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Drug development against COVID-19

@ Given the urgency, most viable approach is drug repurposing

e Many drugs are inhibitors (bind to a protein so that it cannot perform
its downstream role)

@ Want to identify a drug that pushes the system back to normal state

@ Available data: Drug signatures (screens with ~1000 FDA approved
drugs) and their targets, disease signatures, Protein-protein
interaction networks (20,000 nodes, 200,000 edges)

@ How to determine drug candidates for repurposing against a particular
disease?

O ® x
O
O O

— Learn causal graph!

v




Predicting the effect of an intervention:

@ Genomic interventions such as knockout experiments (few mostly
known targets)

= Theoretical and algorithmic framework for learning causal networks
from observational and interventional data

@ Transport drug intervention (many unknown targets) to new cell type

= Use inductive bias of autoencoders for synthetic interventions



@ Introduced by Sewell Wright in the 1920s

@ Major contributions by Judea Pearl, Jamie Robins, Don Rubin, Peter
Spirtes since 1970s

@ Represent causal relationships by a directed acyclic graph (DAG)

@ Each node is associated with a random variable; stochasticity is
introduced by independent noise variables ¢;

(x) X1 < f(X3,¢€1)
@)/ \® Xo + f-Q(Xl,EQ)
\ / X3 < f3(€3)

X4 — f4(X2, X3, 64)




@ Introduced by Sewell Wright in the 1920s

@ Major contributions by Judea Pearl, Jamie Robins, Don Rubin, Peter
Spirtes since 1970s

@ Represent causal relationships by a directed acyclic graph (DAG)

@ Each node is associated with a random variable; stochasticity is
introduced by independent noise variables ¢;

(x) X1 < f(X3,¢€1)
@)/ \® Xo + h(X1,€2)
\ / X3 + f3(€3)
X4 — f4(X2, X3, 64)

@ Structural equation model also defines interventional distribution:

o Intervention on Xp:  do(Xx = ¢)

o p(X3|do(Xs = c)) = p(x3) # p(x3 | xs), but
p(Xa | do(X5 = ¢)) = p(xa | x3) # p(xa)



From causal graphs to independence relations

e Missing edge (/,/) encodes conditional independence (Cl) relation:

X; AL )<J ‘ XancestorS(f,j)\{iJ}

e Markov equivalence: different causal graphs can encode same Cl
relations and are generally indistinguishable from observational data

Y

O—@ @@P @@f@ %@ %@ > Skeleton and immoralities
® ® (i—j«k) are identifiable
@ ® @v@ ® @ Verma & Pearl, 1992
©, ©

oNlo @Q@ © . |
® | O—® Inte.rventlonal Markov

Q @ i; ;; equivalence classes have
& & been characterized

Hauser & Buehlmann, JMLR 2012
Yang, Katcoff & Uhler, ICML 2018



GES: Greedy search over Markov equivalence classes: [Chickering, 2012]

» Large search space

» No consistency guarantees in the presence of interventional data



GES: Greedy search over Markov equivalence classes: [Chickering, 2012]
» Large search space

» No consistency guarantees in the presence of interventional data

Idea: DAG defined by ordering of vertices (permutation) and skeleton
e For p = 10 search space is of size 10! = 3,628,800 versus 108

@ For each permutation 7 construct a DAG G, = (V, E;) by

(’;J) cEr — X ‘JK )(J | Xancestorsﬁ(ilj)\{ilj}

Under weak conditions any sparsest DAG G, is Markov equivalent to the
true DAG (as sample size n — 00).



edges in polytope of permutations
(i.e., permutohedron) connect
neighboring transpositions, e.g.
(3,1,4,2) — (3,4,1,2)

3241 3214

Greedy sparsest permutation (GSP) algorithm is consistent (as sample size
n — o), i.e., every local minimum is a global minimum.



@ Our Python package https://github.com/uhlerlab/causaldag
has code for all methods, pre-processed perturb-seq data, etc.

p=8, n=10000

Computation time (secs) vs. Number of Variables

10‘3
10° 4

10° +

10 ]
.ﬁ 10°i
107 3

102 4

Proportion of simulations

10° 1

fges-py

Expected neighborhood size

[Solus, Wang & Uhler, 2018]

— BigQUIC (R)
— PC (Tetrad)
— FASK (Tetrad)
—— GSP (Python)
= (lLasso (Python)
1 107 10°
# of Vars

[Frederick Eberhardt: https:// www.slideshare.net/
SAMSI _Info/causal-inference-opening-workshop/
causal-discovery-in-neuroimaging-data-frederick-
eberhardt-december-11-2019]



@ GIES: perfect intervention adaptation of greedy search on space of
Markov equivalence classes [Hauser & Biihlmann, 2012]

e In general not consistent [Wang-Solus-Yang-Uhler, NIPS 2017]

@ IGSP: interventional adaptation of GSP: provably consistent
algorithm that can deal with interventional data

e for hard interventions [Wang-Solus-Yang-Uhler, NIPS 2017]
e for soft interventions [Yang-Katcoff-Uhler, ICML 2018]
e for unknown intervention targets [Squires-Wang-Uhler, UAI 2020]

@ GSPo: greedy search over posets to deal with latent confounders

@ sparsest poset Is consistent [Bernstein-Saeced-Squires-Uhler, AISTATS 2020]

e no consistency proof of greedy search yet



Predicting the effect of an intervention:

@ Genomic interventions such as knockout experiments (few mostly
known targets)

= Theoretical and algorithmic framework for learning causal networks
from observational and interventional data

@ Transport drug intervention (many unknown targets) to new cell type

= Use inductive bias of autoencoders for synthetic interventions



Style transfer and transporting causal effects

Encoder

Decoder Rd

Latent space
arithmetics for
style transfer using
autoencoders /
GANSs:

" Latent space
representation

cell types  condition

gene
expression
space

unperiurbed
®®  cels (p=0) "
5  perturbed A b
A7 cells (p=1) latent L 5
space
P . .
C X

decode
estimate perturbation apply &

Lotfollahi, Wolf & Theis,
Nature Methods 2020

Is this a general phenomenon? How does this fit in with work by Bareinboim, Pearl
and co-authors on necessary and sufficient conditions for causal transportability?



Predicting the effect of a drug on a different cell type

* CMap: 1.2mio samples (1000-dim expression vectors), 1000s of perturbations
(knockouts, overexpression, small molecules including ~800 FDA-approved drugs)

UMAP 2

Perturbation IDs

20000 &

15000

(i

—10 -5 3 L0 15 20 25

VCAP_DMSO Lovo DMSO ) AGS DMSO owT7_DMSO NCIHSSE_DMSO
HT28_DMSO SNGM_DMSO A375_DMSO () ABRNPC DMSO SNUCS_DMSO Cell Types

@ =M1 _bmso MCF7_DMSO HCT116 DMSO ) SKMEL1_DMSO H1299_DMSO
HLEO_OMSO A349_DMSQ @ Hss7eTOMso @ HCCs1s DMso @ uz266_DMSO
RMUGS5_DMS0 p NCHEO073 DNSO SNUC4_DMSO SKB_DMS0  DV30_DMSO
NKDBA_DMSO @ NCIH1E94_DMSO NOMO1_DMSO JURKAT_DMSO SWE20 DMSO
|HUEM2 DMsQ PLZ1_DM50 MDSTE DMSO & SNUL040 DMSO AMGI DMSO

_ T3M10_DMsO SKMEL28_DMSO Ua37_DMSO ASC_DMSO PHH_DM50

) WSUDLCL2 DMsO SKBR3_DMsO HEPG2_DMSO HEC15_DMSO MDAMB231_DMSO
MCF104_DMS0 NCIH1836_DMS0 EFD27_DMSO {) HEK293T DMsO NPC_DMSO

o4 CL34_DM50 RKQ_DMSO SKLU1_DMSO ) HAlE_DMSO HS274_DMS0

@ Pl DOMS0 AGT3_DMSO HUH7_DMS0 @ &r20_omso NCIH508_DMSO
CORLZ3_DM50 TYKNU_DM50C SW4B0_DMS0 HEC108_DMSO PC3_DMSQ
SWO4E_DMSO COVE44_DMS0 CD34_DMS0 MEU_DMSO Perturbation

HT115 DMSO
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[Belyaeva, Cammarata, Radhakrishnan, Squires, Yang,

Shivashankar & Uhler, arXiv: 2006.03735]

1024 Dim Leaky RelLU

Correlation between
drug signatures of
A549 and MCF7 cells
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@ Given training examples x) . x(M € Rk n < k, autoencoders are
typically trained using gradient descent initialized ~ 0 to solve

i (DY — x(N)2
org iy 3 10(x") — <O

e Over-parameterized linear setting: solutions range from the identity
map to the projection onto span(x1), ... x(M)



Inductive bias of over-parameterized autoencoders

e Given training examples x(, ... x(nN) € Rk n < k, autoencoders are
typically trained using gradient descent initialized ~ 0 to solve

i (DY — x(N)2
org iy 3 10(x") — <O

@ Over-parameterized linear setting: solutions range from the identity
map to the projection onto span(x1, ... x{)

Training:

In the extreme
case of n=1 the
training example
is memorized




o

- Over-parameterized autoencoders have
many ways to interpolate training data

- View autoencoder as discrete dyna-
mical system: Xer1="F(x¢)

Moise
Template

Recovery | cogso0 | ase/soo | 421/500
(Mo Noise)

- We proved that standard over-parameterized |
autoencoders (without additional regularizers)
are self-regularizing: they learn maps, where
training examples are attractive fixed points!
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[Radhakrishnan, Belkin & Uhler, PNAS 2020]




Principal Component 2

A549 mock
A549-ACE2 (batch 1)
A549-ACE2 (batch 2)

L (o] _ilele]

=1 0 1 2 3

Principal Component 1

A549+SARS-Cov-2 (MOI=0.2)
A549+ACE2+SARS-Cov-2 (MOI=0.2, batch 1)
A549+ACE2+SARS-Cov-2 (MOI=2, batch 2)

RNA-seq data from:
Blanco-Melo et al.,
Cell, 2020

Correlate disease and drug signatures to obtain list of drug candidates

Principal Component 2

AB49-ACE2 [&]
AB49-ACE2 with SARS-Cov-2 @
Reverse Signature of Infection ey
Drug Signature —

-5 -4 -3 -2 -1

Principal Component 1

D1:
D2:
D3:
D4:
D5:
D6:
D7:
D8:
D9:
D10: salmeterol
D11: dicloxacillin
D12: nabumetone
D13: ketoconazole

chloroquine
dantrolene
propofol
leflunomide
estradiol
miglitol
escitalopram
doxercalciferol
calcipotriol

gene protein targst dug | correlation
ACVRZA Actvin receplor type-24 [r— H
erlotinib 087
sorafeni 087
AURKC Aurora kinase C mmd oor
pavopnait | 057
oclmb 087
— s
BRSK1 Serinathrsonine protsin kinass BRSK1 =y 087
cok17 Cydin-dependent kinase 17 somkab 087
mainib 087
e |
domtaxel | 087
sriotinib a7
EGFR Epidarmal g wth facor recepir mand oer
mainib 087
wolindls
atatinib 086
ot 0.8
[y
imatinio 087
FGFR1 Fibrblast growth factor recsptor 1 somEad oo
- 07
pavopnait | 057
axtinib
[y
somteab 087
FGFR3 Fibrblast growth factor recsptor 3 R 0t
pazopeit | 0.57
- T
vomoust | 057
vomoust | 057
HBACY Hislose descelyinse vomoust | 057
vormostat | 087
belmostt | 087
, a7
HSPSRAAT Healshock profeim HSP 0-alpha e e
imatinio 087
it 07
087
RAKA Intarlaukin1 re e ptor asso ciated kinass 1 [
— e
atatinib 086
boseinsb 088
PAKA Serinsiireonine protsin kinass PAK 1 boseinsb 086
i mimcas | 035
vaemall | 0.3
sunitinib 087
RIPK1  Receptorinteract protein kinase 1 087
[y
e
erloia a7
swoakab | 0.7
RIPKZ R interacting seri ine-protein kinass 2 0t
— o
atatinib 086
boseinsb 086
it 087
STK3 Serineffirzonine-protein kinase 3 i
ol
ohdRib

Serinefthreonine

profein kinase

Receptor

tyrosine kinase



Validating drug targets using a causal analysis

. Drug target

“ Terminal node

Steiner node

* RIPK1 has most downstream differentially
expressed genes based on inferred (from single-
cell RNA-seq data) causal graph in A549 cells and
also in AT2 cells

v * While role of other targets is similar, RIPK1
becomes peripheral in causal graph without
taking ageing into account

* RIPK1 binds to SARS-CoV-2 proteins (Gordon et
al., Nature, 2020)

log2 fold change



+ Viral infection + Viral infection

haftrix Stiffness

4 kPa 25 kPa

\

Kinase domain Intermediate domain Death domain

HHIVI
e 00p 19 @0 ¢
Ser Ser Llys Lys Ser 531 547 Lys Lyls L\irs L\i,s
RIPK1: N Terminus o o C Terminus
: & T g 7 °°  Source: Wikipedia
LI
Activation of NF-kB, Apoptosis, necroptosis;
immune response, fibrosis & blood
& survival pathways clotting

[Uhler & Shivashankar, Nature Reviews (2020); Belyaeva, Cammarata,
Radhakrishnan, Squires, Yang, Shivashankar & Uhler, arXiv: 2006.03735]



@ I[ransporting between interventions: Developed a theoretical and
algorithmic framework for integrating observational and interventional
data for causal inference

@ Transporting intervenion effects between populations:
Over-parameterized autoencoders show implicit bias that may be of
great interest for causal transportability

@ A principled causal framework is critical for drug discovery

Belyaeva, Cammarata, Radhakrishnan, Squires, Yang,
Shivashankar & Uhler, Nature Communications (in press)
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