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Inverse problems in imaging

Observe: y=Ax+¢

Goal: Recover x from y
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Classical approach: Tikhonov regularization (1943)
 Example: deblurring

e | east squares solution:
F=ATA ATy
=x+ATA)1ATe
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Classical approach: Tikhonov regularization (1943
 Example: deblurring

e | east squares solution:
F=ATA)IAT
=x+(ATA)71AT

e [ikhonov regularization
aka “ridge regression”

x = argmin ||y — Ax||5 + A|[x][5

X

=(ATA+AD7IAT

better conditioned; suppresses noise



Classical approach: Tikhonov regularization (1943)
 Example: deblurring

e | east squares solution:
F=ATA ATy
=x+ATA)1ATe

e [ikhonov regularization
(aka “ridge regression”)

= arg min Hy — Ax”% + ﬂ”x”% | Tikhonov regularization
X

=(A"A+AD)"'Aly

better conditioned; suppresses noise



Geometric models of images

Combine to
estimate
denoised

pixel

Denoised
Patches




Geometric models reflect prior
iInformation about distribution of Images

prior —log p(x) <= R(x) regularizer




earning to regularize

y arg min ||Ax — y||* + R(x) b

Instead of using choosing R(x) a priori

based on smoothness or geometric models,
can we learn R(x) from training data?

Arridge, Maass, Oktem, Schonlieb, 2019
Ongie, Jalal, Metzler, Baraniuk, Dimakis, Willett, 2020



Key tradeoffs

 Generality vs. sample complexity:
Leveraging known A during training gives lower sample
complexity, but model must be retrained for each new A

* Training stability vs. convergence guarantees:

Unrolled methods with a small number of blocks (K) are easier to
train but lack convergence guarantees

* Reconstruction accuracy vs. sensitivity to model mismatch:
Learning to solve for Ay may vield a regularizer ill-suited to

A, # A,
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—xample: Proximal Gradient Descent

y arg min |Ax — y||” + R(x) %

set x'¥ and step-size > 0
fork=1,2,...

zZ® = x® — pAT(AxP —y) data consistency step

x**D = arg min ||x — z®?||1? + yR(x) denoising step

X
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—xample: Proximal Gradient Descent

y arg min ||Ax — y||* + R(x) b

set x'¥ and step-size > 0

fork=1,2,...
zZ® = x® — pAT(AxP —y) data consistency step
Xt — proan(z(")) denoising step

repeat until
convergence




Plug-and-Play Approach

y arg min ||Ax — sz + R(x) X

set x'¥ and step-size > 0
fork=1,2,...

Z(k) = x® — ﬂAT(Ax(k) —y) data consistency step

KD — proan(z(k)) denoising step

“Plug-in” a pre-trained CNN denoiser:

(0 D)




Plug-and-Play Approach

y arg min ||Ax — y||* + R(x)

<>

X

set x'¥ and step-size > 0

fork=1,2,.
k) __ T k
z® = — A" (AxY — y) data consistency step
x* D = CNN(z®) denoising step

repeat until
convergence

Plug-and-Play Prox- grad

e Plug-and-Play (Venkatakrishnan, Bouman, Wohlberg, 2013)
e Regularization-by-denoising (Romano, Elad, & Milanfar 2017)
e Convergence guarantees: (Ryu et al., 2019), (Reehorst & Schniter 2018)



How much training data”

Original Observed Reconstruction with
X y convolutional neural
network (CNN) trained

with 80k samples



How much training data?

5

.
Original Observed Reconstruction with
X y convolutional neural
network (CNN) trained

with 2k samples



Prior vs. conditional density estimation




Prior vs. conditional density estimation

pixels irrelevant
to inpainting



Prior vs. conditional density estimation

pixels irrelevant
to inpainting

p(A x|Ax)

We need conditional density p(A | x | Ax)




Prior vs. conditional density estimation

pixels irrelevant
to inpainting

p(A | x \x) -

We need conditional density p(A | x | Ax)

Estimating conditional density p(A ; x | Ax) can require far

fewer samples than estimating full density p(x)



Deep Unrolling

y arg min ||Ax — y||* + R(x)

X

<>

set x'¥ and step-size > 0

fork=1,2,.
k) __ T k
z® = nA'(Ax" — y) data consistency step
x5 = CNN(z®) denoising step

Deep Unrolling of Prox- grad




Deep Unrolling

<>

y arg min ||Ax — y||* + R(x)

X

set x'¥ and step-size > 0

fork=1,2,.
k) __ T k
z® = — A" (AxY — y) data consistency step
x5 = CNN(z®) denoising step

Deep Unrolling of Prox- grad

“Unroll” K iterations, train end-to-end in a supervised manner
using ground truth image/measurement pairs



PSNR

Numerical results




Deep Unrolling

From: (Monga, Li, Eldar 2020)

TABLE 1

SUMMARY OF RECENT METHODS EMPLOYING ALGORITHM UNROLLING IN PRACTICAL SIGNAL PROCESSING AND IMAGING APPLICATIONS.

Reference Year Application domain Topics Underlying Iterative Algorithms
Hershey et al. [30] 2014 Speech Processing Signal channel source separation Non-negative matrix factorization
Wang et al. [26] 2015  Computational imaging  Image super-resolution Coupled sparse coding with iterative shrink-
age and thresholding
Zheng et al. [31] 2015  Vision and Recognition  Semantic image segmentation Conditional random field with mean-field it-
eration
Schuler et al. [32] 2016  Computational imaging  Blind image deblurring Alternating minimization
Chen et al. [16] 2017  Computational imaging  Image denoising, JPEG deblocking Nonlinear diffusion
Jin et al. [27] 2017 Medical Imaging Sparse-view X-ray computed tomography Iterative shrinkage and thresholding
Liu et al. [33] 2018  Vision and Recognition  Semantic image segmentation Conditional random field with mean-field it-
eration
Solomon et al. [34] 2018 Medical imaging Clutter suppression Generalized ISTA for robust principal compo-
nent analysis
Ding et al. [35] 2018  Computational imaging  Rain removal Alternating direction method of multipliers
Wang et al. [36] 2018 Speech processing Source separation Multiple input spectrogram inversion
Adler et al. [37] 2018 Medical Imaging Computational tomography Proximal dual hybrid gradient
Wu et al. [38] 2018 Medical Imaging Lung nodule detection Proximal dual hybrid gradient
Yang et al. [14] 2019 Medical imaging Medical resonance imaging, compressive  Alternating direction method of multipliers
imaging
Hosseini et al. [39] 2019 Medical imaging Medical resonance imaging Proximal gradient descent
Li et al. [40] 2019  Computational imaging  Blind image deblurring Half quadratic splitting
Zhang et al. [41] 2019 Smart power grids Power system state estimation and forecasting  Double-loop prox-linear iterations
Zhang et al. [42] 2019  Computational imaging  Blind image denoising, JPEG deblocking Moving endpoint control problem
Lohit et al. [43] 2019 Remote sensing Multi-spectral image fusion Projected gradient descent
Yoffe et al. [44] 2020 Medical Imaging Super resolution microscopy Sparsity-based super-resolution microscopy

from correlation information [45]




Key tradeoffs

 Generality vs. sample complexity:
Leveraging known A during training gives lower sample
complexity, but model must be retrained for each new A

* Training stability vs. convergence guarantees:

Unrolled methods with a small number of blocks (K) are easier to
train but lack convergence guarantees

* Reconstruction accuracy vs. sensitivity to model mismatch:
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Deep Unrolling - Are we really learning a prox/denoiser?

number of iterations
used in training

teration K=0

Introduces Artifacts Does not converge —

Gilton, Ongie, & Willett 2021



Deep Unrolling and lterations

= Trained with 6 blocks

® PROX-2 @ PROX-6 ® PROX-10 @ PROX-14

Reconstruction PSNR

0 4 3 12 16 20

lterations (number of blocks used at deployment )



Plug-and-play

* No new training required
e Convergence guarantees

e Qutperformed

by end-to-end learning

Deep

—quilibrium (

e Lightweight to train

Deep Unrolling

e Demanding to train

* No convergence
guarantees

o State-of-the-art results

Proposed)

e Convergence guarantees

o State-of-the-art results



Deep Equiliorium Models

Most iterative reconstruction algorithms can be interpreted as
solving for a fixed-point of a non-linear operator f( - )

find x* such that x* = f(x*)

ex: proximal gradlent descent

Prox ——> fx) = proxﬂR(x —nAT(Ax —y))

Recent work on “deep equilibrium models” (Bai, Kolter, & Koltun
2019) has shown how to perform back-propagation on estimators
implicitly defined through fixed-point equations.



Key ldea: Implicit Differentiation

—nA ' (Ax —y))

Fixed point:  x* = f,(x*)

Note: x™* implicitly a function of network parameters @

o' o' ox*

00  ox* 00

ox* B 0fy(x™) | 0fy(x™) ox*

00 00 ox* 00
e R™ Ox* ofy(x)\ afg(x*)
0 € RP — = |1

00 ox*
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Convergence to a fixed-point




Convergence to a fixed-point

e Q: Do the iterates converge to a fixed-point?
A: If the map fy( - ) is contractive, yes, and convergence is linear.
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Convergence to a fixed-point

e Q: Do the iterates converge to a fixed-point?
A: If the map fy( - ) is contractive, yes, and convergence is linear.

e (Q: Can we guarantee contractivity?
A: Yes! sufficient to bound Lipschitz constant of denoising CNN

e \We use the “spectral normalization” technique of (Miyato et al., 2018)



MRI 8-told Acceleration:

—Xxample

Ground Truth

Deep Unrolled

Data from FastMRI

Reconstruction
Zero-filled IFFT

Deep Equilidrium
(Ours)

Gilton, Ongie, & Willett 2021
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MRI 8-fold Acceleration: Example Reconstruction
Ground Truth Zero-filled IFFT

Deep Unrolled Deep Equilibrium (Ours)

Data from FastMRI Gilton, Ongie, & Willett 2021



Deep Equiliorium — lllustration of Convergence

iteration K=0 K=10 K=20 K=30 K=40

K=50 K=60 K=70 K=80 K=90




Deep Equilibrium — lllustration of Convergence (MRI)

@® Deep Equilibrium ProxGrad (Ours)
® Plug-and-Play ProxGrad
® Deep Unrolled ProxGrad -1

Reconstruction PSNR
N
(@0
'

0 50 100 150 200

lteration



Deep Equilibrium — lllustration of Convergence

® Deep Equilibrium ProxGrad (Ours)
@ Plug-and-Play ProxGrad
® Deep Unrolled ProxGrad -10

Compressed Sensing

Reconstruction PSNR

@ Deep Equilibrium ProxGrad (Ours)
® Deep Unrolled ProxGrad -10
o 50 100 150 23 o e —— e — f

Iteration

Deblurring

Reconstruction PSNR

0 25 50 75 100

lteration



Numerical results

W Total variation [ Plug-n-play (Prox) M RED B Unrolled (prox) Bl DeepEq (Prox) -- ours

PSNR




Conclusion

Plug-and-play Deep Unrolling
Convergence % Reconstruction
Guarantees Accuracy

Dep Equilibri’m

Pre-print on arXiv:

arXiv:2102.07944 [pdf, other] cs.CV

Deep Equilibrium Architectures for Inverse Problems in Imaging
Authors: Davis Gilton, Gregory Ongie, Rebecca Willett

Paper also contains:

® Alternative Deep Equilibrium architectures based on
- Gradient Descent
- Alternating Directions Method of Multipliers (ADMM)
with associated convergence guarantees.

® Anderson acceleration of fixed-point scheme

® Additional empirical results on MRI, deblurring, and compressed sensing
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Key tradeoffs

 Generality vs. sample complexity:
Leveraging known A during training gives lower sample
complexity, but model must be retrained for each new A

* Training stability vs. convergence guarantees:

Unrolled methods with a small number of blocks (K) are easier to
train but lack convergence guarantees

Reconstruction accuracy vs. sensitivity to model mismatch:
Learning to solve for Ay may vyield a regularizer ill-suited to

Ay F Ag



Methods trained for a specific forward

model A outperform model-agnostic
fraining when data is limited...




... but methods trained for a specific
forward model A, break down when

we transfer to a new forward model A,

* MRI examples of model shift
e (Cartesian vs. non-Cartesian k-space sampling trajectories,
* different undersampling factors,
e different number of colls and coll sensitivity maps,
* magnetic field iInhomogeneity maps...



Image reconstruction by supervised learning — current paradigm

1. Collect and/or synthesize training data pairs (x;, y;) using a known
forward model:
Vi = AgX; t &
2. Train a reconstruction network f, by minimizing over a loss (e.g.,
MSE, SSIM)
3. Reconstruct new measurements y by X = f4(y)

K-space measurements reconstruction network reconstructed image

Jo(o) X = fo(y)

/. m\ i/ 3\

e.g.,
accelerated
MR




ISsue:

Ground Truth

rained network is sensitive to changes in the forward model

U-net Recon

U-net Recon different k-space
same K-space sampling

sampling pattern than used
pattern as in training in training

% ]

PSNR: 26.9 dB

PSNR: 31.7 dB

-5 dB drop in PSNR

Effect originally olbserved in Antun, Renna, Poon, Adcock, Hansen, 2019



Potential solutions

e Option 1: Retrain the network from scratch using the new forward
model.
e [ssue: Computationally costly

e [ssue: Might not have ground truth data to retrain (have y;’s but no xl-’s)

e Option 2: Train on an ensemble of forward models.
e |ssue: High-dimensional set to sample from (e.q., all possible k-space
masks)
e |ssue: Numerical evidence suggests this gives worse performance
overall

e Option 3: Use a model agnostic approach (e.g., Plug-and-Play or GAN)
e [ssue: May not have enough ground truth images to learn a sufficiently
expressive model

e Option 4 (Proposed): Adapt the network to solve the new inverse
problem



Model Adaptation for Image Reconstruction

Given a reconstruction network fy, trained to solve an inverse problem
y=Apx+ €

adapt/retrain/augment it to solve a new inverse problem
y=Ax+e

(In this talk, assume new forward model A is known.)

g Ag Ay

train on this deploy on this
k-space sampling mask k-space sampling mask




Model adaptation

Key ldea:
The composition f, o A acts as an auto-encoder, fy(Apx) = x

original image simulated measurements reconstruction network reconstructed image

Apx Jo(+) fg(on)

Use auto-encoder property as a prior/regularizer in an

iterative model-based reconstruction scheme




Model adaptation without calibration data

* We adopt a regularization-by-denoising (RED) approach using

proximal gradient descent as base algorithm and f, e A as our
“denoiser”.

* Motivated by cost function:

min [|Apx — ylI2 +2xT(x = f(Agx)

X

regularization parameter A allows us trade-off
between data-consistency and regularization

* Proposed lterative algorithm:

@ =@AA + DAy + 1xY)
26D = £(A,700)

reuse the pre-trained network to regularize

RED (Romano, Elad, & Milanfar 2017)



llustration on FastMRI knee data: ox — 6x acceleration

ol

U-net Recon No Model Adaptation = Model Adaptation
Train on Ay/Test on A, Train on Ag/Teston A; Train on Ay/Test on A,

-_—

different sampling pattern
same number of lines

Ground Truth

-
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PSNR: 31.7 dB PSNR: 26.9 dB PSNR: 31.3 dB
SSIM: 0.80 SSIM: 0.76 SSIM: 0.78



llustration on FastM

Rl knee data: 6x — 4x acceleration

A . A . sample
O - | more lines
U-net Recon No Model Adaptation = Model Adaptation

Ground Truth

PSNR: 31.7 dB

Train on Ay/Test on A, Train on Ag/Teston A; Train on Ay/Test on A,

- -

PSNR: 26.4 dB  PSNR: 33.0 dB

SoIM: 0.80 SSIM: 0.80 SSIM: 0.83



llustration on FastM

Rl knee data: 6x — 4x acceleration

A . A . sample
O - | more lines
U-net Recon No Model Adaptation = Model Adaptation

Ground Truth

PSNR:

Train on A|/Teston A; Trainon Ag/Teston A; Train on Ay/Test on A,

335dB PSNR:26.4dB  PSNR: 33.0 dB

SSIM: 0.83 SSIM: 0.80 SSIM: 0.83



Fully-sampled

MRI Example

2x Acceleration 4x Acceleration

o6x Acceleration 8x Acceleration

k-space
masks
Y/ J

i b
No
Adaptation

ST -
AR T g

R&R



Performance with known A

B Pre-trained RED (learning ignores forward model) Train A_1, Deploy A_1 (oracle)

B Train A_O, Deploy A_1 (no model adaptation) B P&P (transfer learning with calibration data)

B R&R (our new approach) B R&R+ (our new approach with calibration data)
0,00

30.00

20.00

10.00

0.00

Ronneberger, Fischer, and Bro, 2015
Jure Zbontar, Florian Knoll, and others 2019


https://arxiv.org/search/cs?searchtype=author&query=Zbontar%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Knoll%2C+F

Summary

We introduce the problem of model adaptation for learned image
reconstruction
Propose two solutions:

e \With calibration data: transfer learning approach (P&P)

e \VNithout calibration data: turn pre-trained network into regularizer (R&R)
arXiv:2012.00139 [pdf, other] cs.CV

Model Adaptation for Inverse Problems in Imaging
Authors: Davis Gilton, Gregory Ongie, Rebecca Willett

e Extensions to the case where the new forward model A; is unknown

e An alternative approach for model adaptation with calibration data
(R&R+)

e Comparisons with other baselines (e.g., TV, RED with other
denoisers, GAN’s)

e Results on other inverse problems, including deblurring and super-
resolution.



Thank youl



