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Reinforcement learning

x0, a0, r0, x1, a1, r1, x2, a2, r2, x3 ...
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Markov Decision Processes

Definition (MDP)

A Markov decision process is a tuple {X ,A,P, r , γ}, where

X denotes a finite set of n states;

A a finite set of m actions;

P is a set of n× n stochastic matrices Pa associated with each action
a ∈ A with entries [Pa]x ,y ∈ [0, 1] representing the probability that the
state transitions from x to y given that the action a was performed;

R : X ×A → R is a reward stochastic mapping;

γ ∈ [0, 1[ is a discount factor.

Pedro A. Santos (IST & INESC-ID) Two-time Scale MPML April 9th 2021 6 / 50



The Markov Zoo
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Policy

Definition (Policy)

A policy π : X → ∆(A) is a stochastic map from states to actions.

The state value function of a given policy π:

Definition (State value function)

The state value function Vπ : X → R is

Vπ(x) := E[
∞∑
t=0

γtRt |x0 = x ],

where the expectation is taken with respect to the states xt+1 ∼ [Pat ]xt ,·
and the actions at ∼ π(xt).
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The Q function

Definition (State action value function)

The state action value function Qπ : X ×A → R is

Qπ(x , a) := E[
∞∑
t=0

γtRt |x0 = x , a0 = a],

where the expectation is taken with respect to the states xt+1 ∼ [Pat ]xt ,·
and the actions at ∼ π(xt).
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The Q function

, Action 1 Action 2
State 1 0 5

State 2 0 5

State 3 0 5

State 4 20 0
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The Prediction Problem

Evaluate a policy π by approximating its state value function Vπ

Proposition (Fixed point equation for the state value function)

The following relation holds:

Vπ(x) = E[R(x , a) + γVπ(y)], (1)

where the expectation is taken with respect to the next state y ∼ [Pa]x ,·
and the action a ∼ π(x).
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The Control Problem

Find a policy π∗ that maximizes the cumulative reward V(·)

A policy π is better than another policy π′ if Vπ(x) ≥ Vπ′(x) for all x ∈ X .

Definition

An optimal policy π∗ is any such that, for any policy π,

Vπ∗(x) ≥ Vπ(x),

for all x ∈ X .
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Optimal Policy

Theorem (Existence of solution)

There exists an optimal policy π∗.

Corollary (Optimal Value Equation)

The state value function of the optimal policy π∗, which we shall denote
by V ∗, verifies

V ∗(x) = max
a∈A

E[R(x , a) + γV ∗(y)] (2)

for all x ∈ X , where the expectation is taken with respect to the next
state y ∼ Pax,· .
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Optimal state value function

Letting Q∗ denote Qπ∗ , we have that

Proposition (Optimal Q equation)

The following relation holds:

Q∗(x , a) = E[R(x , a) + γ max
a′∈A

Q∗(y , a′)], (3)

where the expectation is taken with respect to the next state y ∼ [Pa]x ,·
and the action a′ ∼ π(x)

Pedro A. Santos (IST & INESC-ID) Two-time Scale MPML April 9th 2021 14 / 50



Finding Vπ

As a system of n × n linear equations:

Vπ(x) = E[R(x , a) + γVπ(y)]

=
∑
a

π(a|x)
∑
y ,r

p(y , r |x , a)(r + γVπ(y))

Vπ = TVπ

Iterative policy evaluation:

Vk+1 = TVk
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Approximating π∗

Given Vπ,

π(x)← argmax
a

∑
y ,r

p(y , r |x , a)(r + γVπ(y))

Policy Iteration

π0 → Vπ0 → π1 → Vπ1 → π2 → ... ≈ π∗
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Problems with this simplistic approach

We need to work with the whole state space

We need to know the model of the world
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Who needs a model?

Model-free Methods

Monte Carlo Methods

Temporal-Difference Learning
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Q-learning

Q-learning algorithm for estimating π∗

Initialize Q(x , a) for all x ∈ X and a ∈ A (e.g. Q(x , a) = 0);
repeat for each Episode

Choose an initial state x ;
repeat for each step of Episode

Choose action a using policy derived from Q (e.g. ε-greedy);
Execute a, observe reward r and new state x ′;
Q(x , a)← (1− α)Q(x , a) + α

(
r + γmaxa′ Q(x ′, a′)

)
;

x ← x ′

until x is terminal ;

until satisfied ;
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Q-learning

Q(x , a)← (1− α)Q(x , a) + α
(
r + γmaxa′ Q(x ′, a′)

)
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Q-learning

Q(x , a)← (1− α)Q(x , a) + α
(
r + γmaxa′ Q(x ′, a′)

)
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Q-learning

Q(x , a)← (1− α)Q(x , a) + α
(
r + γmaxa′ Q(x ′, a′)

)
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Q-learning

Q(x , a)← Q(x , a) + α
(
r + γmaxa′ Q(x ′, a′) − Q(x , a)

)

Q(x , a)← Q(x , a) + αδ

with δ = r + γmaxa′ Q(x ′, a′)− Q(x , a)
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Q-learning with function approximation
We wish to approximate Q∗ using Q = {Qw : w ∈ Rk}

Fixed point equation for the optimal state action value function

Q∗(x , a) = E[R(x , a) + γ max
a′∈A

Q∗(y , a′)].

Loss function:

L(w) =
1

2
Eµ[(Q∗(x , a)− Qw (x , a))2]

w ← w + αEµ[( Q∗(x , a) − Qw (x , a))∇wQw (x , a)]

w ← w + αEµ[( Q∗(x , a) − Qw (x , a))∇wQw (x , a)]

w ← w + αEµ[( R(x , a) + γmaxa′∈AQw (y , a′) − Qw (x , a))∇wQw (x , a)]

Pedro A. Santos (IST & INESC-ID) Two-time Scale MPML April 9th 2021 25 / 50



Q-learning with function approximation

The w → 2w example (Tsitsiklis and Van Roy 1996)

Consider the state space X = {x1, x2}, one action, all rewards 0, and the
transition matrix

P =

[
0 1
0 1

]

Q∗ = V = 0
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Q-learning with function approximation

The w → 2w example (Tsitsiklis and Van Roy 1996)

Q∗ = V = 0

Q = {wφ, w ∈ R}

with φ : X → R such that φ(x1) = 1, φ(x2) = 2
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The spiral example (Tsitsiklis and Van Roy 1997)

Markov chain

X = {s1, s2, s3}, A = {a} and

P =

1
2 0 1

2
1
2

1
2 0

0 1
2

1
2

 .
Approximation architecture

dQw

dw
= (S + εI)Qw ,

where ε is very small and

S =

1 1
2

3
2

3
2 1 1

2
1
2

3
2 1

 .
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MDP Example (Baird 1995)

Q0(Solid) > Q0(Dashed)
Q0(6→ 6) largest
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The Deadly Triad

Function Approximation

Bootstraping

Off-policy training

Pedro A. Santos (IST & INESC-ID) Two-time Scale MPML April 9th 2021 30 / 50



Deepmind’s breakthrough
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Deepmind’s breakthrough

Two special techniques used:

Replay Buffer

Target Network

w ← w + αEµ[( R(x , a) + γmaxa′∈AQw (y , a′) − Qw (x , a))∇wQw (x , a)]

w ← w + αEµ[( R(x , a) + γmaxa′∈AQu(y , a′) − Qw (x , a))∇wQw (x , a)]
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Stochastic Approximation

w = h(w) = Eµ[H(w ,X )]

w ← w + α( Eµ[H(w ,X )] − w)

w ← w + α( Eµ[H(w ,X )] − w)

wt+1 = wt + α
(
H(wt , xt)− wt

)
= wt + α

(
H(wt , xt)− wt + h(w)− h(w)

)
= wt + α

(
h(w)− w + H(wt , xt)− h(w)

)
= wt + α

(
h(w)− w + H(wt , xt)− h(w)

)
= wt + α

(
h(w)− w + Mt

)
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Stochastic Approximation

The O.D.E. approach

The equation
wt+1 = wt + αt

(
h(wt)− w + Mt

)
can be thought as a noisy discretization for the o.d.e.

ẇ = h(w)− w

∑
t

αt =∞,
∑
t

α2
t <∞

Mt is a Martingale difference sequence
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Two time scale stochastic approximation

{
vt+1 = vt + αt(f (vt , ut) + Mt+1)

ut+1 = ut + βt(g(vt , ut) + Nt+1)
, t ∈ N

Assumptions:∑
t βt =∞,

∑
t α

2 <∞, βt/αt → 0

f : Rk+d → Rk , g : Rk+d → Rd are locally Lipschitz

supt(||vt ||+ ||ut ||) <∞ w .p.1.

Mt ∈ Rk and Nt ∈ Rd are Martingale difference sequences and

E[||Mt ||2] ≤ cM(1 + ||vt ||2 + ||ut ||2)

E[||Nt ||2] ≤ cN(1 + ||vt ||2 + ||ut ||2)
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Two time scale stochastic approximation

{
vt+1 = vt + αt(f (vt , ut) + Mt+1)

ut+1 = ut + βt(g(vt , ut) + Nt+1),
, t ∈ N

Assumptions (cont):

The o.d.e.
v̇t = f (vt , u)

has a unique globally asymptotically stable equilibrium λ(u), where
λ : Rd → Rk is a Lipschitz-continuous function.

The o.d.e.
u̇t = g(λ(ut), ut)

has a unique globally asymptotically stable equilibrium u∗.
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Two time scale stochastic approximation

Theorem (Borkar 2008)

If the assumptions are true, then

(vt , ut)→a.s. (λ(u∗), u∗).
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Coupled Q-learning

Update rule

vt+1 = vt + αt

(
rt + max

a′∈A
Qut (yt , a

′)− Qvt (xt , at)
)
∇Qvt (xt , at)

ut+1 = ut + βt(∇Qvt (xt , at)Qvt (xt , at)− ut)

Each function Qw : X ×A → R is such that

Qw (x , a) = φT (x , a)w

we call φ : X ×A → Rk the feature vector

Then ∇wQw (x , a) = φ(x , a)
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Convergence result

Assumptions

1 State-action pairs are independent and identically distributed to µ;

2 Σµ = Eµ[φ(xt , at)φ
T (xt , at)] is non-singular; ||φ(x , a)||2 ≤ 1;

3
∑∞

t=0 βt =∞,
∑∞

t=0 α
2
t <∞ and βt = o(αt).

Theorem (Carvalho, Melo and Santos, 2020)

Under assumptions 1 through 3, the sequence {u(t), v (t)} generated by
coupled Q-learning converges a.s. to a single limit solution (u∗, v∗).
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Error bounds

Assume {φk} are ortogonal and Eµ[φk ] = σ, i.e. Σµ = σI

Theorem

The limit solution Qv∗ of coupled Q-learning verifies

‖Q∗−Qv∗‖∞ ≤
1

1− γ
‖Q∗−ProjΦ Q∗‖∞ + ξσ, where ξσ =

1− σ
σ

γρ

(1− γ)2
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Error bounds
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The θ → 2θ example
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The modified star problem
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The mountain car
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Other applications of two-time scale stochastic
approximation

Double-tap: approximate policy iteration (ongoing work)

wt+1 = wt + αt

(
rt + γQwt (xt+1, at+1)− Qwt (xt , at)

)
∇Qwt (xt , at)

πt+1 = πt + βt(ΓQwt − πt),

where Γ projects a state action value function to an ε-soft policy and is
Lipschitz-continuous.
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Other applications of two-time scale stochastic
approximation

Regular gradient actor critic

wt+1 = wt + αt

(
rt − jt + γVwt (xt+1)− Vwt (xt)

)
∇Vwt (xt)

θt+1 = θt + βt
(
rt − jt + γVwt (xt+1)− Vwt (xt)

)
∇πθt (xt , at),

where jt is the average reward at time t.
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Conclusions

Coupled Q-learning

Is variant of Q-learning

The algorithm converges with linear function approximation

This method also allows to transform outer-inner-cycle algorithms
into one cycle - two-time step algorithms

Pedro A. Santos (IST & INESC-ID) Two-time Scale MPML April 9th 2021 50 / 50


	Reinforcement learning
	Markov Decision Processes and RL
	Some Learning Algorithms
	Stochastic Approximation
	Two-time scale Reinforcement learning
	Conclusions

