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Drug development against COVID-19



Overview - causal transport problems



Framework: Structural equation models



Framework: Structural equation models



From causal graphs to independence relations

 Interventional Markov 
equivalence classes have 
been characterized
Hauser & Buehlmann, JMLR 2012
Yang, Katcoff & Uhler, ICML 2018

 Skeleton and immoralities 
(i j    k) are identifiable
Verma & Pearl, 1992



Permutation-based search

GES: Greedy search over Markov equivalence classes: [Chickering, 2012]

 Large search space
 No consistency guarantees in the presence of interventional data
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Greedy sparsest permutation (GSP) algorithm



Greedy sparsest permutation (GSP) algorithm

[Solus, Wang & Uhler, 2018]
[Frederick Eberhardt: https:// www.slideshare.net/ 
SAMSI_Info/causal-inference-opening-workshop/
causal-discovery-in-neuroimaging-data-frederick-
eberhardt-december-11-2019]



Learning from interventions and with latent variables



Overview



Latent space 
arithmetics for 
style transfer using 
autoencoders / 
GANs:

Lotfollahi, Wolf & Theis, 
Nature Methods 2020

Style transfer and transporting causal effects

Is this a general phenomenon? How does this fit in with work by Bareinboim, Pearl 
and co-authors on necessary and sufficient conditions for causal transportability?



Predicting the effect of a drug on a different cell type

• CMap: 1.2mio samples (1000-dim expression vectors), 1000s of perturbations  
(knockouts, overexpression, small molecules including ~800 FDA-approved drugs)



Overparameterized autoencoders align drug signatures

Correlation between 
drug signatures of 

A549 and MCF7 cells

Reconstruction 
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[Belyaeva, Cammarata, Radhakrishnan, Squires, Yang, 
Shivashankar & Uhler, arXiv: 2006.03735]



Inductive bias of over-parameterized autoencoders



Inductive bias of over-parameterized autoencoders

InputOutput InputOutput Input Output

Test:           

Training:                                           
U-Net

In the extreme 
case of n=1 the 
training example 
is memorized



- Over-parameterized autoencoders have 
many ways to interpolate training data

- We proved that standard over-parameterized 
autoencoders (without additional regularizers) 
are self-regularizing: they learn maps, where 
training examples are  attractive fixed points!

- View autoencoder as discrete dyna-
mical system:

Inductive bias of over-parameterized autoencoders

[Radhakrishnan, Belkin & Uhler, PNAS 2020]



Correlating disease and drug signatures

RNA-seq data from:
Blanco-Melo et al., 
Cell, 2020

Correlate disease and drug signatures to obtain list of drug candidates



Validating drug targets using a causal analysis

• RIPK1 has most downstream differentially 
expressed genes based on inferred (from single-
cell RNA-seq data) causal graph in A549 cells and 
also in AT2 cells

• While role of other targets is similar, RIPK1 
becomes peripheral in causal graph without 
taking ageing into account 

• RIPK1 binds to SARS-CoV-2 proteins (Gordon et 
al., Nature, 2020)



Role of RIPK1 linking SARS-CoV-2 replication & ageing?

Activation of NF-κB, 
immune response, 

& survival pathways

Apoptosis, necroptosis;
fibrosis & blood 

clotting

+ Viral infection

Ageing

+ Viral infection

RIPK1:

Source: Wikipedia

[Uhler & Shivashankar, Nature Reviews (2020);    Belyaeva, Cammarata, 
Radhakrishnan, Squires, Yang, Shivashankar & Uhler, arXiv: 2006.03735]



Conclusions

Belyaeva, Cammarata, Radhakrishnan, Squires, Yang, 
Shivashankar & Uhler, Nature Communications (in press)
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