d. from D, S = {(xi, yi)}mi=1 ⇠ Dm,
where xi 2 X and yi 2 Y . The output of a DNN on
an input xi is denoted as ŷi. Typically a DNN is trained
by minimising a loss function L : Y ⇥ Y ! R, which
measures differences between the output ŷ 2 Y and the
observed output y 2 Y , by assigning a score L(ŷ, y) which
is zero when they match, and positive when they don’t
match. DNNs are typically trained by using an optimization
algorithm such as SGD to minimize the loss function on
a training set S. The generalisation performance of the
DNN is then measured on a test set E = {(x0

i, y
0
i)}

|E|
i=1 ⇠

D|E|. For classification problems, the generalisation error
is defined as ✏(E) = 1

|E|
P

x0
i2E [ŷi 6= y

0
i], where is the

standard indicator function which is one when its input is
true, and zero otherwise.

2.2. Flatness measures

Perhaps the most natural way to measure the flatness of
minima is to consider the eigenvalue distribution of the
Hessian Hij = @

2
L(w)/@wi@wj once the learning process

has converged (typically to a zero training error solution).
Sharp minima are characterized by a significant number
of large positive eigenvalues �i in the Hessian, while flat
minima have numerous small eigenvalues. Some care must

be used in this interpretation because it is widely thought
that DNNs converge to stationary points that are not true
minima, leading to negative eigenvalues and complicating
their use in measures of flatness. Typically, only a subset of
the positive eigenvalues are used (Wu et al., 2017; Zhang
et al., 2018). In this paper, we only use the logarithm of
largest eigenvalue, which we find correlates well with other
eigenvalue based measures used in the literature.

Hessians are typically very expensive to calculate. For this
reason Keskar et al. (2016) introduced a computationally
more tractable measure called "sharpness":

Definition 2.1 (Sharpness). Given parameters w0 within
a box in parameter space C✏ with sides of length ✏ > 0,
centered around a minimum of interest at parameters w, the
sharpness of the loss L(w) at w is defined as:

sharpness :=
maxw02C✏ (L(w

0)� L(w))

1 + L(w)
⇥ 100.

In the limit of small ✏, the sharpness can be related to the
spectral norm of the Hessian (Dinh et al., 2017):

sharpness ⇡
�����r2

L(w)
�����

2
✏
2

2(1 + L(w))
⇥ 100.

2.3. Functions and volume

We first clarify how we represent functions in the rest of
paper, using classification as an example:

Definition 2.2 (Representation of Functions). Consider a
DNN N , a training set S = {(xi, yi)}mi=1 and test set
E = {(x0

i, y
0
i)}

|E|
i=1. We represent the function f(w) with

parameters w associated with N as a string of length
(|S|+ |E|), where the values are the labels ŷi and ŷ

0 that N
produces on the concatenation of training inputs and testing
inputs.

For example, for binary classification the function is rep-
resented as a binary string of length |S| + |E|. In some
cases, such as the Boolean system described in Valle-Pérez
et al. (2018) and treated in section 5.1, this representation
is typically complete because it is feasible to enumerate
all possible inputs. However, for real-life datasets the total
number of possible inputs is hyper-astronomically large,
and so the definition above is usually a coarse-grained one
based on the user’s choice of S and E. For MNIST (LeCun
et al., 1998), for example, all inputs would include the set
of 28x28 integer matrices whose entries take values from
0-255, which gives 256784 possible inputs.

The link between functions and a DNN is described by the
parameter-function map which was first described in Valle-
Pérez et al. (2018):

A function based picture

f(w) = (5,0,4,1,9) (0 errors)
f(w) = (5,0,4,7,9) (1 error)

Example on 5 MNIST inputs:

wish to infer (i.e. no noise), at some points, then we need to use a 0-1 likelihood P (S|f), which just
indicates whether the data is consistent with the function. Formally, if S = {(xi, yi)}mi=1 corresponds
to the set of training pairs, then we let

P (S|f) =
⇢
1 if 8i, f(xi) = yi

0 otherwise .

Note that this quantity is technically P (S|f ; {xi}), but we denote it as P (S|f) to simplify notation.
We will use a similar convention throughout, whereby the input points are (implicitly) conditioned
over. Bayesian inference then corresponds to inferring a function according to Bayes rule

P (f |S) = P (S|f)P (f)

P (S)
, (5)

also called the Bayesian posterior. P (S) is also called the marginal likelihood or Bayesian evidence,
and it is the total probability of all functions compatible with the training set. For a fixed training set,
all the variation in P (f |S) among f consistent with S comes from the prior P (f) of the untrained
network since P (S) is constant. Thus a bias in the prior is essentially translated over to the posterior.

For such an algorithm, the PAC-Bayes theorem [81, 23], roughly states that the generalisation error ✏
is bounded, with probability 1� � as

✏ . � logP (S)� log (�)

m
,

where m is the size of the training set. In [23], the authors applied the bound to DNNS, calculating
P (S) by approximating the output of randomly sampling the DNN parameters with a Gaussian
process. The bound was shown to provide relatively tight predictions for optimiser-trained DNNs
for a FCN and CNNs on MNIST, Fashion-MNIST and CIFAR-10. Moreover, the bound reproduced
trends such as the increase in the generalisation error upon an increased fraction of randomised labels.

We note that the bound is only rigorously proven for DNNs trained in an exact Bayesian fashion,
i.e. by using the distribution over P (f) obtained by randomly sampling parameters, and performing
a Bayesian update as described in Equation (5) to obtain the posterior P (f |S). So its success in
reproducing behaviour of SGD-trained DNNs would be surprising if the optimiser itself was an
important source of implicit bias. The authors of [23] conjecture that because of the huge bias in the
parameter-function map, relatively small deviations of the optimisation algorithm from Bayesian
sampling do not play a big role in determining which functions the algorithm finds. This would
explain why the PAC-Bayes bounds work so well for optimiser-trained DNN models.

To recap, there are really two distinct hypotheses put forward in [23, 24]. The first, inspired by AIT
and in particular by Eq. (4), is that the parameter-function map is exponentially biased towards simple
functions, together with the principle that such a bias promotes better generalisation. The second,
inspired by the good performance of the PAC-Bayes bound in describing the generalisation behaviour
of DNNs trained by SGD, is that the parameter-function map is the primary source of their inductive
bias, and that any regularisation due to the optimiser or loss function are second-order effects (i.e.
coming from a relatively small deviations from the ideal Bayesian behaviour).

Our current paper is primarily about testing this second hypothesis in more detail, by studying
how similar PSGD(f |S) and PB(f |S) are. At the same time, the application of hypothesis 2 to
understanding generalisation depends on strong bias, for which hypothesis 1 makes a specific
proposal.

The stream of work empirically studying the neural network GPs (NNGPs) is also relevant in the
context of question 1 [29, 30?]. Remarkably, these NNGPs, which are equivalent to Bayesian
inference on infinite-width DNNs, exhibit fairly similar generalisation performance to their SGD
trained finite-width DNN counterparts. This correspondence tells us several things which are useful to
answer question 1. Firstly, that it’s probably sufficient to study the infinite-width limit, and the answer
shouldn’t depend too strongly on the network size or parameter count. Secondly, that Bayesian
inference is probably enough to answer question 1, and the answer shouldn’t depend too strongly on
the training method used.

In this context an interesting development is the introduction of the Neural Tangent Kernel (NTK) by
Jacot et al. [33] which approximates the dynamics of an infinite width DNN with parameters that

17

The application to DNNs was first shown in [23]. We note that the input-output map of interest is not
the map from inputs to DNN outputs, but rather the map from the network parameters to the function
f it produces on inputs X which was described in the main text in Definition 2.1. The prediction of
Eq. 4 for a DNN with parameters sampled randomly (from, for example, truncated i.i.d. Gaussians) is
that, if the map is sufficiently biased, then the probability of the DNN producing a function f on input
data xn

i=0 drops exponentially with increasing complexity of the function f . Note that technically we
should write f as f |X to indicate the dependence of the function modelled by the DNN on the inputs
X . We also note that the bound of Eq. 4 on its own does not force a map to be biased. It still holds
for a uniform distribution. But if the map is biased, then it will be biased according to Eq. 4.

In [23] it was shown empirically that this very general prediction held for the P (f) of a number of
different DNNs. This was done via direct sampling of the parameters of a small DNN on Boolean
inputs. NNGP calculations also showed a strong bias in more complex systems. In [24] some exact
results were proven for simplified networks, that were also consistent with the bound of Equation (4).
In particular, they proved that for a perceptron with no bias, upon randomly sampling the parameters
(with a distribution satisfying certain weak assumptions), any value of class-imbalance was equally
likely. Because there are many fewer functions with high class imbalance (low “entropy”) than
low class imbalance, and these are also simpler, this implied a bias of P (f) towards certain simple
functions. They also proved that for infinite-width ReLU DNNs, this bias gets monotonically stronger
as the number of layers grows. A different direction was pursued in [25], who showed that, upon
randomly sampling the parameters of a ReLU DNN acting on Boolean inputs, the functions obtained
had an average sensitivity to inputs which is much lower than if randomly sampling functions.
Functions with low input sensitivity are also simple, thus proving another form of simplicity bias
present in these systems.

On the other hand, in a recent paper [66], it was shown that for DNNs with activation functions such
as Erf and Tanh, the bias starts to disappear as the system enters the “chaotic regmie”, which happens
for weight variances above a certain threshold, as the depth grows [67] (note that ReLU networks
don’t have such a chaotic regime). While these hyperparameters are not typically used for DNNs,
they do show that there exist regimes where there is no simplicity bias. Note that the Levin bound
still holds, but P (f) is simply approaching a uniform distribution, and the bound becomes loose for
small complexity. These results are also interesting because, if the bias becomes weaker, then it may
also be the case that the correlation between PB(f |S) and PSGD(f |S) starts to disappear.

Several of these works use an important recent extensions of Neal’s seminal proof [68, 69] – that a
single-layer DNN with random i.i.d. weights is equivalent to a Gaussian process (GP) [70] in the
infinite width limit – to multiple layers and architectures [29, 30, 31, 71, 72].

A bias towards simplicity does not automatically imply good generalisation. Instead certain key
hypotheses are needed about the data, in particular that it is described by functions that are simple (in
a similar sense than the inductive bias). The assumption that a more parsimonious hypothesis is more
likely to be true has been influential since antiquity and is often articulated by invoking Occam’s
razor. However, the fundamental justification for this heuristic is disputed [73]. For the machine
learning literature see e.g. [74, 75, 76, 77]. For links between the razor and AIT/Solomonoff relevant
to Eq. (4), see e.g. [78, 79] for a spirited discussion.

Studies that imply that the data is somehow “simple” include an influential paper by Lin and
Tegmark [26] invoking arguments mainly from statistical mechanics to argue that deep learning
works well because the laws of physics typically select for function classes that are “mathematically
simple”, and so easy to learn. For the much used MNIST data set, Spigler et al. [28] show that while
the data is embedded in a 282 = 784 dimensional manifold, it has a much lower effective dimension
deff = 15. Individual numbers have effective dimensions that are even lower, ranging from 7 to
13 [80]. So the functions that fit MNIST data are much simpler than those that fit random data [27].

A.3 Bayesian formulation of the relation between bias of untrained networks and trained
networks

The effect of the bias in P (f) on a network conditioned on a training set S can be formalised in
a Bayesian framework. To apply Bayesian inference for supervised learning (or function approx-
imation), we need to begin with a prior over functions, which in this case is simply P (f). If our
‘observation’, that is the training set S, corresponds to the exact values of the function which we

16

Prior over functions

wish to infer (i.e. no noise), at some points, then we need to use a 0-1 likelihood P (S|f), which just
indicates whether the data is consistent with the function. Formally, if S = {(xi, yi)}mi=1 corresponds
to the set of training pairs, then we let

P (S|f) =
⇢
1 if 8i, f(xi) = yi

0 otherwise .

Note that this quantity is technically P (S|f ; {xi}), but we denote it as P (S|f) to simplify notation.
We will use a similar convention throughout, whereby the input points are (implicitly) conditioned
over. Bayesian inference then corresponds to inferring a function according to Bayes rule

P (f |S) = P (S|f)P (f)

P (S)
, (5)

also called the Bayesian posterior. P (S) is also called the marginal likelihood or Bayesian evidence,
and it is the total probability of all functions compatible with the training set. For a fixed training set,
all the variation in P (f |S) among f consistent with S comes from the prior P (f) of the untrained
network since P (S) is constant. Thus a bias in the prior is essentially translated over to the posterior.

For such an algorithm, the PAC-Bayes theorem [81, 23], roughly states that the generalisation error ✏
is bounded, with probability 1� � as

✏ . � logP (S)� log (�)

m
,

where m is the size of the training set. In [23], the authors applied the bound to DNNS, calculating
P (S) by approximating the output of randomly sampling the DNN parameters with a Gaussian
process. The bound was shown to provide relatively tight predictions for optimiser-trained DNNs
for a FCN and CNNs on MNIST, Fashion-MNIST and CIFAR-10. Moreover, the bound reproduced
trends such as the increase in the generalisation error upon an increased fraction of randomised labels.

We note that the bound is only rigorously proven for DNNs trained in an exact Bayesian fashion,
i.e. by using the distribution over P (f) obtained by randomly sampling parameters, and performing
a Bayesian update as described in Equation (5) to obtain the posterior P (f |S). So its success in
reproducing behaviour of SGD-trained DNNs would be surprising if the optimiser itself was an
important source of implicit bias. The authors of [23] conjecture that because of the huge bias in the
parameter-function map, relatively small deviations of the optimisation algorithm from Bayesian
sampling do not play a big role in determining which functions the algorithm finds. This would
explain why the PAC-Bayes bounds work so well for optimiser-trained DNN models.

To recap, there are really two distinct hypotheses put forward in [23, 24]. The first, inspired by AIT
and in particular by Eq. (4), is that the parameter-function map is exponentially biased towards simple
functions, together with the principle that such a bias promotes better generalisation. The second,
inspired by the good performance of the PAC-Bayes bound in describing the generalisation behaviour
of DNNs trained by SGD, is that the parameter-function map is the primary source of their inductive
bias, and that any regularisation due to the optimiser or loss function are second-order effects (i.e.
coming from a relatively small deviations from the ideal Bayesian behaviour).

Our current paper is primarily about testing this second hypothesis in more detail, by studying
how similar PSGD(f |S) and PB(f |S) are. At the same time, the application of hypothesis 2 to
understanding generalisation depends on strong bias, for which hypothesis 1 makes a specific
proposal.

The stream of work empirically studying the neural network GPs (NNGPs) is also relevant in the
context of question 1 [29, 30?]. Remarkably, these NNGPs, which are equivalent to Bayesian
inference on infinite-width DNNs, exhibit fairly similar generalisation performance to their SGD
trained finite-width DNN counterparts. This correspondence tells us several things which are useful to
answer question 1. Firstly, that it’s probably sufficient to study the infinite-width limit, and the answer
shouldn’t depend too strongly on the network size or parameter count. Secondly, that Bayesian
inference is probably enough to answer question 1, and the answer shouldn’t depend too strongly on
the training method used.

In this context an interesting development is the introduction of the Neural Tangent Kernel (NTK) by
Jacot et al. [33] which approximates the dynamics of an infinite width DNN with parameters that

17

regime as follows: Given that DNNs can memorise randomly labelled image datasets, which leads to
poor generalisation, why do they behave so differently on correctly labelled datasets and select for
functions that generalise well? The solution to this conundrum must be that SGD trained DNNs have
an inductive bias towards functions that generalise well (on structured data).

The possibility that SGD is not just good for optimisation, but is also a key source of inductive bias
has generated an extensive literature. One major theme concerns the effect of SGD on the flatness of
the minima found, typically expressed in terms of eigenvalues of a local Hessian or related measures.
A link between better generalisation and flatter minima has been widely reported [8, 9, 10, 11, 12, 13]
(but see also [14]). A well-known result [9] is that DNNs trained with SGD find "flatter" minima for
smaller batch sizes, and also generalise better than identical models trained with large batch SGD
(by up to ⇠ 5%). Nevertheless, the overall differences between SGD and full-batch gradient descent
(GD) are still relatively small (see e.g. [11]). Moreover these batch-size effects can disappear when
the learning rate is also adjusted [15, 16, 17].

Direct theoretical work on SGD has also generated a large and sophisticated literature. For example,
in [18] it was demonstrated that SGD finds the max-margin solution in unregularised logistic regres-
sion, whilst it was shown in [19] that overparameterised DNNs trained with SGD avoid over-fitting
on linearly separable data. Recently, [20] proved agnostic generalization bounds of SGD-trained
neural networks. While an impressive theoretical achievement, no empirical test of the tightness of
the bounds is performed. Other recent work [21] suggests that gradient descent performs a hidden
regularisation in normalised weights, but a different analysis suggests that such implicit regularisation
may be very hard to prove in a more general setting for SGD [22]. Overall, while SGD and its related
algorithms are excellent optimisers, there is no consensus on what inductive bias SGD provides for
DNNs. (For further discussion of this SGD related literature see Appendix A).

An alternative approach is to consider the inductive properties of untrained DNNs. Recent theoretical
and empirical work [23, 24, 25] suggests that the probability P (f) that an untrained DNN outputs
a function f upon random sampling of its parameters (typically the weights and biases) is strongly
biased towards “simple” functions with low Kolmogorov complexity (see also Appendix A). A widely
held assumption is that such simple hypotheses will generalise well – think Occam’s razor. Indeed,
many processes modelled by DNNs are simple [26, 27, 28]. If the inductive bias towards simplicity
is preserved throughout training, then this could help explain the DNNs generalisation conundrum.

The effect of bias in an untrained DNN on training can be analysed within a Bayesian inference
framework with P (f) as a prior. Consider supervised learning with training data S corresponding
to the exact values of the function which we wish to infer (i.e. no noise). This corresponds to a
0-1 likelihood P (S|f), indicating whether the data is consistent with the function. Formally, if
S = {(xi, yi)}mi=1 corresponds to the set of training pairs, then P (S|f) = 1 if 8i, f(xi) = yi and 0
otherwise. The posterior probability PB(f |S) follows from Bayes rule:

PB(f |S) =
P (S|f)P (f)

P (S)
. (1)

where, for discrete functions, the marginal likelihood P (S) =
P

f
P (S|f)P (f) =

P
f2C(S) P (f),

with C(S) the set of all functions compatible with the training set. For C(S), that same set of
functions, the posterior probability PB(f |S) = P (f)/P (S). For a fixed S, P (S) is constant, and so
all the bias in PB(f |S) is translated over from the prior P (f).1

We can also calculate the probability PSGD(f |S) that a DNN trained with SGD to zero error on
S, converges on function f . The main question we will explore in this paper is: How similar is
PB(f |S) to PSGD(f |S)? If the two are significantly different, then SGD may provide an important
source of inductive bias. If the two are similar over a wide range of architectures, datasets, and
optimisers, then the inductive bias is primarily determined by the prior P (f) of the untrained DNN.

1.1 Main results summary

We performed extensive sampling experiments to calculate PSGD(f |S). Functions are distinguished
by the way they classify elements on a test set E. We use the Gaussian Processes (GP) approximation
to estimate PB(f |S) for the same systems. Our main findings are:

1This holds exactly for a fixed S, but not upon further averaging over training sets (Appendix ZZ).

2

If we wish to infer (i.e. no noise) at some points, then we need a 0-1 likelihood on training data
wish to infer (i.e. no noise), at some points, then we need to use a 0-1 likelihood P (S|f), which just
indicates whether the data is consistent with the function. Formally, if S = {(xi, yi)}mi=1 corresponds
to the set of training pairs, then we let

P (S|f) =
⇢
1 if 8i, f(xi) = yi

0 otherwise .

Note that this quantity is technically P (S|f ; {xi}), but we denote it as P (S|f) to simplify notation.
We will use a similar convention throughout, whereby the input points are (implicitly) conditioned
over. Bayesian inference then corresponds to inferring a function according to Bayes rule

P (f |S) = P (S|f)P (f)

P (S)
, (5)

also called the Bayesian posterior. P (S) is also called the marginal likelihood or Bayesian evidence,
and it is the total probability of all functions compatible with the training set. For a fixed training set,
all the variation in P (f |S) among f consistent with S comes from the prior P (f) of the untrained
network since P (S) is constant. Thus a bias in the prior is essentially translated over to the posterior.

For such an algorithm, the PAC-Bayes theorem [81, 23], roughly states that the generalisation error ✏
is bounded, with probability 1� � as

✏ . � logP (S)� log (�)

m
,

where m is the size of the training set. In [23], the authors applied the bound to DNNS, calculating
P (S) by approximating the output of randomly sampling the DNN parameters with a Gaussian
process. The bound was shown to provide relatively tight predictions for optimiser-trained DNNs
for a FCN and CNNs on MNIST, Fashion-MNIST and CIFAR-10. Moreover, the bound reproduced
trends such as the increase in the generalisation error upon an increased fraction of randomised labels.

We note that the bound is only rigorously proven for DNNs trained in an exact Bayesian fashion,
i.e. by using the distribution over P (f) obtained by randomly sampling parameters, and performing
a Bayesian update as described in Equation (5) to obtain the posterior P (f |S). So its success in
reproducing behaviour of SGD-trained DNNs would be surprising if the optimiser itself was an
important source of implicit bias. The authors of [23] conjecture that because of the huge bias in the
parameter-function map, relatively small deviations of the optimisation algorithm from Bayesian
sampling do not play a big role in determining which functions the algorithm finds. This would
explain why the PAC-Bayes bounds work so well for optimiser-trained DNN models.

To recap, there are really two distinct hypotheses put forward in [23, 24]. The first, inspired by AIT
and in particular by Eq. (4), is that the parameter-function map is exponentially biased towards simple
functions, together with the principle that such a bias promotes better generalisation. The second,
inspired by the good performance of the PAC-Bayes bound in describing the generalisation behaviour
of DNNs trained by SGD, is that the parameter-function map is the primary source of their inductive
bias, and that any regularisation due to the optimiser or loss function are second-order effects (i.e.
coming from a relatively small deviations from the ideal Bayesian behaviour).

Our current paper is primarily about testing this second hypothesis in more detail, by studying
how similar PSGD(f |S) and PB(f |S) are. At the same time, the application of hypothesis 2 to
understanding generalisation depends on strong bias, for which hypothesis 1 makes a specific
proposal.

The stream of work empirically studying the neural network GPs (NNGPs) is also relevant in the
context of question 1 [29, 30?]. Remarkably, these NNGPs, which are equivalent to Bayesian
inference on infinite-width DNNs, exhibit fairly similar generalisation performance to their SGD
trained finite-width DNN counterparts. This correspondence tells us several things which are useful to
answer question 1. Firstly, that it’s probably sufficient to study the infinite-width limit, and the answer
shouldn’t depend too strongly on the network size or parameter count. Secondly, that Bayesian
inference is probably enough to answer question 1, and the answer shouldn’t depend too strongly on
the training method used.

In this context an interesting development is the introduction of the Neural Tangent Kernel (NTK) by
Jacot et al. [33] which approximates the dynamics of an infinite width DNN with parameters that

17

P(S) = marginal likelihood or evidence

P(f|S) = P(f)/P(S) or 0, so bias in prior translates over to bias in posterior

Functions that fit S

Bayesian function picture for supervised learning on S
Posterior for functions conditioned on training set S follows from Bayes rule

Is SGD a Bayesian sampler? Well, almost, Chris Mingard, Guillermo Valle-Pérez, Joar Skalse, Ard A. Louis, Journal of Machine Learning Research 22 (79), 1-64 (2021)

https://arxiv.org/abs/2006.15191

SGD acts (almost) like a Bayesian sampler

FCN on binarized MNIST – training set=10,000, test set=100 images 2100 = 1030 possible functions fit the test set.

SGD acts like a Bayesian optimiser ….

Is SGD a Bayesian sampler? Well, almost, Chris Mingard, Guillermo Valle-Pérez, Joar Skalse, Ard A. Louis, Journal of Machine Learning Research 22 (79), 1-64 (2021)

(a) PB(f |S) v.s.PSGD(f |S) (b) PB(f |S) v.s. ‘G (c) CSR complexity v.s. ‘G

(d) f found by NNGP in (a). (e) PB(f |S) v.s.PAdagrad(f |S) (f) PB(f |S) v.s.PAdagrad(f |S)

Figure 1: Comparing the Bayesian prediction PB(f |S) to POPT(f |S) for SGD and
Adagrad, for an FCN on MNIST [We use training/test set size of 10,000/100; vertical
dotted blue lines denote 90% probability boundary; dashed grey line denotes x = y.]
(a) PB(f |S) v.s.PSGD(f |S) for MSE loss; n = 106 samples.
(b) PB(f |S) v.s. ‘G for the full range of possible errors on E (with CE loss). 20 random
functions were taken per value of error. The solid line shows average over log(PB(f |S)),
error bars are 2 standard deviations. The dashed line shows the weighted fl(‘G)ÈPB(f |S)Í,
where fl(‘G) is the number of functions with error ‘G. The small red box illustrates the
range of probability and error found in (a).
(c) CSR complexity for functions in PSGD(f |S) from the experiments in fig (b).
(d) Functions from (a) found by the GP (È‘GÍGP = 1.61%) and SGD (È‘GÍ = 1.88%): 913
functions are found by both, taking up 97.70% of the probability by SGD, and 99.96% by
GP.
(e) PB(f |S) v.s. PAdagrad(f |S) for MSE loss; n = 105 samples, and overtrained until 64
epochs had passed with zero error (È‘GÍ = 1.53%).
(f) is as (e) but with CE loss, meaning that the EP approximation is needed for PB(f |S),
making it slightly less accurate (È‘GÍ = 2.63%).

8

We use Gaussian Processes (GP)s to calculate PB(f|S) –

https://arxiv.org/abs/2006.15191

1) Why do DNNs generalise at all in the
overparameterised regime?
Because the parameter-function map is
highly biased towards simple solutions.

2) Given DNNs that generalise, can we
further fine-tune the hyperparameters to
improve generalisation? (engineers).

Two kinds of questions about generalisation:

Is SGD a Bayesian sampler? Well, almost, C. Mingard, G.Valle-Pérez, J. Skalse, AAL, arxiv.org: 2006.15191

SGD acts (almost) like a Bayesian sampler

CNN on binarized Fashion-MNIST – training set=10,000, test set=100 images
2100 = 1030 possible functions fit the test set.

2nd order effects beyond simplicity bias: changing the network

Similar results for CNN, LSTM, other data sets, etc….

(a) PB(f |S) v.s. PAdam(f |S) (b) PB(f |S) v.s. PAdam(f |S) (c) PB(f |S) v.s. PAdam(f |S)

Figure 3: Comparing PB(f |S) to PAdam(f |S) for CNNs and the FCN on Fashion-
MNIST [We use a training/test set size of 10,000/100; vertical dotted blue lines denote 90%
probability boundary; dashed grey line is x = y.] (a) FCN on Fashion-MNIST; È‘GÍ = 2.11%
for Adam with CE loss. (b) Vanilla CNN on Fashion-MNIST; È‘GÍ = 2.25% for Adam with
CE loss. (c) CNN with max-pooling on Fashion-MNIST; È‘GÍ = 1.96% for Adam with CE
loss. Note that when max-pooling is added, the probability of the lowest-error function
increases notably for both PAdam(f |S) and PB(f |S). There is a strong correlation between
PB(f |S) and PSGD(f |S) in all three plots. See Figure 13 for related results, including
Experiment 3 and a CNN with batch normalisation.

For an example of how the e�ects of architecture modifications can be observed in the
function probabilities, compare results in Figure 3b for the vanilla CNN to those in Figure 3c
for a CNN with max-pooling (He et al., 2016), a method designed to improve the inductive
bias of the CNN. Indeed the generalisation performance of the CNN improves, and an
important contributor is the increase in the probability of the highest probability 1-error
function in both PB(f |S) and PAdam(f |S), directly demonstrating an enhancement of the
inductive bias. See Figure 13 for related results. This example demonstrate how a function
based picture sheds light on the inductive bias of a DNN. Such insights could help with
architecture search, or more generally with developing new architectures with improved
implicit bias toward desired low error functions.

4.4 Comparing PB(f |S) and PSGD(f |S) to Neural Tangent Kernel results

In Figure 4 we compare PB(f |S) to the output of the neural tangent kernel (NTK) (Jacot et al.,
2018), which approximates gradient descent in the limit of infinite width and infinitesimal
learning rate. The generalisation error of NTK and NNGPs have been shown to be relatively
close, and they produce similar functions on simple 1D regression (Lee et al., 2019; Novak
et al., 2020). Here we show that this similarity also holds for the function probabilities for a
more complex classification task, although interestingly the NTK misses many functions
that both SGD and the GP find. We are currently investigating this surprising behaviour,
which may arise from the infinitesimal learning rate, and be exacerbated by the fact that
in Figure 4 the NTK is highly biased towards one 2-error function. Again, this example

12

With max-pooling probability
of low error function increases

Is SGD a Bayesian sampler? Well, almost, Chris Mingard, Guillermo Valle-Pérez, Joar Skalse, Ard A. Louis, Journal of Machine Learning Research 22 (79), 1-64 (2021)

https://arxiv.org/abs/2006.15191

1)Can we break the simplicity bias?

Can we do any control experiments?

Henry ReesDNNs can exhibit an order-to-chaos transition

Deep Information Propogation, S. S. Schoenholz et al. arXiv:1611.01232

TP09: The Physics of Machine Learning

parameters for which the C-map has a stable fixed point
at cab < 1 and an unstable fixed point at cab = 1.
Thus, by determining the stability of the fixed point at
cab = 1, for a given set of initialisation parameters, the
type of phases regime can be determined. The stability
of this point is classified by computing �1, which is the
derivative of the correlation coefficient clab with respect
to c

l�1
ab evaluated at cab = 1:

�1 ⌘
@c

l
ab

@c
l�1
ab

����
c=1

= �
2
w

Z
Dz

h
�

0
⇣p

q⇤z
⌘i2

. (11)

where q
⇤ = liml!1 q

l
aa. Using these equations and code

developed by Schoenholz et al. (2019)1, we reproduced
plots of the phase planes for tanh and ReLU.

(a) Tanh (b) ReLU

Figure 3: Mean field phase diagrams for tanh and ReLU
activation functions showing various phase regimes as
a function of �w and �b.

Figure 3a shows, for the tanh activation function, that
parameter space is separated into two regions - an or-
dered regime, where pairs of inputs become increasingly
correlated as they propagate, tending to a correlation of
cab = 1 and a chaotic regime, where pairs of inputs
tend to a correlation cab < 1. The boundary between
the two regimes is defined by �1 = 1 where inputs are
asymptotically correlated. See Appendix A for a full
discussion of the ReLU phase diagram.

Our first contribution is to consider the effect of ad-
justing the network depth on the correlation of inputs
for various initialisation parameters, in an effort to
consider whether network depth influences the ordered
and chaotic regimes. To achieve this, for a given number
of layers d, Equation (10) was iterated d times and then
the final correlation value of the two inputs was plotted
against the initialisation parameters, �w and network
depth d. Since we are iterating the C-map a finite
number of times, the ordered and chaotic regimes, as
defined above, are no longer explicitly defined. Instead

1https://github.com/ganguli-lab/deepchaos

the equations exhibit a form of transient chaos. We still
observe, however, a reasonably sharp drop from high
to low output correlation around the boundary between
order and chaos from Figure 3a. Figure 4 shows that
generally the correlation of sets of inputs decreases both
as �w is increased and as the depth of the network d is
increased. However, importantly, for networks initialised
with the parameters in the ordered regime, we observe
that increasing the depth of the network has no effect
on the correlation. Figure 4 provides us with a clearer
understanding of the various regions of parameter space
and a framework with which to explore the effect of
initialisation parameters �w and d on bias within DNNs.

Figure 4: Output correlation of the C-map for the tanh
activation function for different parameter initialisation.
The initial correlation value was fixed at cab;0 = 0.6.

2 Simplicity Bias in a model DNN
To assess the relationship between the correlation C-
map and implicit bias within DNNs, a untrained feed-
forward network is considered. We attempt to observe,
for a given set of input parameters, �w, �b and depth d,
(which determine the region of parameter space we are
observing), the probability distribution over all possible
functions induced via the parameter-function map M.
Following on from the work of Mingard et al. (2019) and
Pérez et al. (2019), a discrete function space is chosen
for which the inputs, X , are Boolean strings of length
7, X = {0, 1}7, and the outputs are single Boolean
characters {0, 1}. The space of all functions is therefore
F ✓ {0, 1}27 . This function space was selected since the
functions can be easily expressed and the space is small
enough that direct sampling can find the same function
multiple times. There are nevertheless 2128 ⇡ 1038

possible functions. To model functions of this nature,
a DNN was designed with an input layer of width 7 to
match the input space, Nl hidden layers of 40 neurons
each and a single Boolean output. Although this is a
fairly simple function space, when compared to common
image classification problems such as MNIST, it gives us
the freedom to allocate specific target functions to train

Page: 4

Chaotic regime for some activation functions (not ReLU!) – for wider initial parameters

Henry Rees

More biased

Less biased
No Occam

Chaotic regime reduces bias in prior P(f)

Greg Yang and Hadi Salman. A fine-grained spectral perspective on neural networks. arXiv preprint arXiv:1907.10599, 2019.

FCN on Boolean system

(a) (b) (c)

(d) Target function LZ = 31.5 (e) Target function LZ = 66.5 (f) Target function LZ = 101.5

Figure 1: (a) Probability versus rank of each of the functions (ranked by probability) from a sample
of size 108 for various neural networks. Each network contains 2 hidden layers of 40 neurons each
and was initialised with weight std �w and activation function �. (b) Probability versus Lempel-Ziv
complexity for two of the networks from (a). Probabilities are estimated from a sample of 108
parameters. Points with a frequency of 1 are removed for clarity as these suffer from finite-size
effects. (c) Generalisation versus Lempel-Ziv complexity. Specifically the effect of increasing �w on
the generalisation error for various target functions with a range of Lempel-Ziv complexities. The
networks were trained with advSGD. Error bars are one standard deviation. (d), (e), (f) Generalisation
error versus learned function LZ complexity, for 1000 random initialisations. The networks were
trained using a target function with (d) low LZ complexity, (e) medium LZ complexity and (f) high
LZ complexity and a training set size of 64. Generalisation error is defined with respect to off-training
set samples. Blue points represent functions learned using a neural network initialised with �w = 1
and the red points with �w = 8. The histograms on the sides of the plots show the frequency of
generalisation errors and complexities. The black cross represents the most common learned function
in each case.

This section is dedicated to explicitly showing the connection between generalisation and simplicity
bias for the Boolean system. It is broken into 3 sub-sections.

1. Rank plots showing the explicit presence of bias with in the Boolean system. Effectively extending
the results of Greg Yang. We show how we can control the level of bias by changing parameters �w

and the depth of the network.

2. In the second part, using Lempel-Ziv as our measure of complexity, we show how this bias from
sub-section 1 is specifically a bias towards the simplest functions. We also see explicitly how this bias
"drops off" as the system initialised deeper into the chaotic regime. This is our a priori bias P (f).

3. Finally, we show that this a priori bias leads to improved generalisation when compared to a
less biased network for low complexity target functions. Also we see that for extremely complex
functions the generalisation abilities of the networks are equally poor.

Use scatter plots to provide a deeper understanding as to which functions the DNN is implementing
after training and how the bias of the NN affects this.

4

Chaotic regime changes the bias in prior P(f)

Greg Yang and Hadi Salman. A fine-grained spectral perspective on neural networks. arXiv preprint arXiv:1907.10599, 2019.

(1 − ε %)

where is an indicator function (1 if its argument is true, and 0 otherwise). This is the probability

that the model expresses f upon random sampling of parameters over a parameter initialisation

distribution Ppar(✓), which is typically taken to have a simple form such as a (truncated) Gaussian.

In the following experiments, Ppar(✓) will be a truncated Gaussian, with weight variance �w (we take

the bias variance �b = 0). Therefore, we will typically parameterise P (f) = P (f ;�w).

P (f ;�w) can also be interpreted as the probability that the DNN expresses f upon initialisation
(from a truncated Gaussian with weight variance �w) before an optimisation process. It was shown
in (Valle-Pérez et al., 2018) that the exact form of Ppar(✓) (for reasonable choices) does not affect
P (f) much (at least for ReLU networks).
Definition 4.3 (Posterior distribution for Bayesian DNNs, PB(f |S)). We can interpret P (f ;�w) as

a prior. Bayesian inference then assigns a Bayesian posterior probability PB(f |S) to each f by

conditioning on the data according to Bayes rule

PB(f |S) :=
P (S|f)P (f)

P (S)
, (2)

where P (S) is also called the marginal likelihood or Bayesian evidence. Again, we will typically

parameterise this quantity as PB(f |S;�w).

It is the total probability of all functions compatible with the training set. For discrete functions,
P (S) =

P
f
P (S|f)P (f) =

P
f2C(S) P (f), with C(S) the set of all functions compatible with

the training set. For a fixed training set, all the variation in PB(f |S) for f 2 C(S) comes from the
prior P (f) of the untrained network since P (S) is constant. Thus, the bias in the prior is essentially

translated over to the posterior.

Another interesting quantity is the expectation of the posterior probability upon averaging over
training sets:

hP (f |S)iS = P (f)

⌧
P (Si|f)
P (Si)

�

Si

⇡ P (f) (1� ✏(f))m

hP (S)i = tF (f,m)P (f) ⇡ P (f)e�m✏(f)

hP (S)i (3)

where the first approximate step (average of the ratio is the ratio of the averages) should be good, on
average, if P (S) is highly concentrated, and the second approximation should be fine if if ✏(f) is
small. We defined a average training factor for function f as

tF (f,m) =
(1� ✏(f))m

hP (S)i ⇡ e�m✏(f)

hP (S)i =
e�m✏G

hP (S)ie
�m(✏(f)�✏G) (4)

Finally, we will define POPT(f |S). Informally, this is the probability that a DNN trained by some
optimiser OPT to 100% training accuracy on a training set S will express a function f on a test set E.
Definition 4.4 (Distribution over functions for an SGD-trained DNN POPT(f |S)). The probability

that the optimiser OPT (e.g. SGD) finds a function f with zero error on S can be defined as:

POPT(f |S) :=
Z

[M(✓f) = f]POPT(✓f |✓i, S)P̃par(✓i)d✓id✓f (5)

where POPT(✓t|✓i, S) denotes the probability that OPT, initialised with parameters ✓i on a DNN,

converges to parameters ✓t when training is halted after the first epoch where zero classification

error is achieved on S. The initialisation distribution P̃par(✓i) is defined analogously to Ppar(✓)
in Equation (1), and will also typically be parameterised as P̃par(✓i;�w). Again, we will typically

parameterise this quantity as POPT (f |S;�w).

POPT(f |S) is, therefore, a measure of the ‘size’ of f ’s ‘basin of attraction’, which intuitively refers to
the set of initial parameters that converge to f upon training.

5 INTRINSIC BIAS IN A SIMPLE DNN IMPLEMENTING BOOLEAN FUNCTIONS

W

3

Bayesian picture and the data

Pick best functions for each K

602

comment

Understanding deep learning is also a job for
physicists
Automated learning from data by means of deep neural networks is finding use in an ever-increasing number of
applications, yet key theoretical questions about how it works remain unanswered. A physics-based approach may
help to bridge this gap.

Lenka Zdeborová

Imagine an event for which thousands of
tickets get sold out in under 12 minutes.
We are not speaking of a leading show

on Broadway or a concert of a rockstar, but
about the Conference on Neural Information
Processing Systems (NeurIPS) — the
principal gathering for research in machine
learning and artificial intelligence. The
fields related to automated learning from
data are experiencing a surge in research
activity, as well as in investment. This is
largely thanks to developments in a subfield
called deep learning, which has led to a
myriad of successes in many applications1,2.
Research in physics is no exception to this
claim, and indeed in the recent years we
have seen numerous applications of machine
learning to various physics problems3,4,
and even more predictions regarding
which physics problems we will be able to
solve with machine learning in the near
future. Some even wonder whether future
machine-learning systems will be able to
collect suitable data and infer the laws of
nature from them entirely automatically.

All this activity and progress naturally
comes with many open questions — not
least that deep neural networks are often
described as black boxes: hard to interpret
and without a solid understanding of
when they provide satisfactory answers
and when they do not. When applying
machine learning to problems in physics
(and other areas) researchers often wonder:
What is the best way to take into account
the corresponding domain knowledge,
constraints and symmetries? How do we
adapt the existing machine-learning tools
to new problems, and how to interpret
their results in a scientific manner? How do
we reliably quantify the uncertainties and
errors stemming from the fact that training
and testing data may not come from the
same source?

One might argue that researchers in
mathematics, computer science, statistics
and other related fields are working hard
to answer such questions, and so for us

physicists it is a matter of sitting tight
waiting for tools and answers that we can
subsequently put to use. In this Comment, I
argue that, instead, we need to join the race
of searching for these answers, because it
is precisely the physicists’ perspective and
approach that is needed to enable progress
in this endeavour.

Three ingredients to decipher deep
learning
The engineering details of current
deep-learning systems, such as the ones
deployed by Google to translate languages5,
can be dauntingly complicated. Yet the basic
principle of how learning with deep neural
networks works is, in fact, pleasantly simple.

A basic example of a task in machine
learning is supervised learning, where the
machine learns to associate the correct
outputs to input data, based on a database
of examples of input–output pairs. Deep
learning then uses multi-layer neural
networks in which the input data are fed
into the first layer, its output then fed as
input into the next layer, and so on. Each
layer is a multiplication of the input by a
matrix of so-called weights, followed by a
component-wise non-linear function. This
is repeated a number of times corresponding
to the number of layers.

For problems with binary output data
(for example, 1 for a picture of a dog and
−1 for a picture of a cat), the last layer then
aims to find a hyperplane separating these
output labels. This described structure
is called a feed-forward fully connected
neural network and is mathematically seen
as a function of the input data outputting
the labels and being parameterized by the
matrices of weights. The weights are then
adjusted using a simple gradient descent
of a so-called loss function that quantifies
the amount of mismatch between the
current and desired outputs. Finally, the
performance is evaluated against a so-called
test dataset that was not seen during the
training. Interestingly, the basic design

principles of multi-layer neural networks
have been known since the early days of
research on artificial neural networks6.
Arguably, the unprecedented engineering
progress of the last two decades is largely
due to better and larger training datasets
and faster computing, such as highly
parallelizable GPU processors, rather than
due to fundamental improvements in
the network architectures or the training
algorithms themselves.

In 1995, the influential statistician Leo
Breiman summarized three main open
problems in machine learning theory7:
“Why don’t heavily parameterized neural
networks overfit the data? What is the
effective number of parameters? Why
doesn’t back-propagation — the term used
for the gradient-descent-based algorithm
used to train the state-of-the-art neural
networks — get stuck in poor local minima
with low value of the loss function, yet bad
test error?” While Breiman formulated these
questions 25 years ago, they are still open
today and subject to most of the ongoing
works in the learning-theory community,

Architecture

St
ru

ct
ur

ed
 d

at
a

Algorithm

Fig. 1 | Interplay of key ingredients. Building
theory of deep learning requires an understanding
of the intrinsic interplay between the architecture
of the neural network, the behaviour of the
algorithm used for learning and the structure in
the data.

NATURE PHYSICS | VOL 16 | JUNE 2020 | 602–604 | www.nature.com/naturephysics

Lenka Zdeborová. Nature Physics 16, 602 (2020)

Bayesian picture and data

where is an indicator function (1 if its argument is true, and 0 otherwise). This is the probability

that the model expresses f upon random sampling of parameters over a parameter initialisation

distribution Ppar(✓), which is typically taken to have a simple form such as a (truncated) Gaussian.

In the following experiments, Ppar(✓) will be a truncated Gaussian, with weight variance �w (we take

the bias variance �b = 0). Therefore, we will typically parameterise P (f) = P (f ;�w).

P (f ;�w) can also be interpreted as the probability that the DNN expresses f upon initialisation
(from a truncated Gaussian with weight variance �w) before an optimisation process. It was shown
in (Valle-Pérez et al., 2018) that the exact form of Ppar(✓) (for reasonable choices) does not affect
P (f) much (at least for ReLU networks).
Definition 4.3 (Posterior distribution for Bayesian DNNs, PB(f |S)). We can interpret P (f ;�w) as

a prior. Bayesian inference then assigns a Bayesian posterior probability PB(f |S) to each f by

conditioning on the data according to Bayes rule

PB(f |S) :=
P (S|f)P (f)

P (S)
, (2)

where P (S) is also called the marginal likelihood or Bayesian evidence. Again, we will typically

parameterise this quantity as PB(f |S;�w).

It is the total probability of all functions compatible with the training set. For discrete functions,
P (S) =

P
f
P (S|f)P (f) =

P
f2C(S) P (f), with C(S) the set of all functions compatible with

the training set. For a fixed training set, all the variation in PB(f |S) for f 2 C(S) comes from the
prior P (f) of the untrained network since P (S) is constant. Thus, the bias in the prior is essentially

translated over to the posterior.

Another interesting quantity is the expectation of the posterior probability upon averaging over
training sets:

hP (f |S)iS = P (f)

⌧
P (Si|f)
P (Si)

�

Si

⇡ P (f) (1� ✏(f))m

hP (S)i = tF (f,m)P (f) ⇡ P (f)e�m✏(f)

hP (S)i (3)

where the first approximate step (average of the ratio is the ratio of the averages) should be good, on
average, if P (S) is highly concentrated, and the second approximation should be fine if if ✏(f) is
small. We defined a average training factor for function f as

tF (f,m) =
(1� ✏(f))m

hP (S)i ⇡ e�m✏(f)

hP (S)i =
e�m✏G

hP (S)ie
�m(✏(f)�✏G) (4)

Finally, we will define POPT(f |S). Informally, this is the probability that a DNN trained by some
optimiser OPT to 100% training accuracy on a training set S will express a function f on a test set E.
Definition 4.4 (Distribution over functions for an SGD-trained DNN POPT(f |S)). The probability

that the optimiser OPT (e.g. SGD) finds a function f with zero error on S can be defined as:

POPT(f |S) :=
Z

[M(✓f) = f]POPT(✓f |✓i, S)P̃par(✓i)d✓id✓f (5)

where POPT(✓t|✓i, S) denotes the probability that OPT, initialised with parameters ✓i on a DNN,

converges to parameters ✓t when training is halted after the first epoch where zero classification

error is achieved on S. The initialisation distribution P̃par(✓i) is defined analogously to Ppar(✓)
in Equation (1), and will also typically be parameterised as P̃par(✓i;�w). Again, we will typically

parameterise this quantity as POPT (f |S;�w).

POPT(f |S) is, therefore, a measure of the ‘size’ of f ’s ‘basin of attraction’, which intuitively refers to
the set of initial parameters that converge to f upon training.

5 INTRINSIC BIAS IN A SIMPLE DNN IMPLEMENTING BOOLEAN FUNCTIONS

W

3

(a) (b) (c)

(d) (e) (f)

(g) Target function LZ = 31.5 (h) Target function LZ = 66.5 (i) Target function LZ = 101.5

Figure 2: (a) hP (Sm|K)i versus Lempel-Ziv complexity. To generate this the top 5 functions with
the smallest generalisation error when compared to the target function were found by sampling
the function space. The average of their generalisation errors was then found and used to compute
(1� h✏(f)i)m where m denotes the training set size. This acts as a proxi for the average probability
of having a training set S of size m given that your target functions has LZ complexity K (b) A-priori

probability P (K) versus Lempel-Ziv Complexity based on 106 samples of a neural network with
10 hidden layers initialised i.i.d with �w = 1, 8. (c) A comparison of P (K|Sm) computed using
Bayesian statistics specifically the A-priori probability P (K) from (b) combined with hP (Sm|K)i
from (a) versus P (K|Sm) computed by training various 10-layered network using SGD. The com-
parison was carried out for 10 different target function over a range of LZ complexities. (d), (e)
and (f) compare the histograms of output function complexity for 3 such target functions. The blue
bars show data from networks initialised in the ordered regime where the weight standard deviation
�w = 1 and the red / orange bars represent data from networks initialised in the chaotic regime where
the weight standard deviation �w = 8.
Ard: I wonder if we can put the error spectra for each target function above each of the three
plots?

5

' (

' %
Instead of

Bayesian picture and prior P(K)

where is an indicator function (1 if its argument is true, and 0 otherwise). This is the probability

that the model expresses f upon random sampling of parameters over a parameter initialisation

distribution Ppar(✓), which is typically taken to have a simple form such as a (truncated) Gaussian.

In the following experiments, Ppar(✓) will be a truncated Gaussian, with weight variance �w (we take

the bias variance �b = 0). Therefore, we will typically parameterise P (f) = P (f ;�w).

P (f ;�w) can also be interpreted as the probability that the DNN expresses f upon initialisation
(from a truncated Gaussian with weight variance �w) before an optimisation process. It was shown
in (Valle-Pérez et al., 2018) that the exact form of Ppar(✓) (for reasonable choices) does not affect
P (f) much (at least for ReLU networks).
Definition 4.3 (Posterior distribution for Bayesian DNNs, PB(f |S)). We can interpret P (f ;�w) as

a prior. Bayesian inference then assigns a Bayesian posterior probability PB(f |S) to each f by

conditioning on the data according to Bayes rule

PB(f |S) :=
P (S|f)P (f)

P (S)
, (2)

where P (S) is also called the marginal likelihood or Bayesian evidence. Again, we will typically

parameterise this quantity as PB(f |S;�w).

It is the total probability of all functions compatible with the training set. For discrete functions,
P (S) =

P
f
P (S|f)P (f) =

P
f2C(S) P (f), with C(S) the set of all functions compatible with

the training set. For a fixed training set, all the variation in PB(f |S) for f 2 C(S) comes from the
prior P (f) of the untrained network since P (S) is constant. Thus, the bias in the prior is essentially

translated over to the posterior.

Another interesting quantity is the expectation of the posterior probability upon averaging over
training sets:

hP (f |S)iS = P (f)

⌧
P (Si|f)
P (Si)

�

Si

⇡ P (f) (1� ✏(f))m

hP (S)i = tF (f,m)P (f) ⇡ P (f)e�m✏(f)

hP (S)i (3)

where the first approximate step (average of the ratio is the ratio of the averages) should be good, on
average, if P (S) is highly concentrated, and the second approximation should be fine if if ✏(f) is
small. We defined a average training factor for function f as

tF (f,m) =
(1� ✏(f))m

hP (S)i ⇡ e�m✏(f)

hP (S)i =
e�m✏G

hP (S)ie
�m(✏(f)�✏G) (4)

Finally, we will define POPT(f |S). Informally, this is the probability that a DNN trained by some
optimiser OPT to 100% training accuracy on a training set S will express a function f on a test set E.
Definition 4.4 (Distribution over functions for an SGD-trained DNN POPT(f |S)). The probability

that the optimiser OPT (e.g. SGD) finds a function f with zero error on S can be defined as:

POPT(f |S) :=
Z

[M(✓f) = f]POPT(✓f |✓i, S)P̃par(✓i)d✓id✓f (5)

where POPT(✓t|✓i, S) denotes the probability that OPT, initialised with parameters ✓i on a DNN,

converges to parameters ✓t when training is halted after the first epoch where zero classification

error is achieved on S. The initialisation distribution P̃par(✓i) is defined analogously to Ppar(✓)
in Equation (1), and will also typically be parameterised as P̃par(✓i;�w). Again, we will typically

parameterise this quantity as POPT (f |S;�w).

POPT(f |S) is, therefore, a measure of the ‘size’ of f ’s ‘basin of attraction’, which intuitively refers to
the set of initial parameters that converge to f upon training.

5 INTRINSIC BIAS IN A SIMPLE DNN IMPLEMENTING BOOLEAN FUNCTIONS

W

3

Ordered Regime:

10 Layers, σ#= 1.0

Chaotic Regime:

10 Layers, σ#= 8.0

Bayesian picture and prior P(K)

where is an indicator function (1 if its argument is true, and 0 otherwise). This is the probability

that the model expresses f upon random sampling of parameters over a parameter initialisation

distribution Ppar(✓), which is typically taken to have a simple form such as a (truncated) Gaussian.

In the following experiments, Ppar(✓) will be a truncated Gaussian, with weight variance �w (we take

the bias variance �b = 0). Therefore, we will typically parameterise P (f) = P (f ;�w).

P (f ;�w) can also be interpreted as the probability that the DNN expresses f upon initialisation
(from a truncated Gaussian with weight variance �w) before an optimisation process. It was shown
in (Valle-Pérez et al., 2018) that the exact form of Ppar(✓) (for reasonable choices) does not affect
P (f) much (at least for ReLU networks).
Definition 4.3 (Posterior distribution for Bayesian DNNs, PB(f |S)). We can interpret P (f ;�w) as

a prior. Bayesian inference then assigns a Bayesian posterior probability PB(f |S) to each f by

conditioning on the data according to Bayes rule

PB(f |S) :=
P (S|f)P (f)

P (S)
, (2)

where P (S) is also called the marginal likelihood or Bayesian evidence. Again, we will typically

parameterise this quantity as PB(f |S;�w).

It is the total probability of all functions compatible with the training set. For discrete functions,
P (S) =

P
f
P (S|f)P (f) =

P
f2C(S) P (f), with C(S) the set of all functions compatible with

the training set. For a fixed training set, all the variation in PB(f |S) for f 2 C(S) comes from the
prior P (f) of the untrained network since P (S) is constant. Thus, the bias in the prior is essentially

translated over to the posterior.

Another interesting quantity is the expectation of the posterior probability upon averaging over
training sets:

hP (f |S)iS = P (f)

⌧
P (Si|f)
P (Si)

�

Si

⇡ P (f) (1� ✏(f))m

hP (S)i = tF (f,m)P (f) ⇡ P (f)e�m✏(f)

hP (S)i (3)

where the first approximate step (average of the ratio is the ratio of the averages) should be good, on
average, if P (S) is highly concentrated, and the second approximation should be fine if if ✏(f) is
small. We defined a average training factor for function f as

tF (f,m) =
(1� ✏(f))m

hP (S)i ⇡ e�m✏(f)

hP (S)i =
e�m✏G

hP (S)ie
�m(✏(f)�✏G) (4)

Finally, we will define POPT(f |S). Informally, this is the probability that a DNN trained by some
optimiser OPT to 100% training accuracy on a training set S will express a function f on a test set E.
Definition 4.4 (Distribution over functions for an SGD-trained DNN POPT(f |S)). The probability

that the optimiser OPT (e.g. SGD) finds a function f with zero error on S can be defined as:

POPT(f |S) :=
Z

[M(✓f) = f]POPT(✓f |✓i, S)P̃par(✓i)d✓id✓f (5)

where POPT(✓t|✓i, S) denotes the probability that OPT, initialised with parameters ✓i on a DNN,

converges to parameters ✓t when training is halted after the first epoch where zero classification

error is achieved on S. The initialisation distribution P̃par(✓i) is defined analogously to Ppar(✓)
in Equation (1), and will also typically be parameterised as P̃par(✓i;�w). Again, we will typically

parameterise this quantity as POPT (f |S;�w).

POPT(f |S) is, therefore, a measure of the ‘size’ of f ’s ‘basin of attraction’, which intuitively refers to
the set of initial parameters that converge to f upon training.

5 INTRINSIC BIAS IN A SIMPLE DNN IMPLEMENTING BOOLEAN FUNCTIONS

W

3

Bayesian picture: combining data and prior

7

CHECK FOR BUGS Very simple, if P (0) = 10� then ✏ ⇡ 2.30� and the mean generalisation error EG ⇡ 2.30�/M
Where we use GP-EP, and can’t trust �, we should use the �SGD – This turns out to all be super simple.

Fluctuations in P (f).
Define the functions with error epsilon as f

✏

i
(with i ranging from 1 to

�
M

✏

�
. When we do experiment 1, we see big

fluctuations away from this average for P (f ✏

i
) and the probability sum is dominated by outliers. Does this mean that

large fluctuations away from this binomial regime dominate, and so this invalidates the theory ? Well, the mean error:

h✏i =
MX

✏=0

✏

(M✏)X

i

P (f ✏

i
) =

MX

✏=0

✓
M

✏

◆
hP (f ✏

i
)i

has all fluctuations in there, in principle. So that should still work. But a worry is: are we calculating hP (f ✏

i
)i

correctly? If rare outliers are important, that may mean doing samples over very large number of examples. (That’s
why we need to see the full spectrum of P (1) to get a feeling for this source of error

What is this telling us? Not so sure now. If we assume the exponential decay above, then the behaviour is
like that of a binomial process, but that doesn’t in the end tell us as much as I thought. So in fact experiment 2 is
useful after all. It is telling us the mean probabilities of functions with error ✏ for a specific test set, not what the
probabilities of getting ✏ errors are for a given function, when averaged over test sets.

hP (f |S)iS = P (f)

⌧
P (Si|f)
P (Si)

�

Si

⇡ P (f) (1� ✏(f))m

hP (S)i / P (K)(1� ✏(f))m (36)

(a) (b) (c)

(d) (e) (f)

(g) Target function LZ = 31.5 (h) Target function LZ = 66.5 (i) Target function LZ = 101.5

Figure 2: (a) hP (Sm|K)i versus Lempel-Ziv complexity. To generate this the top 5 functions with
the smallest generalisation error when compared to the target function were found by sampling
the function space. The average of their generalisation errors was then found and used to compute
(1� h✏(f)i)m where m denotes the training set size. This acts as a proxi for the average probability
of having a training set S of size m given that your target functions has LZ complexity K (b) A-priori

probability P (K) versus Lempel-Ziv Complexity based on 106 samples of a neural network with
10 hidden layers initialised i.i.d with �w = 1, 8. (c) A comparison of P (K|Sm) computed using
Bayesian statistics specifically the A-priori probability P (K) from (b) combined with hP (Sm|K)i
from (a) versus P (K|Sm) computed by training various 10-layered network using SGD. The com-
parison was carried out for 10 different target function over a range of LZ complexities. (d), (e)
and (f) compare the histograms of output function complexity for 3 such target functions. The blue
bars show data from networks initialised in the ordered regime where the weight standard deviation
�w = 1 and the red / orange bars represent data from networks initialised in the chaotic regime where
the weight standard deviation �w = 8.
Ard: I wonder if we can put the error spectra for each target function above each of the three
plots?

5

Bayesian picture combining data and prior

6 GENERALISATION IN MNIST AND CIFAR10

Using the critical sample ratio as a proxy for the complexity of the learned function we show that the
same connection between simplicity bias and generalisation error applies as with the Boolean system
in section 5.

1. Firstly we show show how CSR changes as we move between ordered and chaotic regions of
parameter space. These are a priori results.

(a) (b) (c)

(d) Uncorrupted (e) 25% corruption (f) 50% corruption

Figure 3: (a) MNIST test accuracy on a 10,000 image test set versus standard deviation of weights
upon initialisation for various depth networks. (b) CIFAR10 test accuracy on a 5,000 image test
set versus standard deviation of weights upon initialisation for various depth networks. In all cases,
the DNN was trained until 100% accuracy was achieved on the training set. (c) Probability versus
the critical sample ratio of 1000 MNIST images for randomly initialised networks of 10 layers with
200 neurons and weight standard deviation �w = 1, 2. Probabilities are estimated from a sample of
2⇥ 104 parameters. (d), (e) and (f) Generalisation error versus the critical sample ratio of the test set
for 1000 networks trained to 100% accuracy on 1000 MNIST images and tested on another 1000
images. In (d) the training labels were uncorrupted, in (e) 25% of the training labels were corrupted
and in (f) 50% of the training labels were corrupted.

(Perhaps take out the "Training set size = 1000" from images as it wrongly suggest these are trained
networks. Also need to correct for weird values of CSR when back on hydra.)

2. Secondly we show how the change in simplicity bias (measured by CSR) affects the test accuracy
of trained networks. We also show that the effect is universal across different training set sizes as this
is one of the components of the Bayesian model late on in the paper. (Should I plot these against
generalisation error rather than test accuracy for consistency throughout the paper.)

7 CONCLUSION

REFERENCES

Alexander G. de G. Matthews, Jiri Hron, Mark Rowland, Richard E. Turner, and Zoubin Ghahramani.
Gaussian process behaviour in wide deep neural networks. In International Conference on Learning

6

Bayesian picture: prior and data for MNIST/CIFAR-10

= complexity

= complexity

Prior P(K)
MNIST

CIFAR-10

Summary: Bayesian picture: prior and data

where is an indicator function (1 if its argument is true, and 0 otherwise). This is the probability

that the model expresses f upon random sampling of parameters over a parameter initialisation

distribution Ppar(✓), which is typically taken to have a simple form such as a (truncated) Gaussian.

In the following experiments, Ppar(✓) will be a truncated Gaussian, with weight variance �w (we take

the bias variance �b = 0). Therefore, we will typically parameterise P (f) = P (f ;�w).

P (f ;�w) can also be interpreted as the probability that the DNN expresses f upon initialisation
(from a truncated Gaussian with weight variance �w) before an optimisation process. It was shown
in (Valle-Pérez et al., 2018) that the exact form of Ppar(✓) (for reasonable choices) does not affect
P (f) much (at least for ReLU networks).
Definition 4.3 (Posterior distribution for Bayesian DNNs, PB(f |S)). We can interpret P (f ;�w) as

a prior. Bayesian inference then assigns a Bayesian posterior probability PB(f |S) to each f by

conditioning on the data according to Bayes rule

PB(f |S) :=
P (S|f)P (f)

P (S)
, (2)

where P (S) is also called the marginal likelihood or Bayesian evidence. Again, we will typically

parameterise this quantity as PB(f |S;�w).

It is the total probability of all functions compatible with the training set. For discrete functions,
P (S) =

P
f
P (S|f)P (f) =

P
f2C(S) P (f), with C(S) the set of all functions compatible with

the training set. For a fixed training set, all the variation in PB(f |S) for f 2 C(S) comes from the
prior P (f) of the untrained network since P (S) is constant. Thus, the bias in the prior is essentially

translated over to the posterior.

Another interesting quantity is the expectation of the posterior probability upon averaging over
training sets:

hP (f |S)iS = P (f)

⌧
P (Si|f)
P (Si)

�

Si

⇡ P (f) (1� ✏(f))m

hP (S)i = tF (f,m)P (f) ⇡ P (f)e�m✏(f)

hP (S)i (3)

where the first approximate step (average of the ratio is the ratio of the averages) should be good, on
average, if P (S) is highly concentrated, and the second approximation should be fine if if ✏(f) is
small. We defined a average training factor for function f as

tF (f,m) =
(1� ✏(f))m

hP (S)i ⇡ e�m✏(f)

hP (S)i =
e�m✏G

hP (S)ie
�m(✏(f)�✏G) (4)

Finally, we will define POPT(f |S). Informally, this is the probability that a DNN trained by some
optimiser OPT to 100% training accuracy on a training set S will express a function f on a test set E.
Definition 4.4 (Distribution over functions for an SGD-trained DNN POPT(f |S)). The probability

that the optimiser OPT (e.g. SGD) finds a function f with zero error on S can be defined as:

POPT(f |S) :=
Z

[M(✓f) = f]POPT(✓f |✓i, S)P̃par(✓i)d✓id✓f (5)

where POPT(✓t|✓i, S) denotes the probability that OPT, initialised with parameters ✓i on a DNN,

converges to parameters ✓t when training is halted after the first epoch where zero classification

error is achieved on S. The initialisation distribution P̃par(✓i) is defined analogously to Ppar(✓)
in Equation (1), and will also typically be parameterised as P̃par(✓i;�w). Again, we will typically

parameterise this quantity as POPT (f |S;�w).

POPT(f |S) is, therefore, a measure of the ‘size’ of f ’s ‘basin of attraction’, which intuitively refers to
the set of initial parameters that converge to f upon training.

5 INTRINSIC BIAS IN A SIMPLE DNN IMPLEMENTING BOOLEAN FUNCTIONS

W

3

Average posterior over training sets

(a) (b) (c)

(d) (e) (f)

(g) Target function LZ = 31.5 (h) Target function LZ = 66.5 (i) Target function LZ = 101.5

Figure 2: (a) hP (Sm|K)i versus Lempel-Ziv complexity. To generate this the top 5 functions with
the smallest generalisation error when compared to the target function were found by sampling
the function space. The average of their generalisation errors was then found and used to compute
(1� h✏(f)i)m where m denotes the training set size. This acts as a proxi for the average probability
of having a training set S of size m given that your target functions has LZ complexity K (b) A-priori

probability P (K) versus Lempel-Ziv Complexity based on 106 samples of a neural network with
10 hidden layers initialised i.i.d with �w = 1, 8. (c) A comparison of P (K|Sm) computed using
Bayesian statistics specifically the A-priori probability P (K) from (b) combined with hP (Sm|K)i
from (a) versus P (K|Sm) computed by training various 10-layered network using SGD. The com-
parison was carried out for 10 different target function over a range of LZ complexities. (d), (e)
and (f) compare the histograms of output function complexity for 3 such target functions. The blue
bars show data from networks initialised in the ordered regime where the weight standard deviation
�w = 1 and the red / orange bars represent data from networks initialised in the chaotic regime where
the weight standard deviation �w = 8.
Ard: I wonder if we can put the error spectra for each target function above each of the three
plots?

5

(a) (b) (c)

(d) Target function LZ = 31.5 (e) Target function LZ = 66.5 (f) Target function LZ = 101.5

Figure 1: (a) Probability versus rank of each of the functions (ranked by probability) from a sample
of size 108 for various neural networks. Each network contains 2 hidden layers of 40 neurons each
and was initialised with weight std �w and activation function �. (b) Probability versus Lempel-Ziv
complexity for two of the networks from (a). Probabilities are estimated from a sample of 108
parameters. Points with a frequency of 1 are removed for clarity as these suffer from finite-size
effects. (c) Generalisation versus Lempel-Ziv complexity. Specifically the effect of increasing �w on
the generalisation error for various target functions with a range of Lempel-Ziv complexities. The
networks were trained with advSGD. Error bars are one standard deviation. (d), (e), (f) Generalisation
error versus learned function LZ complexity, for 1000 random initialisations. The networks were
trained using a target function with (d) low LZ complexity, (e) medium LZ complexity and (f) high
LZ complexity and a training set size of 64. Generalisation error is defined with respect to off-training
set samples. Blue points represent functions learned using a neural network initialised with �w = 1
and the red points with �w = 8. The histograms on the sides of the plots show the frequency of
generalisation errors and complexities. The black cross represents the most common learned function
in each case.

This section is dedicated to explicitly showing the connection between generalisation and simplicity
bias for the Boolean system. It is broken into 3 sub-sections.

1. Rank plots showing the explicit presence of bias with in the Boolean system. Effectively extending
the results of Greg Yang. We show how we can control the level of bias by changing parameters �w

and the depth of the network.

2. In the second part, using Lempel-Ziv as our measure of complexity, we show how this bias from
sub-section 1 is specifically a bias towards the simplest functions. We also see explicitly how this bias
"drops off" as the system initialised deeper into the chaotic regime. This is our a priori bias P (f).

3. Finally, we show that this a priori bias leads to improved generalisation when compared to a
less biased network for low complexity target functions. Also we see that for extremely complex
functions the generalisation abilities of the networks are equally poor.

Use scatter plots to provide a deeper understanding as to which functions the DNN is implementing
after training and how the bias of the NN affects this.

4

Function based picture and generalisation bounds

Generalization bounds for deep learning Guillermo Valle-Pérez and AAL, arxiv:arXiv:2012.04115

Big review paper on generalization bounds, includes 7 desiderata bounds should satisfy and a classification

In the next sections of this paper, we will describe the major families of generalization error
bounds that have been applied to DNNs. While we don’t claim that the list is exhaustive,
we tried to cover all the major approaches to generalization bounds.

In table 1 we present a high-level overview of where different general classes of bounds
found in the literature fit within the classification introduced above. It also lists which
bounds we treat explicitly in the rest of the paper, and where they sit in our taxonomy. Thus
the table helps illustrate what kinds of general assumptions go into the different bounds.

Given this hierarchy of the main types of bounds, we next turn to a comparison of their
performance. As expected, the overall empirical performance of the bounds improves as more
assumptions are added.

4 Comparing existing bounds against desiderata

In this section we use the taxonomy from section 3 (illustrated in table table 1) to organise a
discussion on how different bounds fare against the desiderata proposed in section 2. We use
a 7 when there is strong evidence that bounds in this family fail to satisfy most important
aspects of the desiderata, 3 when there is strong evidence that bounds in the family satisfy
most important aspects of the desiderata, and l otherwise. We are aware these are not
formally defined notions, and the marks should just be taken as an aid for the reader.

4.1 Algorithm-independent bounds

4.1.1 Data-independent uniform convergence bounds: VC dimension

One of the iconic results in the theory of generalization is the notion of uniform convergence
introduced by Vapnik and Chervonenkis (Vapnik and Chervonenkis, 1974) which, expressed
in the language of PAC learning (Blumer et al., 1989), considers data-independent uniform
convergence bounds, where the capacity fH(S) doesn’t depend on S, but only on the
hypothesis class H. The main result of this theory is that the optimal bound of this form
(up to a multiplicative fixed constant) for the generalization gap, in the case of binary
classification is

8D, PS⇠Dm

2

4sup
h2H

|✏(h)� ✏̂(h)|  C

s
VC(H) + ln 1

�

m

3

5 � 1� � (7)

for some constant C, and where VC(H) is a combinatorial quantity called the Vapnik-
Chervonenkis dimension (Shalev-Shwartz and Ben-David, 2014), which depends on the
hypothesis class H alone. In the realizable case, they also proved that the optimal realizable
data-independent uniform bound is

8D, PS⇠Dm

"
sup

h2H0(S)
✏(h)  C

VC(H) + ln 1
�

m

#
� 1� � (8)

for some constant C, and where H0(S) is the set of all h 2 H with zero training error on S.
The particular realizability assumption here is that D should be such that for all S, H0(S) is
non-empty.

How does this bound do at the desiderata?

13

Big literature on bounds –
Concepts such as PAC learning, VC dimension, Rademacher complexity etc….

Function based picture and generalisation bounds3.3.5 Overview of bounds

(section 4.1)
Algorithm-independent

(section 4.2)
Algorithm-dependent

Based on uniform
convergence convergence

Based on non-uniform Other

D
at

a-
in

de
pe

nd
en

t

VC dimension
bound* (section
4.1.1)

SRM-based bounds†
(section 4.2.1.1) -

uniform stability
bounds‡ and
compression
bounds§ (section
4.3.1)

D
at

a-
de

pe
nd

en
t

Rademacher
complexity bound¶

(section 4.1.2)

data-dependent
SRM-based
bounds** (section
4.2.1.1)

margin bounds††
(4.2.1.2),
sensitivity-based
bounds‡‡ (section
4.2.1.4),
NTK-based
bounds§§ (section
4.2.1.3),
other PAC-Bayes
bounds¶¶ (section
4.2.2)

non-uniform
stability bounds***

(section 4.3.1),
marginal-likelihood
PAC-Bayes
bound† † †

(section 5)

Table 1: Classification of the main types of generalization bounds treated in this paper.
Roughly speaking, the number of assumptions grows going from left to right, and from top
to bottom. Note that, as we discussed in section 3.3.4, algorithm dependent bounds based on
non-uniform convergence are automatically data-dependent, which is why there is an empty
cell.
*Vapnik and Chervonenkis (1974); Blumer et al. (1989); Harvey et al. (2017)
†Vapnik (1995); McAllester (1998)
‡Bousquet and Elisseeff (2002); Hardt et al. (2016); Mou et al. (2018)
§Littlestone and Warmuth (1986); Brutzkus et al. (2018)
¶Bartlett and Mendelson (2002)
**Shawe-Taylor et al. (1998); Shawe-Taylor and Williamson (1997)
††Bartlett (1997, 1998); Bartlett et al. (2017); Neyshabur et al. (2018a); Golowich et al. (2018);
Neyshabur et al. (2018b); Barron and Klusowski (2019)
‡‡Neyshabur et al. (2017); Dziugaite and Roy (2017); Arora et al. (2018); Banerjee et al. (2020)
§§Arora et al. (2019); Cao and Gu (2019)
¶¶Zhou et al. (2018); Dziugaite and Roy (2018)
***Kuzborskij and Lampert (2017)
† † †Valle-Pérez et al. (2018)

12

Generalization bounds for deep learning Guillermo Valle-Pérez and AAL, arxiv:arXiv:2012.04115

Big review paper on generalization bounds, includes 7 desiderata bounds should satisfy and a classification

Guillermo
Valle Perez

Function based picture and PAC-Bayes bounds

Generalization bounds for deep learning Guillermo Valle-Pérez and AAL, arxiv:arXiv:2012.04115

A more commonly-used extension of the basic SRM bound considers dividing the (now
potentially uncountable) hypothesis class H into a countable set of (usually nested) subclasses
Hi, i 2 N, such that

S
iHi = H. The result is that for any distribution P over N (Shalev-

Shwartz and Ben-David, 2014), we have:

8D, PS⇠Dm

"
8i 2 N 8h 2 Hi such that ✏̂(h) = 0, ✏(h) 

ln 1
P (i) + fi(S) + ln 1

�

m

#
� 1� �

(12)
where fi(S) is any (potentially data-dependent) capacity for class Hi which guarantees
uniform convergence within Hi (for example, a bound on its VC dimension or Rademacher
complexity). Results of this form are proven in Shawe-Taylor et al. (1998) and Shalev-Shwartz
and Ben-David (2014).

We can also compute the expected value of the bound eq. (12), analogously to eq. (10). For
the numerator of the bound (ignoring the confidence term), we obtain H(Q̃0, P)+Ei⇠Q̃0 [fi(S)],
where Q̃0(i) ⌘ Ph⇠Q̃ [class(h) = i] and class(h) represents the index of the subclass Hclass(h)

to which h belongs. Analogously to before, the optimal value of P is given by Q̃0, and the
Bayesian posterior will in general not result in the optimal average value of the bound.

One shortcoming of eq. (12) is that the decomposition of H into Hi has to be defined a
priori, that is, it cannot depend on S. Shawe-Taylor et al. (1998) proposed an extension to
the SRM framework which addressed this shortcoming, and defined a potentially infinite
hierarchy of subclasses H1(S) ✓ H2(S) ✓ ... which could depend on the data S. This
framework includes as a special case the margin bounds we will see in section 4.2.1.2.

Shawe-Taylor and Williamson (1997) applied the data-dependent SRM framework to
obtain bounds for a parametrized model, where the capacity was related to the volume in
parameter space of a sphere contained within the set of parameters producing zero training
error. This work inspired the development of the first PAC-Bayes bounds in McAllester
(1998)10. These bounds apply for stochastic learning algorithms, and bound the expected
value of the generalization error under the posterior Q(h|S), uniformly over posteriors. The
standard form of the general PAC Bayes bound was proven by Maurer (2004) and states, for
any distribution P over H,

8D, PS⇠Dm

"
8Q KL(Eh⇠Q[✏(h)],Eh⇠Q[✏̂(h)]) 

KL(Q||P) + ln 1
� + ln (2m)

m� 1

#
� 1� �

(13)
where KL(Q||P) is the KL-divergence between Q and P . On the left hand side we use the
standard abuse of notation to define KL(a, b) ⌘ a ln (a/b) + (1� a) ln ((1� a)/(1� b)), for
a, b 2 [0, 1].

This bound can be seen to generalize the SRM with data-dependent hierarchies of Shawe-
Taylor et al. (1998), where instead of “hard” subdivisions of H into Hi, we consider all
possible distributions Q on H. KL(Q,P) is analogous to ln 1

P (i) in eq. (12) in that it very
roughly measures how much of the total probability mass of P is in the high probability

10. Although Shawe-Taylor and Williamson (1997) is often cited as a precursor to PAC-Bayes (Shawe-Taylor,

2019), it offers a distinct analysis (for example, it gives deterministic bounds rather than bounds on

expected error), which as far as the authors know hasn’t been shown to necessarily give stronger or

weaker bounds than PAC-Bayes, and hasn’t been applied to neural networks.

19

David McAllester COLT (1998)

We prove that function based will (in principle) always be better than parameter based PAC-Bayes bounds

� ln (1� ✏(h)) <
ln 1

P (C(S))+lnm+ln 1
�+ln 1

�

m�1

where h is chosen according to the posterior distribution Q(h) = P (h)P
h2C(S) P (h) , C(S) is the

set of hypotheses in H consistent with the sample S, and where P (C(S)) =
P

h2C(S) P (h)

The proof is presented in appendix A.1. It closely follows that of the original PAC-
Bayesian theorem by McAllister, with the main technical step relying on the quantifier
reversal lemma of McAllester (1998). Note that the bound is essentially the same as that
of Langford and Seeger (2001), except for the fact that it holds in probability and it adds
an extra term dependent on the confidence parameter �, which is usually negligible, but
may be important when considering the effect of optimizer choice. The quantity P (C(S))
corresponds to the marginal likelihood, or Bayesian evidence of the data S, and we will also
denote it by P (S), to simplify notation.

In Valle-Pérez et al. (2018), the authors interpreted Q(h) as approximating the probability
by which the stochastic algorithm (e.g. SGD) outputs hypothesis h after training. The
preceding bound relaxes this assumption, because it shows that in some sense, the bound
holds for “almost all” of the zero-error region of parameter space. More precisely, it holds with
high probability over the posterior. This suggests that SGD may not need to approximate
the Bayesian inference as closely, for this bound to be useful. Nevertheless, Mingard et al.
(2020) gave empirical results showing that, for DNNs, the distribution over functions that
SGD samples from, approximates the Bayesian posterior rather closely. A fully rigorous
generalization error bound for DNNs would need further analysis of SGD dynamics, but we
believe these theoretical and empirical results strongly suggest that the PAC-Bayes bound
should be applicable to SGD-trained DNNs.

Because it applies to the Bayesian posterior only, the bound in theorem 5.1 does not
apply universally over a large family of posteriors, like standard deterministic PAC-Bayes
bounds do, which can be shown to sometimes give loose bounds (Nagarajan and Kolter, 2019).
Furthermore, as we will show in section 6.2, the bound is in a certain sense asymptotically
optimal in the limit of large training set size.

We expect our bound to give significantly tighter results than previous PAC-Bayes bounds
applied to DNNs, because rather than working with parameters, our bound works directly
with posteriors and priors in function space. Since the parameter-function map (Valle-Pérez
et al., 2018) of DNNs is many-to-one, with a lot of parameter-redundancy, it is not hard to
construct situations where KL(Qpar||Ppar) between a parameter-space posterior Qpar and
prior Ppar is high, but KL(Q||P) between the induced posterior and prior in function-space
is low. In fact, in appendix A.3, we show that the following inequality holds

KL(Q||P)  KL(Qpar||Ppar) (19)

which implies that it is always better (or at least not worse) to consider PAC-Bayes bounds
in function space for parametrized models, if possible. Furthermore, in section 7, we will
empirically verify that our bound gives good predictions for SGD-trained DNNs, and satisfies
most of our desiderata for a generalization error bound. Thus our empirical results corroborate
our expectation of better agreement above.

31

PAC-Bayes bound

Function based picture and PAC-Bayes bounds

Generalization bounds for deep learning Guillermo Valle-Pérez and AAL, arxiv:arXiv:2012.04115

learning rate limit (Jacot et al., 2018), which seems to work well for finite-width but wide
DNNs (Lee et al., 2019). They apply this to MNIST by estimating the NTK eigenspectrum
on a sample of MNIST, and then training the DNN on smaller samples. Their predicted
generalization error closely follows the observed error of the SGD-trained DNN. As far as
the authors are aware this is one of the most accurate predictions of the generalization error
of DNNs based on well-established theory.

One of the limitations of the analysis in Bordelon et al. (2020) is that it relies on knowing
what the data distribution is, and in particular the eigenvalues of the NTK kernel, and the
eigenspectrum of the target function (with respect to the eigen basis of the NTK kernel). This
can be estimated by using a sufficiently large sample of the data, but it is not discussed in
Bordelon et al. (2020) how big the sample needs to be for the estimate to be accurate. They
use a sample larger than the training set, which therefore makes this predictor fall outside
the requirements of the kinds of predictons we have been considering (which only depend
on S). However, the approach offers an analytical theory of generalization which can help
with interpretability and gaining understanding of which properties of a DNN architecture
lead to generalization for a particular dataset. The other limitation of the work in Bordelon
et al. (2020) is that the analysis only applies for MSE loss, which is not commonly used for
classification (though the training with the two losses often results in DNNs with similar
learned functions (Mingard et al., 2020)).

5 Marginal-likelihood PAC-Bayesian generalization error bound

In the previous section, we saw that algorithm-independent or data-independent bounds are
clearly insufficient to explain the generalization performance of DNNs because the hypothesis
class of DNNs is too expressive, and the generalization strongly depends on the dataset,
respectively. Furthermore, the main approaches for algorithm-dependent bounds are based on
non-uniform convergence, which has been shown to have fundamental limitations in its ability
to predict generalization in SGD-trained DNNs for some datasets (Nagarajan and Kolter,
2019). Although there are ways around this limitation (see the discussion in section 3.3.4), it
suggests that looking at other approaches to obtain generalization bounds may be promising.
Non-uniform stability bounds offer an interesting alternative to non-uniform convergence,
but their empirical success so far is still limited.

Here we present a new deterministic realizable PAC-Bayes bound which applies to a
DNN trained using Bayesian inference, with high probability over the posterior. We work
in the same set up as Valle-Pérez et al. (2018) and McAllester (1998). We consider binary
classification, and a space of functions or hypotheses with codomain {0, 1}. We consider a
“prior” P over the hypothesis space H, and an algorithm which samples hypotheses according
to the Bayesian posterior, with 0� 1 likelihood. To recall, we define generalization error as
the probability of misclassification upon a new sample ✏(h) = Px⇠D[h(x) 6= t(x)], where t is
the target function. In appendix A.1, we prove the following theorem:

Theorem 5.1. (marginal-likelihood PAC-Bayes bound)
For any distribution P on any hypothesis space H and any realizable distribution D on

a space of instances we have, for 0 < �  1, and 0 < �  1, that with probability at least
1� � over the choice of sample S of m instances, that with probability at least 1� � over the
choice of h:

30� ln (1� ✏(h)) <
ln 1

P (C(S))+lnm+ln 1
�+ln 1

�

m�1

where h is chosen according to the posterior distribution Q(h) = P (h)P
h2C(S) P (h) , C(S) is the

set of hypotheses in H consistent with the sample S, and where P (C(S)) =
P

h2C(S) P (h)

The proof is presented in appendix A.1. It closely follows that of the original PAC-
Bayesian theorem by McAllister, with the main technical step relying on the quantifier
reversal lemma of McAllester (1998). Note that the bound is essentially the same as that
of Langford and Seeger (2001), except for the fact that it holds in probability and it adds
an extra term dependent on the confidence parameter �, which is usually negligible, but
may be important when considering the effect of optimizer choice. The quantity P (C(S))
corresponds to the marginal likelihood, or Bayesian evidence of the data S, and we will also
denote it by P (S), to simplify notation.

In Valle-Pérez et al. (2018), the authors interpreted Q(h) as approximating the probability
by which the stochastic algorithm (e.g. SGD) outputs hypothesis h after training. The
preceding bound relaxes this assumption, because it shows that in some sense, the bound
holds for “almost all” of the zero-error region of parameter space. More precisely, it holds with
high probability over the posterior. This suggests that SGD may not need to approximate
the Bayesian inference as closely, for this bound to be useful. Nevertheless, Mingard et al.
(2020) gave empirical results showing that, for DNNs, the distribution over functions that
SGD samples from, approximates the Bayesian posterior rather closely. A fully rigorous
generalization error bound for DNNs would need further analysis of SGD dynamics, but we
believe these theoretical and empirical results strongly suggest that the PAC-Bayes bound
should be applicable to SGD-trained DNNs.

Because it applies to the Bayesian posterior only, the bound in theorem 5.1 does not
apply universally over a large family of posteriors, like standard deterministic PAC-Bayes
bounds do, which can be shown to sometimes give loose bounds (Nagarajan and Kolter, 2019).
Furthermore, as we will show in section 6.2, the bound is in a certain sense asymptotically
optimal in the limit of large training set size.

We expect our bound to give significantly tighter results than previous PAC-Bayes bounds
applied to DNNs, because rather than working with parameters, our bound works directly
with posteriors and priors in function space. Since the parameter-function map (Valle-Pérez
et al., 2018) of DNNs is many-to-one, with a lot of parameter-redundancy, it is not hard to
construct situations where KL(Qpar||Ppar) between a parameter-space posterior Qpar and
prior Ppar is high, but KL(Q||P) between the induced posterior and prior in function-space
is low. In fact, in appendix A.3, we show that the following inequality holds

KL(Q||P)  KL(Qpar||Ppar) (19)

which implies that it is always better (or at least not worse) to consider PAC-Bayes bounds
in function space for parametrized models, if possible. Furthermore, in section 7, we will
empirically verify that our bound gives good predictions for SGD-trained DNNs, and satisfies
most of our desiderata for a generalization error bound. Thus our empirical results corroborate
our expectation of better agreement above.

31

Marginal-likelihood = sum over functions (hypotheses) h

Guillermo
Valle Perez

Tight PAC-Bayes bounds: error with complexity
Published as a conference paper at ICLR 2019

(a) for a 4 hidden layers convolutional network (b) for a 1 hidden layer fully connected network

Figure 3: Mean generalization error and corresponding PAC-Bayes bound versus percentage of
label corruption, for three datasets and a training set of size 10000. Training set error is 0 in all
experiments. Note that the bounds follow the same trends as the true generalization errors. The
empirical errors are averaged over 8 initializations. The Gaussian process parameters were �w =
1.0, �b = 1.0 for the CNN and �w = 10.0, �b = 10.0 for the FC. Insets show the marginal
likelihood of the data as computed by the Gaussian process approximation (in natural log scale),
versus the label corruption.

The evidence is based on comparing SGD-trained network with a Gaussian process approximation
(Lee et al. (2017)), as well as showing that this approximation is similar to Bayesian sampling via
MCMC methods (Matthews et al. (2018)).

We performed experiments showing direct evidence that the probability with which two variants of
SGD find functions is close to the probability of obtaining the function by uniform sampling of pa-
rameters in the zero-error region. Due to computational limitations, we consider the neural network
from Section 4. We are interested in the probability of finding individual functions consistent with
the training set, by two methods:(1 Training the neural network with variants of SGD8; in particular,
advSGD and Adam (described in Appendix A) (2 Bayesian inference using the Gaussian process
corresponding to the neural network architecture. This approximates the behavior of sampling pa-
rameters close to uniformly in the zero-error region (i.i.d. Gaussian prior to be precise).

We estimated the probability of finding individual functions, averaged over training sets, for these
two methods (see Appendix D for the details), when learning a target Boolean function of LZ
complexity84.0. In Figures 4 and 8, we plot this average probability, for an SGD-like algorithm, and
for the approximate Bayesian inference. We find that there is close agreement (specially taking into
account that the EP approximation we use appears to overestimate probabilities, see Appendix B),
although with some scatter (the source of which is hard to discern, given that the SGD probabilities
have sampling error).

These results are promising evidence that SGD may behave similarly to uniform sampling of pa-
rameters (within zero-error region). However, this is still a question that needs much further work.
We discuss in Appendix C some potential evidence for SGD sometimes diverging from Bayesian
parameter sampling.

8 CONCLUSION AND FUTURE WORK

In this paper, we present an argument that we believe offers a first-order explanation of generalization
in highly overparametrized DNNs. First, PAC-Bayes shows how priors which are sufficiently biased
towards the true distribution can result in good generalization for highly expressive models, e.g. even
if there are many more parameters than data points. Second, the huge bias towards simple functions

8These methods were chosen because other methods we tried, including plain SGD, didn’t converge to zero
error in this task

9

Guillermo
Valle Perez

� ln (1� ✏(h)) <
ln 1

P (C(S))+lnm+ln 1
�+ln 1

�

m�1

where h is chosen according to the posterior distribution Q(h) = P (h)P
h2C(S) P (h) , C(S) is the

set of hypotheses in H consistent with the sample S, and where P (C(S)) =
P

h2C(S) P (h)

The proof is presented in appendix A.1. It closely follows that of the original PAC-
Bayesian theorem by McAllister, with the main technical step relying on the quantifier
reversal lemma of McAllester (1998). Note that the bound is essentially the same as that
of Langford and Seeger (2001), except for the fact that it holds in probability and it adds
an extra term dependent on the confidence parameter �, which is usually negligible, but
may be important when considering the effect of optimizer choice. The quantity P (C(S))
corresponds to the marginal likelihood, or Bayesian evidence of the data S, and we will also
denote it by P (S), to simplify notation.

In Valle-Pérez et al. (2018), the authors interpreted Q(h) as approximating the probability
by which the stochastic algorithm (e.g. SGD) outputs hypothesis h after training. The
preceding bound relaxes this assumption, because it shows that in some sense, the bound
holds for “almost all” of the zero-error region of parameter space. More precisely, it holds with
high probability over the posterior. This suggests that SGD may not need to approximate
the Bayesian inference as closely, for this bound to be useful. Nevertheless, Mingard et al.
(2020) gave empirical results showing that, for DNNs, the distribution over functions that
SGD samples from, approximates the Bayesian posterior rather closely. A fully rigorous
generalization error bound for DNNs would need further analysis of SGD dynamics, but we
believe these theoretical and empirical results strongly suggest that the PAC-Bayes bound
should be applicable to SGD-trained DNNs.

Because it applies to the Bayesian posterior only, the bound in theorem 5.1 does not
apply universally over a large family of posteriors, like standard deterministic PAC-Bayes
bounds do, which can be shown to sometimes give loose bounds (Nagarajan and Kolter, 2019).
Furthermore, as we will show in section 6.2, the bound is in a certain sense asymptotically
optimal in the limit of large training set size.

We expect our bound to give significantly tighter results than previous PAC-Bayes bounds
applied to DNNs, because rather than working with parameters, our bound works directly
with posteriors and priors in function space. Since the parameter-function map (Valle-Pérez
et al., 2018) of DNNs is many-to-one, with a lot of parameter-redundancy, it is not hard to
construct situations where KL(Qpar||Ppar) between a parameter-space posterior Qpar and
prior Ppar is high, but KL(Q||P) between the induced posterior and prior in function-space
is low. In fact, in appendix A.3, we show that the following inequality holds

KL(Q||P)  KL(Qpar||Ppar) (19)

which implies that it is always better (or at least not worse) to consider PAC-Bayes bounds
in function space for parametrized models, if possible. Furthermore, in section 7, we will
empirically verify that our bound gives good predictions for SGD-trained DNNs, and satisfies
most of our desiderata for a generalization error bound. Thus our empirical results corroborate
our expectation of better agreement above.

31

Generalization bounds for deep learning Guillermo Valle-Pérez and AAL, arxiv:arXiv:2012.04115

Marginal-likelihood PAC-Bayes bound

Tight PAC-Bayes bounds: learning curves with m

Guillermo
Valle Perez

� ln (1� ✏(h)) <
ln 1

P (C(S))+lnm+ln 1
�+ln 1

�

m�1

where h is chosen according to the posterior distribution Q(h) = P (h)P
h2C(S) P (h) , C(S) is the

set of hypotheses in H consistent with the sample S, and where P (C(S)) =
P

h2C(S) P (h)

The proof is presented in appendix A.1. It closely follows that of the original PAC-
Bayesian theorem by McAllister, with the main technical step relying on the quantifier
reversal lemma of McAllester (1998). Note that the bound is essentially the same as that
of Langford and Seeger (2001), except for the fact that it holds in probability and it adds
an extra term dependent on the confidence parameter �, which is usually negligible, but
may be important when considering the effect of optimizer choice. The quantity P (C(S))
corresponds to the marginal likelihood, or Bayesian evidence of the data S, and we will also
denote it by P (S), to simplify notation.

In Valle-Pérez et al. (2018), the authors interpreted Q(h) as approximating the probability
by which the stochastic algorithm (e.g. SGD) outputs hypothesis h after training. The
preceding bound relaxes this assumption, because it shows that in some sense, the bound
holds for “almost all” of the zero-error region of parameter space. More precisely, it holds with
high probability over the posterior. This suggests that SGD may not need to approximate
the Bayesian inference as closely, for this bound to be useful. Nevertheless, Mingard et al.
(2020) gave empirical results showing that, for DNNs, the distribution over functions that
SGD samples from, approximates the Bayesian posterior rather closely. A fully rigorous
generalization error bound for DNNs would need further analysis of SGD dynamics, but we
believe these theoretical and empirical results strongly suggest that the PAC-Bayes bound
should be applicable to SGD-trained DNNs.

Because it applies to the Bayesian posterior only, the bound in theorem 5.1 does not
apply universally over a large family of posteriors, like standard deterministic PAC-Bayes
bounds do, which can be shown to sometimes give loose bounds (Nagarajan and Kolter, 2019).
Furthermore, as we will show in section 6.2, the bound is in a certain sense asymptotically
optimal in the limit of large training set size.

We expect our bound to give significantly tighter results than previous PAC-Bayes bounds
applied to DNNs, because rather than working with parameters, our bound works directly
with posteriors and priors in function space. Since the parameter-function map (Valle-Pérez
et al., 2018) of DNNs is many-to-one, with a lot of parameter-redundancy, it is not hard to
construct situations where KL(Qpar||Ppar) between a parameter-space posterior Qpar and
prior Ppar is high, but KL(Q||P) between the induced posterior and prior in function-space
is low. In fact, in appendix A.3, we show that the following inequality holds

KL(Q||P)  KL(Qpar||Ppar) (19)

which implies that it is always better (or at least not worse) to consider PAC-Bayes bounds
in function space for parametrized models, if possible. Furthermore, in section 7, we will
empirically verify that our bound gives good predictions for SGD-trained DNNs, and satisfies
most of our desiderata for a generalization error bound. Thus our empirical results corroborate
our expectation of better agreement above.

31

Figure 4: Comparing different architectures. Learning curves for the test error and
the PAC-Bayes bounds for representative architectures and different datasets. Solid and
dashed line show, respectively, the empirical test error and the PAC-Bayes bounds. The
architectures are FCN, Resnet50, Densenet121, and MobileNetv2. The DNNs were trained
using Adam with batch size 32 to 0 training error. Different architectures show similar
learning curve power law exponents, which are matched well by the PAC-Bayes bound. Note
that we used slightly different y-axis ranges for each dataset, to aid the distinction of different
architectures. The ordering of the PAC-Bayes bound also agrees reasonably well with the
ordering of the true learning curves, when comparing architectures (Desideratum D.3).

The learning curves we observe in the figs above agree with the previous empirical
observations of power law behaviour in learning curves for DNNs, with only a few exceptions,
where we observe a deviation from power law behaviour. In particular the learning curve for
CIFAR10 for batch 32 appears to deviate from a power law on this range of m. However for
batch 256 it shows cleaner power law behaviour (see fig. 12, fig. 13, fig. 14 in appendix E)
that agrees better with the PAC-Bayes bound exponent.

In fig. 8 and fig. 9, shown in appendix D, we present the learning curves for several
variants of ResNets and DenseNets, respectively. Within each family of similar architectures,
the learning curve is even more similar. The PAC-Bayes bound matches the behaviour of the
true error rather closely for the entire range of architectures and datasets used. In particular,
the power law exponent of the PAC-Bayes bound is close to that of the true learning curves
for these 14 different architectures, just as was found in fig. 3 for three representative ones,
showing that our generalization error theory is robust and widely applicable.

39

Generalization bounds for deep learning Guillermo Valle-Pérez and AAL, arxiv:arXiv:2012.04115

Tight PAC-Bayes bounds: comparing architectures

Guillermo
Valle Perez

� ln (1� ✏(h)) <
ln 1

P (C(S))+lnm+ln 1
�+ln 1

�

m�1

where h is chosen according to the posterior distribution Q(h) = P (h)P
h2C(S) P (h) , C(S) is the

set of hypotheses in H consistent with the sample S, and where P (C(S)) =
P

h2C(S) P (h)

The proof is presented in appendix A.1. It closely follows that of the original PAC-
Bayesian theorem by McAllister, with the main technical step relying on the quantifier
reversal lemma of McAllester (1998). Note that the bound is essentially the same as that
of Langford and Seeger (2001), except for the fact that it holds in probability and it adds
an extra term dependent on the confidence parameter �, which is usually negligible, but
may be important when considering the effect of optimizer choice. The quantity P (C(S))
corresponds to the marginal likelihood, or Bayesian evidence of the data S, and we will also
denote it by P (S), to simplify notation.

In Valle-Pérez et al. (2018), the authors interpreted Q(h) as approximating the probability
by which the stochastic algorithm (e.g. SGD) outputs hypothesis h after training. The
preceding bound relaxes this assumption, because it shows that in some sense, the bound
holds for “almost all” of the zero-error region of parameter space. More precisely, it holds with
high probability over the posterior. This suggests that SGD may not need to approximate
the Bayesian inference as closely, for this bound to be useful. Nevertheless, Mingard et al.
(2020) gave empirical results showing that, for DNNs, the distribution over functions that
SGD samples from, approximates the Bayesian posterior rather closely. A fully rigorous
generalization error bound for DNNs would need further analysis of SGD dynamics, but we
believe these theoretical and empirical results strongly suggest that the PAC-Bayes bound
should be applicable to SGD-trained DNNs.

Because it applies to the Bayesian posterior only, the bound in theorem 5.1 does not
apply universally over a large family of posteriors, like standard deterministic PAC-Bayes
bounds do, which can be shown to sometimes give loose bounds (Nagarajan and Kolter, 2019).
Furthermore, as we will show in section 6.2, the bound is in a certain sense asymptotically
optimal in the limit of large training set size.

We expect our bound to give significantly tighter results than previous PAC-Bayes bounds
applied to DNNs, because rather than working with parameters, our bound works directly
with posteriors and priors in function space. Since the parameter-function map (Valle-Pérez
et al., 2018) of DNNs is many-to-one, with a lot of parameter-redundancy, it is not hard to
construct situations where KL(Qpar||Ppar) between a parameter-space posterior Qpar and
prior Ppar is high, but KL(Q||P) between the induced posterior and prior in function-space
is low. In fact, in appendix A.3, we show that the following inequality holds

KL(Q||P)  KL(Qpar||Ppar) (19)

which implies that it is always better (or at least not worse) to consider PAC-Bayes bounds
in function space for parametrized models, if possible. Furthermore, in section 7, we will
empirically verify that our bound gives good predictions for SGD-trained DNNs, and satisfies
most of our desiderata for a generalization error bound. Thus our empirical results corroborate
our expectation of better agreement above.

31

there is a good correlation between the estimate of the exponent and the empirical exponent.
The absolute value of the estimated exponent in fig. 5a does show deviation from the true
value, which is probably due to systematic errors in the EP approximation used to compute
the marginal likelihood (this was discussed and empirically investigated in Mingard et al.
(2020)). It should be kept in mind that power law exponents can be sensitive to the protocol
used to measure them (Clauset et al., 2009; Stumpf and Porter, 2012), so the exact values
we find in fig. 5 may not be as meaningful as the correlation between the empirical values
and those from the bound.

7.3 Error versus architecture (Desideratum D.3)

Desideratum D.3 requires that the bound correlates with the error when changing the
architecture. We explore this in two ways, by varying certain common architecture hyper-
parameters (pooling type and depth), and by comparing several state-of-the-art (SOTA)
architectures to each other. In fig. 6a, we vary the pooling type, and find that the bound
correctly predicts that the error is higher for max pooling than avg pooling, and both are
lower than no pooling, on this particular dataset. In fig. 6b, we vary the number of hidden
layers of a CNN trained on MNIST, and find that the bound closely tracks the change in
generalization error with numbers of layers.

(a) (b)

Figure 6: PAC-Bayes bound and generalization error versus different architecture

hyperparameters. (a) Error versus pooling type, for a CNN trained on a sample of 1k
images from KMNIST. (b) Error versus number of layers for a CNN trained on a sample of
size 10k from MNIST. Training set error is 0 in all experiments. We used SGD with batch
32 for both of these experiments.

To explore more complex changes to the architecture, we plot in fig. 7 the bound and
error against each other for five datasets, for a set of state-of-the-art architectures, including
several resnets and densenet variants (see appendix B.3 for architecture details), at a fixed
training set size of 15K. The results display a clear correlation, showing that our PAC-Bayes
bound can help explain why some architectures generalize better than others.

41

Generalization bounds for deep learning Guillermo Valle-Pérez and AAL, arxiv:arXiv:2012.04115

Marginal-likelihood bound

Tight PAC-Bayes bounds: comparing architectures

Guillermo
Valle Perez

� ln (1� ✏(h)) <
ln 1

P (C(S))+lnm+ln 1
�+ln 1

�

m�1

where h is chosen according to the posterior distribution Q(h) = P (h)P
h2C(S) P (h) , C(S) is the

set of hypotheses in H consistent with the sample S, and where P (C(S)) =
P

h2C(S) P (h)

The proof is presented in appendix A.1. It closely follows that of the original PAC-
Bayesian theorem by McAllister, with the main technical step relying on the quantifier
reversal lemma of McAllester (1998). Note that the bound is essentially the same as that
of Langford and Seeger (2001), except for the fact that it holds in probability and it adds
an extra term dependent on the confidence parameter �, which is usually negligible, but
may be important when considering the effect of optimizer choice. The quantity P (C(S))
corresponds to the marginal likelihood, or Bayesian evidence of the data S, and we will also
denote it by P (S), to simplify notation.

In Valle-Pérez et al. (2018), the authors interpreted Q(h) as approximating the probability
by which the stochastic algorithm (e.g. SGD) outputs hypothesis h after training. The
preceding bound relaxes this assumption, because it shows that in some sense, the bound
holds for “almost all” of the zero-error region of parameter space. More precisely, it holds with
high probability over the posterior. This suggests that SGD may not need to approximate
the Bayesian inference as closely, for this bound to be useful. Nevertheless, Mingard et al.
(2020) gave empirical results showing that, for DNNs, the distribution over functions that
SGD samples from, approximates the Bayesian posterior rather closely. A fully rigorous
generalization error bound for DNNs would need further analysis of SGD dynamics, but we
believe these theoretical and empirical results strongly suggest that the PAC-Bayes bound
should be applicable to SGD-trained DNNs.

Because it applies to the Bayesian posterior only, the bound in theorem 5.1 does not
apply universally over a large family of posteriors, like standard deterministic PAC-Bayes
bounds do, which can be shown to sometimes give loose bounds (Nagarajan and Kolter, 2019).
Furthermore, as we will show in section 6.2, the bound is in a certain sense asymptotically
optimal in the limit of large training set size.

We expect our bound to give significantly tighter results than previous PAC-Bayes bounds
applied to DNNs, because rather than working with parameters, our bound works directly
with posteriors and priors in function space. Since the parameter-function map (Valle-Pérez
et al., 2018) of DNNs is many-to-one, with a lot of parameter-redundancy, it is not hard to
construct situations where KL(Qpar||Ppar) between a parameter-space posterior Qpar and
prior Ppar is high, but KL(Q||P) between the induced posterior and prior in function-space
is low. In fact, in appendix A.3, we show that the following inequality holds

KL(Q||P)  KL(Qpar||Ppar) (19)

which implies that it is always better (or at least not worse) to consider PAC-Bayes bounds
in function space for parametrized models, if possible. Furthermore, in section 7, we will
empirically verify that our bound gives good predictions for SGD-trained DNNs, and satisfies
most of our desiderata for a generalization error bound. Thus our empirical results corroborate
our expectation of better agreement above.

31

Generalization bounds for deep learning Guillermo Valle-Pérez and AAL, arxiv:arXiv:2012.04115

(a) CIFAR10 (b) EMNIST

(c) KMNIST (d) MNIST

(e) Fashion-MNIST

Figure 7: PAC-Bayes bound versus test error for different models trained on a

sample of size 15k for the 5 datasets we study. The empirical test error was calculated
using Adam with batch size 32. FCN and CNNs are removed for clarity as they often have
the relatively extreme values of test error and/or bound, which would make the finer grained
differences on these plots harder to see. In fig. 19, we show these plots with FCN and CNN
included.

42

Error at m=15,000 training set for some SOTA networks

Marginal-likelihood bound

Guillermo
Valle Perez

Kamal Dingle Chico Camargo

Chris Mingard Vlad MikulikOuns El Harzli Joar Skalse Isaac Reid

David
Martinez

Henry Rees

Hertford College
undergraduates

Shuofeng Zhang Yoonsoo Nam

Thanks!
Conclusions:
1) DNNs generalize because they have an implicit bias
towards simple functions, as predicted by AIT
2) SGD acts as a Bayesian optimizer, it is not the source of
the good generalization performance
3) Many common intuitions from learning theory, such as
bias-variance tradeoff etc… don’t work for DNNs, but:
4)Our marginal-likelihood PAC-Bayes bound performs well

assumption that the exponent in Eq. (4.17) is related to our approximation K̃(x) by

K(x|A) +O(1) ⇡ aK̃(x) + b (4.23)

for constants a > 0 and b. These constants account for the O(1) term, potential

idiosyncrasies of the complexity approximation K̃, and other possible factors arising

from our approximations. Hence we approximate Eq. (4.17) as

P (x) . 2�aK̃(x)�b (4.24)

Note that the constants a and b depend on the mapping, but not on x.

As we discuss in the next Section and the example maps below, the values of a

and b can often be inferred a priori using one or more of: The complexity values of all

the outputs, the number of outputs (NO), the probability of the simplest structure,

or other values.

4.5 Making predictions for P (x) in computable maps

We can often make predictions about the values of a and b (Eq. (4.24)), via various

methods. Essentially we use any piece of information about the outputs or their

probabilities that is available to estimate, bound or approximate the values of a and

b. We now describe some methods, which we apply to various maps in the next

Section of this Chapter.

4.5.1 Estimating the range of K(x|A)

We will now estimate the range of values that we expect K(x|A) to assume. We

begin with a lower bound on possible complexity values: Given A we can compute

all the inputs, and produce all NO outputs. Hence, we can describe any x 2 O by its

index 1  j  NO in the set of outputs O. Therefore

K(x|A)  log(j) +O(log(log(j))) (4.25)

95

Occam’s razor

