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+ Three Connections @ Physics / ML Interface

Institute for Artificial Intelligence 
and Fundamental Interactions (IAIFI) Physics Meets ML

one of five new NSF AI research institutes, 
this one at the interface with physics! MIT, 
Northeastern, Harvard, Tufts.

ML for physics / math discoveries?
Can physics / math help ML?

Colloquia begin in Spring!
www.iaifi.org.

virtual seminar series at the interface, 
“continuation” of 2019 meeting at 
Microsoft Research.

Bi-weekly seminars from physicists 
and CS, academia and industry.

Sign up at www.physicsmeetsml.org.

Feel free to contact me!

e-mail: jhh@neu.edu
Twitter: @jhhalverson
web: www.jhhalverson.com

ML for Math: 
e.g. “Learning to Unknot”: 2010.16263

ML for Strings:
e.g. “Statistical Predictions in String Theory
and Deep Generative Models”: 2001.00555

http://www.iaifi.org
http://www.physicsmeetsml.org
mailto:jhh@neu.edu
http://www.jhhalverson.com
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Physics Language:
Learning is a data-induced flow from an initialization
function-space distribution to a trained distribution.

Learning is approximating the posterior over functions
given a prior and a likelihood.

Bayesian Language:

What is learning?



Then what is supervised learning?
the evolution of the 1-pt function E[f] until convergence.



Outline
- What is QFT?    (physically? origin of Feynman diagrams. statistically?)

- NN-QFT Correspondence: model NN distributions with QFT techniques

i) asymptotic NNs, GPs, and free field theory
ii) NNs,  non-GPs and Wilsonian “effective” field theory.
iii) renormalization: removes divergences in higher correlators, simplifies NN dist.

- Experiments: verify approach in simple examples

- Discussion and Outlook: parameter-space / function-space duality, training



What is QFT?
physically? 

what are Feynman diagrams?
statistically? 



What is QFT, physically?
● quantum theory of fields, 

and their particle excitations.

● for both fundamental particles, (e.g. Higgs)
and quasiparticles (e.g. in superconductors)

● a single QFT predicts radioactive decay rates,
strength of particle scattering, etc.

● two main perspectives: 
“canonical quantization” (bra-ket approach)
Feynman’s path integral (today).

● Many Nobel prizes. (Could easily rattle off 5-10?)

Example: Higgs boson discovery

The QFT = Standard Model 
(SM) of Particle Phys.

2012: Discovered Higgs 
boson at CERN, e.g., in 
diphoton channel @ left.

Amazing science press.

2013: Nobel to Higgs, Englert.



Pictures useful for computing moments
of Gaussian or near-Gaussian distributions

Origin of Feynman diagrams?

Example: Gaussian Moments

for small λ, truncate

Feynman rules: a picture-expression dictionary

Example: Near-Gaussian Moments 
via Perturbation Theory

Additions and extra widgets may arise, but
Essence: approximate non-Gaussian moments in 
terms of Gaussian moments, diagrammatically.



Sounds like QFT is physics widgets
on top of a statistics backbone.



What is QFT, statistically?
● defined by distribution on field space,

the so-called Feynman path integral.
log-probability S[Φ] is “action”

● Experiments measure n-pt
correlation functions and amplitudes.

● Free QFT: no interactions, Gaussian.
● Perturbative QFT: 

distribution is near-Gaussian, compute
approximate moments perturbatively.



NN-QFT Correspondence
i) asymptotic neural nets, GPs, and free QFT

ii) finite N neural nets, non-GPs, interacting QFT
iii) Wilsonian renormalization

A way to model NN distributions
using QFT techniques



Asymptotic Neural Networks

neural network has a discrete hyperparameter N
that enters into its architecture.

asymptotic limit = N → ∞ limit

crucial property: want to add infinite number of 
parameters, which themselves are random variables!

example: 
infinite width limit of single-layer or deep
feedforward networks



NN-GP Correspondence and Central Limit Theorem

Add N iid random variables, 
take N → ∞,  
sum is drawn from a Gaussian distribution.

If some step in a neural net does this, 
that step drawn from Gaussian.

e.g., if NN output does, it’s drawn from a Gaussian. 

then NN is drawn from Gaussian distribution on
field space, known as a Gaussian Process (GP).



“Most” architectures admit GP limit
Single-layer infinite width feedforward networks are GPs.

Deep infinite width feedforward networks are GPs.
Infinite channel CNNs are GPs.

Tensor programs show any standard architecture admits GP limit.

GP property persists under appropriate training. 

[Neal], [Williams] 1990’s

[Lee et al., 2017], [Matthews et al., 2018]

[Novak et al., 2018] [Garriga-Alonso et al. 2018]

[Yang, 2019]

[Jacot et al., 2018] [Lee et al., 2019]

tons of examples cited
in our paper admit  GP limits



where:

Gaussian Processes and Free Field Theory
Gaussian Process: Free Field Theory:

distribution: “free” = non-interacting
Feynman path integral:

From P.I. perspective, free theories
are Gaussian distributions on field space.

e.g., free scalar field theory
log-likelihood:

n-pt correlation
functions:

K is the kernel of the GP.

Crucial note: 
P[f] can also have one or zero integrals,

“local” and “ultra-local” cases, respectively.



GP Predictions for Correlation Functions
if asymptotic NN drawn from GP and 
GP “=” free QFT, should be able to use Feynman
diagrams for correlation functions.

Right: analytic and Feynman diagram expressions
for n-pt correlations of asymptotic NN outputs.

Physics analogy: mean-free GP is totally 
determined by 2-pt statistics, i.e. the GP kernel.

kernel = propagator, so GP = a QFT where all 
diagrams rep particles flying past each other.



What about finite N nets?



Non-Gaussian Processes (NGPs), EFTs, and Interactions
Punchline: finite N networks that admit a GP limit 
should be drawn from non-Gaussian process. (NGP)

where, e.g., could have:

such non-Gaussian terms are interactions in QFT.
their coefficients = “couplings.”

Wilsonian EFT for NGPs:

determines NGP “effective action” = log likelihood.
Some art in this, but done for decades by physicists.

Experiments below: single-layer finite width networks

odd-pt functions vanish → odd couplings vanish.

In fact, if 𝜅 more irrelevant than 𝜆 (in Wilsonian sense), 
can be ignored in expts.  even simpler NGP distribution. 



NGP Correlation Functions from Feynman Diagrams
Correlation functions defined by NGP distribution:

use usual physics trick

to compute diagrammatically as Feynman diagrams.

Essentials from QFT reviewed in paper, 
e.g. cancellation  of “vacuum bubbles” (components with no 
external points) by expanding the denominator.

Feynman Rules:

these rules are a picture to 
analytic expression dictionary.

note: in our experiments, GP kernel happens to 
be exact all-width 2-pt function.



2-pt, 4-pt, and 6-pt Correlation Functions point: theory equations that 
actually enter our NN codes.



At this point you should object!
(very impressive attention to detail if you actually did.)

Input space integrals often diverge at large input.

QFT prescription: “regularization.”
Various varieties, we use a “hard cutoff” Λ, replace

so any input integral is over a box of size Λ. 



Making sense of divergences: Renormalization
Experiments: the central insight in renormalization.

Evaluate set of NNs on inputs

and measure experimental correlation functions,

these just are what they are! One set of corr fns.

Goal of theory is to explain them.

Theory: NGP action corrects GP action by

the old S had Λ→ ∞ and computing n-pt gives 
divergences. Λ finite regulates those divergences,
input is now in a box.

For any Λ sufficiently big, measure couplings, 
make predictions, verify with experiments.

But there’s an infinite number of          , and only 
one set of experiments for them to describe!
How does this make sense?

 

[Zee] for beautiful textbook discussion.



Essence of Renormalization 
the infinity of effective actions must make

the same experimental predictions, requiring, e.g.



Extracting 𝛽-functions from theory
NN effective actions (distributions) with different
Λ may make the same predictions by absorbing
the difference into couplings, “running couplings.”

Encoded in the β-functions, which capture how
the couplings vary with the cutoff.

Induces a “flow” in coupling space as Λ varies,
Wilsonian renormalization group flow. (RG)

Extract from hitting n-pt functions with derivatives.

Our examples: 
𝜅 more irrelevant than 𝜆, in sense of Wilson.

Means as Λ gets large, 𝜅 goes to zero faster than 𝜆, 
so you can ignore it.

Extract β-function for 𝜆 from deriv. of 4-pt.



Experiments
in single-layer networks

i) sanity check fall-off to GP at large N
ii) measure 4-pt non-Gaussianities, predict 6-pt and verify

iii) cutoff dependence of 4-t non-Gaussianities verifies renormalization



Controlling correlators with 1/N-expansion



Subtlety of Networks with Linear Output: Independence
● any network with linear output looks like:

● the bias and weight terms are independent draws from different processes!
QFT language: two fields that don’t interact with each other.

● For Gaussian bias, fb is drawn from constant GP for all N.
However, fW is from NGP at finite N, GP only in asymptotic limit.
QFT language: fW has self-interactions

Therefore: must use NGP for fW, but not fb.



Experiments with single-layer networks 
Erf-net:

Gauss-net:

ReLU-net:



Deviations from GP Predictions
Question: can we measure the
experimental falloff to the GP
prediction as N → ∞ ?



Measuring Falloff to GP Predictions @ Large N
Some details of the experiments:

10 experiments of 106 neural nets each, compute 
ensemble average to get correlation functions. 

Background := average (across the 10 expts) 
standard deviation of mn 

Experimentally determined scaling:



Simple Extracting of Couplings from Experiments
intentionally left the coupling 𝜆 inside the interaction 
integrals. Only pull out if constants!

but aren’t couplings constant?
e.g., physics: proton collisions have same interactions 
at Fermilab (Illinois) and CERN (Switzerland).

but Standard Model is T-invt. NGPs? not always.

Case, 𝜆 constant: measure from 4-pt function expts

call denominator integrand 𝚫1234y.

Case, 𝜆 function: write as constant + space varying 

then we have

and expression from before not constant,

but when variance is small relative to mean have

our definition of “measuring 𝜆.”



Include 4-pt Contribution to 6-pt functions
The use of EFT:

i.e. effective corrections from including 4-pt contr. to 6-pt.

Effectiveness: Expt 6-pt - GP prediction = NGP correction

Experimental verification:

measured 𝜆 enters 
6-pt prediction, 
corrects bad GP
prediction to very
close to experiment.

EFT of NN is effective!



More Precision: Quartic Coupling Predictions
Three-parameter model:

Three interactions:

Fitting the models:

Inputs form a grid. 
Train on interior, Test on exterior.

Results are fresh, see details in journal version.

● Constant local quartic 
● Input-dependent local quartic
● Constant quartic with symmetric non-locality



Renormalization Theory vs. Experiment: ReLU-net

experimentally measured din-dependent slope matches theory 
predictions from Wilsonian RG



Discussion and Outlook
summary,

parameter-space / function-space duality,
 supervised learning in QFT language



Summary of Results
asymptotic NN’s “=” Free QFT

b/c drawn from GPs

NNs “=” QFT

b/c drawn from NGPs

central idea: model NGP / NN distribution using
Wilsonian effective field theory. (EFT)

fairly general: any “standard architecture” (Yang) 
admits a GP limit. persists under some training.

therefore, away from limit, NGP. use EFT to model.
import QFT ideas directly into NNs.

EFT treatment of NN distribution yields:
1) output correlation functions as Feynman diagrams.
2) measure some couplings (non-Gaussian coeffs) in 
experiments, predict, verify in experiments.
3) Wilsonian RG induces flow in couplings, simplifies the 
model of the NN distribution.

Verified all of this experimentally, single layer networks,
indeed QFT gives function-space perspective on NNs.



What does this treatment get you?

Duality: 
In physics, means two perspectives on a single system, 
where certain things are easier from one. 

Parameter-space / function-space duality:
at large N, parameter-space complexity explodes.

but in function-space complexity decreases due to 
renorm. and 1/N suppression of non-Gaussianities.

Acute example: single number in NGP dist. was sufficient 
to approximate NGP 6-pt corrections, despite losing an 
∞ number of params in moving from GP.

Training:
Our formalism only requires being “close” to GP, 
where measure of closeness determined 
experimentally and in examples is relatively low N.

Some training preserves GP at large N, in principle 
allowing QFT treatment of NGP during training.

Supervised learning:
in QFT language, it is just learning the 1-pt function.

in general this will break symmetry of NGP (see 
paper next week for priors), bring in even more QFT.



Thanks!
Questions?

And seriously, feel free to get in touch:
e-mail: jhh@neu.edu
Twitter: @jhhalverson

web: www.jhhalverson.com

mailto:jhh@neu.edu
http://www.jhhalverson.com


Constants or Functions? Use Technical Naturalness
Recalling that 

when should spatially varying                    be small? 

Because sometimes QFT corrections to an 
arbitrary coupling g give:

but sometimes

or at least in that case it might be small.

A principle of ‘t Hooft:

it’s true sometimes in physics, e.g. 
is small relative to weak scale, protected by chiral 
symmetry that is restored when e- mass goes to zero.

Applied to our case? i.e., when is                     for NNs? 

holds true in our cases, GP kernel of Gauss-net is the only
T-invt one, and only example with coupling constants.


