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Topics of the talk

= How can we design nonlinear feedback controllers using Lyapunov
based techniques?

= |dem... using optimization model-based techniques...

= Several examples on motion control of single and multiple
autonomous robotic vehicles



What is a control system?

Actuation External Sensor
noise disturbances noise

l l y

Reference Input
—>{ Controller >| | Actuators —> System —> Sensors

T

Control Objectives:

Output
>

Plant/Process

Design a controller that in real-time stabilizes the plant and the output signal track the
reference despite external disturbances, noises, and plant parameter uncertainty

(robust stability and performance)



What is a model based control design?

Exogenous inputs Performance signals
W — A «— — Z
Uncertainty
Control inputs G Output signals
Nominal System

I I K:'? I :
I Controller

= f(xr,u,w
c. f( ) reX uel A€ Fa
y = h(z,u,w) yey weW



Why do we care?

We are interested in system methodological tools that are provably
(mathematically) certified by design guaranteeing the specifications

(e.g., stability, robustness, and performance) in the presence of challenging

restrictions and uncertainties.

No matter what sequence of events occur (within a set of reasonable assumptions), the

control system will always respond in a manner that satisfies the specification.



Lyapunov Stability

Stability definition

&= f(x)

o
" All solutions
Deﬁmtl.o.n . . . starting nearby;,
The equilibrium point x = 0 is stay nearby

e stable if, for each € > 0, there is § = d(e) > 0 such that
lz(O)lf <0 = lz(®)] <¢, V20

e unstable if it is not stable
e asymptotically stable if it is stable and 0 can be chosen such that

|2(0)]] < 6= lim x(t) =0

t—00



Lyapunov Stability

Ag?jﬂﬁ
b ) 1),
=

Lyapunov’s stability theorem

Let V : D — R be a continuously differentiable function such that

oV (0) =0, V(x)>0,) Vz e D\{0}
Note that the set
o(V(r)<0, VreD

(g = B, :V(z) <
Then, z = 0 is stable. Moreover, if p=1T € (z) < B}

. 1S an nwvariant set.
@< 0,Vx € D\ {0

then x = 0 is asymptotically stable.




Control Lyapunov functions

Definition (CLFs)

A positive definite function V' (z) is a Control Lyapunov function (CLF) for system
z = f(x) + g(z)u if it satisfies (for every x # 0):

infu [ LfV(:L') + LgV(:I)) u] <0
ue - _

V(z)=3Y [f(z)+g(z)u]

There is a feedback law
such that the origin is
asymptotically stable

There is a
g CLF

All these concepts can be extended to stability of trajectories, sets, global results,

robustness to disturbances, discrete-time systems, etc.

How can we find a CLF / control law?



Example: Marine Robotic Vehicles

Typical motion control problems

- Speed, Heading, and Depth Control
- Bo '
- Point Stabilization,

(Terrain Contouring)

overing, Manipulation

- Trajectory Tracking and Path Following
- Target Tracking...



Point Stabilization

Fully actuated AUV/ROV

T

AUV/ROV

Goal: Design a state feedback control so that n(t) converges to a desired posi-
tion and attitude n,; (Pose stabilization)

Model:

My +Cvv+ D(v)v + =T M=>0
W+ Dy =7 | =0

n=Jnv D(v) >0

(u7 U? w7p7 Q7 T)/

(:E7 y? Z? ¢7 97 w),

/
T = (T’LUT’U) TwanaTmTr)

vV
g 10



Nonlinear Control Design

Model:
Mv+Cv)yv+Dw)v+gn) =T
n=Jnyv
Error dynamics:

e(t) =n(t) —ng —s é=0n=J(n)v

Control Lyapunov function:

1
V(v,e) = =(v! Mv + el Kpe
2

11



Nonlinear Control Design

Computing the time derivative with respect to the trajectory of the system...
V=uv'Mv+e¢'Kpe
= v (Mv + J"(n)Kpe)
— VT (D) Dw)v — g(n) + " () K pe) — v C(v)v

N————
0

Assign a feedback law...

T = —JTer(t) — Kpv+ g(n)

V=-—v"(D(v)+ Kp)r <0 — We have stability!

Using now other tools (LaSalle’s invariance principle) it is possible to conclude

asymptotically stability!

12



Dynamic Positioning of an underactuated AUV

Goal: steer an underwater vehicle to a target point

\
//'/'

7 Ve h/| /(;/Ie,,moﬁll ng‘(hpnzonial,ﬂ@ne?

""’v. "A 5
; -% ' v A
.: .
&% 1U} Xy
;._ A"t»
ji—a _
\ é‘}. - Yy
.
o

. ﬂéﬁategy adopted:

Main challen%es
Adaptive controller

* Nonlinear dynamics

. UR¥GRIG 308e!ler

» Par@beemer modeling uncertainty
*  Externahematicrbontestier
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Dynamic Positioning of an underactuated AUV
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Trajectory tracking versus path following

Path following

- Reference path given in a
time-free parameterization

Reference path

™~

N

Possible vehicle
trajectory

Space

Trajectory Tracking

- Time and space reference
trajectory

Reference
trajectory
\ Possible vel
trajectory
A

Space x Time

nicle

Path-following is motivated by applications in which spatial errors
are more critical than temporal errors

15



Trajectory tracking versus path following

./

pa(t)

Additional design of freedom (we
control the virtual point!)

= Consider an underactuated vehicle modeled as a rigid body subject to
external forces and torques

. . 3
= Kinematics » = Ru p,v,w € R, R e SO(3)

R = RS(w) S(w) = ( o 0 —wfjl)

—Wws Wy 0

= Dynamics

My = —-S(w)Mv + fo(v,w, R) + gruq
Ju=-S()Mv—- S(w)Jw+ fo(v,w, R) + Gouno




Lyapunov based motion control of an underactuated

vehicle

s Step 1. Coordinate Transformation

e = R'(p —py)

tracking error in
body frame

e =—S(w)e+v— R'p,

s Step 2. Convergence of e

error only in position!

----------------

linear velocity viewed as a
virtual control input

Z1 1= — R'pg + M~ le

17



Lyapunov based trajectory tracking
of an underactuated venhicle

s Step 3. Backstepping for z, virtual control input

T control input
A

| |
Mz1 = S(Mz1)w + IMN(R, v, pg)w + g1u1 + h(-)

It will not always be possible to drive z; to zero!
Instead, we will drive z; to a small constant 6

1 1 1
Vo i=V1 + 5@’1\42@ = 56/6 + EgolMng p.i=2z1—90

Vo = —e/M le 4 ¢/ — o' Koo + ¢ MBy ()25

<0 <0
1st control signal has been
U1 — [1 Ol><3] «

dominated by the first term assigned

22 i= w — [0sa Isxs | @ angular velocity viewed as a
\ ) ]
virtual control input

18



Lyapunov based trajectory tracking
of an underactuated venhicle

= Step 4. Backstepping for z,

1 1 1 1
V3 1= Vo + EzlszQ = 56/6 + 590’1\/[2@ + 52/2.]22

<O ....... / <0 ....... <0 .......
2nd control signal has

dominated by the first term been assigned

Using Young’s inequality for any y > 0

: 1
Vi < —AVa 1 272”5”2 can be made

arbitrarily small

All signals remain bounded and converges to ball of radius proportional to &
19



Autonomous Underwater Vehicle (3D
simulation results

Trajectory tracking Path following
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Moving path following

Classic Path Following Moving Path Following
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Natural extension of the classical path following methods for stationary paths




Moving path following

Path-Fixed
Frame

Parallel-Transport

Local :Fr ame

Inercial
Frame

Main features

Maximum takeoff weight 10 Kg

Wingspan 2.415 m
Payload 4 Kg
Maximum Speed 150 Km/h

Autonomy 1.5h




Moving path following

Three Dimensional Moving Path Following for Fixed-Wing Unmanned Aerial Vehicles

wina rrame — Vv
1% -
- - —7
Path-Transport 7, "
- = —
Frame = Ta 2 Yyw
/(N yp [ N
[ wy , L ZTw .
/’( PE/D \zp Desired -
]’o:’ V_Z‘[r p ’ I)“l Il .)(
/ ~ -

Piccolo avionics

4

Parallel-Transpor

Lo« 'n.l Frame “.x‘z‘...l‘(li)lr-:)/l.ollclc:()lo
Inercial
Frame === Serial link PCC e MATLAB
g;% w2l T Ethernet ===
Pilot manual control Piccolo Ground Station % % | emulated
Operator Interface Matlab Interface
Computer 1 Computer 2
Sensors Sensors Sensors
; —
2.4 GHz PCC ROS MATLAB
S e ——
Control Ref. Control Ref. Control Ref.
Methodology:
o Lyapunov-based Numerical /
Position error |:> Error |:> control design with |:> hardware in Flight tests
- - - - I
Orientation error Kinematics T g the loop E> g
stability guarantees ) .
simulations
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Moving path following:
Autonomous landing on a moving vessel

[0 Attach a desired landing pattern to the moving vessel and make the UAV
converge to and track the moving landing pattern:

Operator Interface Matlab Interface

O Flight test ——

=
g |
: - 18
................ \13'&" bark. command ans




Moving path following:

Autonomous landing on a moving vessel

T = = = = Vessel trajectory ;
N UAV trajectory 5
e 5 -of
E 540 . & 2% 0 20 20 ) 5 & 7 %
= time [s]
$ 520 o ! -
N '5 - _qu
500 T - | = —™
100 50 0 -50 ~100 500 x-North [m] i ==
E -0.5
y—-East [m] 3
o 10 20 30 20 50 %0 70 0

0 Additional flight test results: fe
} @ Top view

3D view

*

=tp (]

EEESEREE

P o 01 6B 0z 0% 03 0.5
time [s]
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Moving path following

0 A more general illustration of the MPF method for 3D reference paths

0 Applications:

tracking a moving target
cloud monitoring,
thermal soaring, ...

Geometric Moving Path Following on SO(3)

Demonstration in 3D case

60

Relative UAV path with
respect to the desired
path under different
autopilot bandwidths

Yoy

26



Optimization-based approach

Definition (CLFs)

A positive definite function V' (z) is a Control Lyapunov function (CLF) for system
= f(z) + g(z)u

Set of Stabilizing Controllers

Ky(z) ={uel : LyV(z)+LgsV(z)u < —o(x)}

Pointwise Min-Norm l _
Desired rate

1
min —||'u,||2
ueU 2

st. LfV(x)+LgV(z)u < —0o(x) (CLF)

where o(z) > 0.

At every point, we select the smallest input which ensures that the CLF decays at the specified

' /
desired rate! o7



Set Invariance and Safety

How can we address safety?

® C

Definition (Safety)

The closed-loop system & = f(x) + g(z)u* is safe with respect to C if C is forward
invariant.

C={zxeR":h(x) >0}
0C = {x € R" : h(z) = 0}
O ={x € R": h(z) < 0}

28



Control Barrier Functions

The function h(z) is a Control Barrier Function (CBF) if there exists a locally
Lipschitz extended class Ko, function « such that

sup [th(a:) + Lgh(x) u] > —a(h(x))
u€R™

Note that h(x) is only allowed to decrease in the interior of the safe set int(C),
but not on its boundary 9C, that is, C is forward invariant.

Set of Safe Controllers

Kepr(z)={u€eR™ : Lyh(x)+Lgh(z) u+a(h(z)) > 0}

CBFs can be used to design controllers
enforcing safety.

29



Stabilization and Safety using QPs

1 1

: 22 4 2 es2
(u,agﬁlmﬂ 2||'u,|| + 2&:5
st. LiV(x)+LgV(z)u+v(V(z)) <9 (CLF)
L¢h(x) + Lgh(z)u 4+ a(h(z)) >0 (CBF)

where kK > 0, vy € K, a € K.

The CBF constraint guarantees that u* € Kgopp(z) keeps the system
trajectories invariant with respect to the safe set C.

The relaxation variable § in the CLF constraint softens the stabilization
objective, maintaining the feasibility of the QP.

30



Stabilization and Safety using QPs

“Hle Edt Miew Insert Tools Desktop Window Help The QP-based approach can introduce
QS WS|RARAOVDEL-|G/0EH 0D asymptotically stable equilibrium points

on the boundary OC.

Solution: Include the freedom of rotating and scaling the initial

proposed CLF V by augmenting the state of the control system.

31



Optimization-based approach

Receding horizon approach

Reference
—_—

(Solver engine: several

MPC

Controller

iterations at each sample!)

Open loop finite horizon problem u*(t)

£t T
min / L(z(1),u(r))dr + @(x(t; + T))

u(:)
st. == f(x,u)

)

Input
>

Output

Plant

(x,u) € X xU

x(t;) = xt,

w(ti Ir T) € Xoux

Optimal input trajectory

»

~+V




Model Predictive Control

Performance Index
(:i+T) Auxiliary

z(T),u(T)) dr elements are
t; crucial for

Stage Cost Terminal Cost stability!
Open-Loop finite horizon problem
J75(z,u) = min Jr(z, )
u(-)
st. == f(z,u) Dynamical Model

(z(7),u(T)) € X XU State and Input Constraints
x(t,) = Tt.

Terminal Constraint

Control Policy

u(t) =u*(t), tE€ [ti,tit1) 23



Model Predictive Control

terminal set

Main (sufficient) condition for closed-loop stability

There exists a feasible auxiliary control law
u(t) = Kquz(+) that renders Xz positively
invariant, and such that

90(37) < _E(-'E,Kaua:(x)), t>2t,+ 7T, x € Xoux
oFEimaL
MPC
- prediction

“o2 T o 1 2
= Key idea:
Design an auxiliary Lyapunov based control law and use it to compute the

» Terminal set: usually a level set of the Lyapunov function
= Terminal cost: to approximately recover the infinite horizon control

solution ¢(z(t; + T)) = /t - 0(2(1), Kaue (2)) dr

Bonus: If the auxiliary control law yields global asymptotical stability (under the
constraints) then the terminal set 1s the all space, and the Region of Attraction (R.O.A) of

the MPC is all the state space! (MPC improves the designed auxiliary controller) 34



Simulation results

u(t)

20

(:)(t)

Position Trajectories

10

B et S 1
\ e : I Y

y1mj

time t [s]

Trajectory tracking

Trajectory-tracking

time t [s]

=)

................................ 0 T — — o :
E SN S——— : 2 j
;—-————;—-———T—— —107—-—_1--_-__- _al
0 2 4 0 2 4 T |

_é 0 2 - 6 8
X [m]
Path following

Path-following
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Dual-Objective MPC for Economic Optimization

= Application scenarios:

= When there 1s margin to reduce tracking accuracy to perform economic

optimization Performance Index

ti+T
Jr(z,u) := / L(x(1),u(T))dr + p(x(t; + T))

Stage Cost:
l(x,u) =Lls(x,u) + Le(x,u)

Stabilizing Cost Economic Cost

Under some suitable design of the auxiliary elements... |(_ (x, u)| < b(t)

... 1t 1s possible to show that

lz(@)]| < B(ll=(to)ll, t — to) + v ( sup [[£(2(t), u(t))]])

t>tg

Transient Economic optimization: |[{(x(t),u(t))|| = 0 = ||x(¢)]| = 0 36



Dual-Objective MPC for Economic Optimization

Motivation Reduce energy consumption. ISS-based EMPC
Control objectives
1) Track a predefined position trajectory It X, u) = 1s(t, x, u)  + ety X, U)
2) Save energy Trajectory-Tracking Consumption
Stage Cost Index

a2 &= Water currents velocity vectors
[ T B 7

- — — W

/!
7/

“&—= Desired position trajectory

p, [km]
o

1.5
le(t, x, u) = kcatan (k—||u(t)||2>

/ N A A s
/ N\ —_——,——_—a Nt e

37



Dual-Objective MPC for Economic Optimization

Motivation Reduce energy consumption.

Control objectives

p, [km]

1) Track a predefined position trajectory

2) Save energy

6
—_—=
NNNN L k —o
SNN N c
4 . VA VA k =10
’ s LSS kC=20
' k =30
5 ) T T 7T
N7 R A A A V /i
TS S S /
NN~
v s /T
O-\\\ ///
i T T /4
R\ ax
/// \\\\\\ \ '
20 17/
VAV D SN o A
//// ////////// 7 1
4 A ot
~ S~ NN\ v\
~ N
VL
-6 L 1
-6 -4 2 0 2 4

Mean lul?

l(t, x, u) = keatan <1'f||u(t)||2>

le(t)!

0

14.5

14

135 |

13

1251

12

k

Tracking error

2 4 6 8 10
t [h]

Energy consumption

\G____O

10 20 30 40 50
Bound on economic cost

38



Dual-Objective MPC for Economic Optimization

Motivation Reduce energy consumption.

Control objectives

p, [km]

1) Track a predefined position trajectory
2) Save energy

o

—_—

N\ K =0
~NON N ) C

. k =10
. k =20
' k=30
TSt S —r—
\:‘* RV, /4
\\\ -—//////// ///
NN SRRt /i
v /1]
ff, I
11y (I
/77
VAV S 4 A
/// ,,,,, r !
S e e [
-~ v\
~ NN\

~ N

IR

4 2 0 2 4

2

Mean lul®

1.5
(e x ) = keatan (32 u(o)1?]
C

138
13.6 1

134

13.2

Tracking error

0 10

20 30 40 50

Bound on economic cost
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Dual-Objective MPC for Economic Optimization

Example - Car Control

Kinematic

p=R(¢+B)( o )
= ?sinﬁ

B :=tan! (/7' tan(é))

Inner Loops (Servo & E

o= —(1/75)(6 — dref)

Ve = —(1/7y, ) (vr — Vrer)

40



Dual-Objective MPC for Economic Optimization

Target monitoring:

1) Estimate the position of the target
2) Follow the target % ‘E‘

Attention!!! The two objectives might conflict
41



Dual-Objective MPC for Economic Optimization

Unobservable motion

ooooooooooooooooooooo

i“ b} :
y(t) Well” observable motion
State equations: Target input s [’
o (X; X')’ TARGET parametrization: Observability matrix: O(X, uf, ut) = 8_x Y
' Tt MOTION MODEL - /. . :
x = f(x, uf, ur, wr, we) = (ZEX Z: ://VV:))> (GUESS) 0 Pu) - pu = fu(Pu)
FOLLOWER Main property:  O(x, ur, u;) full rank => state x locally observable at (x,u)
MOTION MODEL Note:
pe(t) —p(t) § * Observability is function of the state and input
B G =» S * Large minimum singular value => high “Quantity”
/, ¢ Condition number closeto 1 => high “Quality”

LOCAL SENSOR / Tt
MODEL (E.G. IMU, GPS, ...) /

Index of observability (saturated):
Output equations: /
y =h(x,v) = <hf(xf' Vf))

he(xe, vt) — 1 o1 — 1)
lo(x, ur, ut) = k arctan (k <0minO(X. U 10) + a2(K(O(x, ur, u)) — 1) ))

yi=ny) vi= (v v)

42



Dual-Objective MPC for Economic Optimization

Position trajectories — decoupled design Position trajectories — proposed design

30 ‘ 25
o P((1)
p,()
- - .estp() i
- estp(t) ||
% 0 20 20 60 80 100 2% 0 20 20 60 80 100 120
t;+1
Jr(z,u) = (l(x,u) + Lo(x,u))dr + @(x(t; +T))

b

Stabilizing Cost Observability Cost
43



Problem Statement and Motivation

-\ ‘% " ‘
1‘ ‘

Comm links

‘ #00(t) = £ (¢, 2 (6), ul ‘
/y[i] (t) = g(t) +u (coupling equation)

\ ym(t)Zh[i](t,fv[“(t),vm(t)) ‘

\

44



Problem Statement and Motivation

Control objectives Communication graph £ C V X V/
Output regulation G = (V, g)
y[i](t) 50 (i,j) € E <= systemireads ’y[j](t)

Coordination
> (1) = AV()? = 0
(1J)ee

Asymptotic assignment

Y(t) = v

How to combine the output regulation objective with the consensus
objective?

45



Cooperative Path Following

Vehicle
formation

------------------------------------------

Key ingredients:

= Path following for each vehicle

= |nter vehicle coordination

speed adjustments based on

VERY LITTLE INFO EXCHANGED)
(space-time decoupling)

Path

/J Speed

assignment

PF and CC interconnection

——

46



Logic/event-based communications:
Field tests

Three AUV Following a Circular formation

AUVs in action!!

Event-based, Porto, 2018 Logic-based, Lisbon, 2018

47



CPF and CMPF (numerical results)

Cooperative Moving Path Following

MPC goal: Optimize over a pre-existing auxiliary
consensus control law to balance coordination and

regulation !

Cooperative Moving Path Following using Dynamic

Strong penalty on the distance to the
path (solid line) Event-triggered Communication
een Jain, A. Pedro Aguiar, and Jodo Borges de Sousa

Slectrical and Computer Engineering, University of Porto, Portugal

Position trajectories
A A
o o LSTS  DZORLs

DE ENGENHARIA Cyber-Physical
JE DO PORTO !

¢ European Union’s Horizon 2020 research and innovation programme MarincUAS
42153, and project IMPROVE - POCI- 01-0145- FEDER-031823 - funded by FEDE|

funds (PIDDAC).

Asymptotic
convergence to
consensus 48



Conclusions

Brief overview of Lyapunov model based and optimization model
based control design

Applications for motion control of single and multiple autonomous
robotic vehicles

Control architectures that accounts for vehicle dynamics, external
disturbances, sensor noise, inter-vehicle time-varying communication
topologies and communication losses

On-going and Future Research: How to better exploit (and LEARN through)
DATA (off-line and real-time) and how to combine with (potentially poor)
nominal dynamic models to improve performance and robustness in the
presence of challenging restrictions and uncertainties, but guaranteeing key
specifications (e.g., safety, interpretability, ...)?

Implementation, and proof-of-concept of the algorithms on specific
high impact applications

49
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Check my web-page: https://paginas.fe.up.pti~apra Cyber-Physical Control Systems and Robotics Lab

Selected on Motion Control (Lyapunov-based):

R. Praveen Jain, Jodo Sousa, A. Pedro Aguiar, Three-Dimensional Moving Path Following Control for Robotic
Vehicles with Minimum Positive Forward Speed. IEEE Control Systems Letters (L-CSS), 2021.

Francisco C. Rego, Nguyen T. Hung, Colin N. Jones, Antonio M. Pascoal, A. Pedro Aguiar, Cooperative Path-
Following Control with Logic-Based Communications: Theory and Practice. In "Navigation and Control of
Autonomous Marine Vehicles", IET, pp. 187-224, 2019.

Tiago Oliveira, A. Pedro Aguiar, and Pedro Encarnacgao, Moving Path Following for Unmanned Aerial Vehicles With
Applications to Single and Multiple Target Tracking Problems. |IEEE Transactions on Robotics, Vol. 32, No. 5, pp.
1062-1078, Oct. 2016.

A. Pedro Aguiar and Jodo P. Hespanha, Trajectory-Tracking and Path-Following of Underactuated Autonomous
Vehicles with Parametric Modeling Uncertainty. IEEE Transactions on Automatic Control, Vol. 52, No. 8, pp. 1362-
1379, Aug. 2007.

Selected on Safety:

Matheus Reis, A. Pedro Aguiar, Paulo Tabuada, Control Barrier Function based Quadratic Programs Introduce
Undesirable Asymptotically Stable Equilibria. IEEE Control Systems Letters (L-CSS), vol. 5, no. 2, pp. 731-736,
April 2021.

Selected on Motion Control (MPC):

Andrea Alessandretti, A. Pedro Aguiar, An optimization-based cooperative path-following framework for multiple
robotic vehicles. IEEE Transactions on Control of Network Systems, Vol. 7, No. 2, pp. 1002-1014, 2020.

Selected on Dual-Objective for Economic Optimization:

Andrea Alessandretti, A. Pedro Aguiar, and Colin N. Jones, An Input-to-State-Stability approach to Economic
Optimization in Model Predictive Control. IEEE Transactions on Automatic Control, Vol. 62, No. 12, pp. 6081-6093,
Dec. 2017. 50



