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Inverse problems in imaging

Observe:            

Goal:            Recover  from  

y = Ax + ε

x y

 x

 y

Inpainting Deblurring Superres MRI



Classical approach: Tikhonov regularization (1943)

• Example: deblurring 

• Least squares solution: 

̂x = (A⊤A)−1A⊤y
= x + (A⊤A)−1A⊤ε
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Geometric models of images
Total variation
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Patches

Denoised
Patches

Patch
Denoising

Combine to
estimate
denoised
pixel

Patch subspaces and manifolds

(Wavelet) sparsity



Geometric models reflect prior 
information about distribution of images 

prior  regularizer−log p(x) ⟺ R(x)



Learning to regularize

Instead of using choosing  a priori 
based on smoothness or geometric models,  

can we learn  from training data? 

R(x)

R(x)

Arridge, Maass, Öktem, Schönlieb, 2019  
Ongie, Jalal, Metzler, Baraniuk, Dimakis, Willett, 2020

y ̂xarg min
x

∥Ax − y∥2 + R(x)



Key tradeoffs

• Generality vs. sample complexity:  
Leveraging known  during training gives lower sample 
complexity, but model must be retrained for each new  

• Training stability vs. convergence guarantees: 
Unrolled methods with a small number of blocks ( ) are easier to 
train but lack convergence guarantees 

• Reconstruction accuracy vs. sensitivity to model mismatch: 
Learning to solve for  may yield a regularizer ill-suited to 
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Example: Proximal Gradient Descent

set  and step-size  
for 

x(0) η > 0
k = 1, 2, . . .

data consistency step

𝖺𝗋𝗀 𝗆𝗂𝗇
x

∥Ax − y∥2 + R(x)

denoising step

y ̂xarg min
x

∥Ax − y∥2 + R(x)

x(k+1) = arg min
x

∥x − z(k)∥2 + ηR(x)

z(k) = x(k) − ηA⊤(Ax(k) − y)
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Example: Proximal Gradient Descent

set  and step-size  
for 

x(0) η > 0
k = 1, 2, . . .

data consistency step

𝖺𝗋𝗀 𝗆𝗂𝗇
x

∥Ax − y∥2 + R(x)

DC prox
z(1)

DC proxx(0) …
z(0)

x(2)x(1) repeat until  
convergence

denoising step

y ̂xarg min
x

∥Ax − y∥2 + R(x)

x(k+1) = arg min
x

∥x − z(k)∥2 + ηR(x)

z(k) = x(k) − ηA⊤(Ax(k) − y)
proxηR(z(k))



x(k+1) = arg min
x

∥x − z(k)∥2 + ηR(x)

z(k) = x(k) − ηA⊤(Ax(k) − y)

Plug-and-Play Approach

“Plug-in” a pre-trained CNN denoiser:

z(k) x(k+1)

set  and step-size  
for 

x(0) η > 0
k = 1, 2, . . .

data consistency step

𝖺𝗋𝗀 𝗆𝗂𝗇
x

∥Ax − y∥2 + R(x)𝖺𝗋𝗀 𝗆𝗂𝗇
x

∥Ax − y∥2 + R(x)

proxηR(z(k)) denoising step

y ̂xarg min
x

∥Ax − y∥2 + R(x)



x(k+1) = arg min
x

∥x − z(k)∥2 + ηR(x)

z(k) = x(k) − ηA⊤(Ax(k) − y)

Plug-and-Play Approach

set  and step-size  
for 

x(0) η > 0
k = 1, 2, . . .

data consistency step

𝖺𝗋𝗀 𝗆𝗂𝗇
x

∥Ax − y∥2 + R(x)𝖺𝗋𝗀 𝗆𝗂𝗇
x

∥Ax − y∥2 + R(x)

CNN(z(k)) denoising step

DCDCx(0) …
z(0)

x(2)x(1) z(1) repeat until  
convergence

• Plug-and-Play (Venkatakrishnan, Bouman, Wohlberg, 2013) 
• Regularization-by-denoising (Romano, Elad, & Milanfar 2017) 
• Convergence guarantees: (Ryu et al., 2019), (Reehorst & Schniter 2018)

Plug-and-Play Prox-grad

y ̂xarg min
x

∥Ax − y∥2 + R(x)



How much training data?

Original 
x

Observed 
y

Reconstruction with 
convolutional neural 

network (CNN) trained 
with 80k samples



Reconstruction with 
convolutional neural 

network (CNN) trained 
with 2k samples

How much training data?

Original 
x

Observed 
y



Prior vs. conditional density estimation

p(x)
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pixels irrelevant 
to inpainting

p(x)
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Prior vs. conditional density estimation

We need conditional density p(A⊥x |Ax)

pixels irrelevant 
to inpainting

p(x)

p(A⊥x |Ax)

Estimating conditional density  can require far 
fewer samples than estimating full density  

p(A⊥x |Ax)
p(x)



x(k+1) = arg min
x

∥x − z(k)∥2 + ηR(x)

z(k) = x(k) − ηA⊤(Ax(k) − y)

Deep Unrolling

set  and step-size  
for 

x(0) η > 0
k = 1, 2, . . .

𝖺𝗋𝗀 𝗆𝗂𝗇
x

∥Ax − y∥2 + R(x)

data consistency step

DCDCx(0) …
z(0)

x(2)
DC

x(K) = ̂xx(1) z(1) z(K−1)

CNN(z(k)) denoising step

Deep Unrolling of Prox-grad

y ̂xarg min
x

∥Ax − y∥2 + R(x)

 blocksK



x(k+1) = arg min
x

∥x − z(k)∥2 + ηR(x)

z(k) = x(k) − ηA⊤(Ax(k) − y)

Deep Unrolling

“Unroll” K iterations, train end-to-end in a supervised manner 
using ground truth image/measurement pairs

set  and step-size  
for 

x(0) η > 0
k = 1, 2, . . .

𝖺𝗋𝗀 𝗆𝗂𝗇
x

∥Ax − y∥2 + R(x)

data consistency step

DCDCx(0) …
z(0)

x(2)
DC

x(K) = ̂xx(1) z(1) z(K−1)

CNN(z(k)) denoising step

Deep Unrolling of Prox-grad

y ̂xarg min
x

∥Ax − y∥2 + R(x)

 blocksK
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From: (Monga, Li, Eldar 2020)Deep Unrolling
To appear in IEEE Signal Processing Magazine

TABLE I
SUMMARY OF RECENT METHODS EMPLOYING ALGORITHM UNROLLING IN PRACTICAL SIGNAL PROCESSING AND IMAGING APPLICATIONS.

Reference Year Application domain Topics Underlying Iterative Algorithms

Hershey et al. [30] 2014 Speech Processing Signal channel source separation Non-negative matrix factorization

Wang et al. [26] 2015 Computational imaging Image super-resolution Coupled sparse coding with iterative shrink-
age and thresholding

Zheng et al. [31] 2015 Vision and Recognition Semantic image segmentation Conditional random field with mean-field it-
eration

Schuler et al. [32] 2016 Computational imaging Blind image deblurring Alternating minimization

Chen et al. [16] 2017 Computational imaging Image denoising, JPEG deblocking Nonlinear diffusion

Jin et al. [27] 2017 Medical Imaging Sparse-view X-ray computed tomography Iterative shrinkage and thresholding

Liu et al. [33] 2018 Vision and Recognition Semantic image segmentation Conditional random field with mean-field it-
eration

Solomon et al. [34] 2018 Medical imaging Clutter suppression Generalized ISTA for robust principal compo-
nent analysis

Ding et al. [35] 2018 Computational imaging Rain removal Alternating direction method of multipliers

Wang et al. [36] 2018 Speech processing Source separation Multiple input spectrogram inversion

Adler et al. [37] 2018 Medical Imaging Computational tomography Proximal dual hybrid gradient

Wu et al. [38] 2018 Medical Imaging Lung nodule detection Proximal dual hybrid gradient

Yang et al. [14] 2019 Medical imaging Medical resonance imaging, compressive
imaging

Alternating direction method of multipliers

Hosseini et al. [39] 2019 Medical imaging Medical resonance imaging Proximal gradient descent

Li et al. [40] 2019 Computational imaging Blind image deblurring Half quadratic splitting

Zhang et al. [41] 2019 Smart power grids Power system state estimation and forecasting Double-loop prox-linear iterations

Zhang et al. [42] 2019 Computational imaging Blind image denoising, JPEG deblocking Moving endpoint control problem

Lohit et al. [43] 2019 Remote sensing Multi-spectral image fusion Projected gradient descent

Yoffe et al. [44] 2020 Medical Imaging Super resolution microscopy Sparsity-based super-resolution microscopy
from correlation information [45]
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Introduces Artifacts

number of iterations 
used in training

Deep Unrolling - Are we really learning a prox/denoiser?

Gilton, Ongie, & Willett 2021

Does not converge →

iteration



Deep Unrolling and Iterations
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Plug-and-play Deep Unrolling

Deep Equilibrium (Proposed)

• No new training required

• Convergence guarantees

• Outperformed  

by end-to-end learning

• Demanding to train

• No convergence  

guarantees

• State-of-the-art results

• Lightweight to train

• Convergence guarantees

• State-of-the-art results



Deep Equilibrium Models
Most iterative reconstruction algorithms can be interpreted as  
solving for a fixed-point of a non-linear operator f( ⋅ )

find  such that x* x* = f(x*)

DC

CNN( ⋅ )

f(x) = CNN(x − ηA⊤(Ax − y))x

ex: plug-and-play/deep unrolling 

Recent work on “deep equilibrium models” (Bai, Kolter, & Koltun 
2019) has shown how to perform back-propagation on estimators 
implicitly defined through fixed-point equations.

ex: proximal gradient descent 

DC prox f(x) = proxηR(x − ηA⊤(Ax − y))x



Key Idea: Implicit Differentiation

x* = fθ(x*)

𝜕𝑥∗

𝜕𝜃
=

𝜕𝑓𝜃(𝑥∗)
𝜕𝜃

+
𝜕𝑓𝜃(𝑥∗)

𝜕𝑥∗

𝜕𝑥∗

𝜕𝜃

∂x*
∂θ

= (I −
∂fθ(x*)

∂x* )
−1 ∂fθ(x*)

dθ

Fixed point:

DC

CNNθ( ⋅ )

fθ(x) = CNNθ(x − ηA⊤(Ax − y))x

Note:      implicitly a function of network parameters x* θ

m × p m × m m × p

x* ∈ ℝm

θ ∈ ℝp

∂ℓ⊤

∂θ
=

∂ℓ⊤

∂x*
∂x*
∂θ



Convergence to a fixed-point

DC

CNNθ( ⋅ )

fθ(x) = CNNθ(x − ηA⊤(Ax − y))x



Convergence to a fixed-point

• Q: Do the iterates converge to a fixed-point? 
     A: If the map  is contractive, yes, and convergence is linear.fθ( ⋅ )

DC

CNNθ( ⋅ )

fθ(x) = CNNθ(x − ηA⊤(Ax − y))x



Convergence to a fixed-point

• Q: Do the iterates converge to a fixed-point? 
     A: If the map  is contractive, yes, and convergence is linear.fθ( ⋅ )

• Q: Can we guarantee contractivity? 
     A: Yes! sufficient to bound Lipschitz constant of denoising CNN

DC

CNNθ( ⋅ )

fθ(x) = CNNθ(x − ηA⊤(Ax − y))x



Convergence to a fixed-point

• Q: Do the iterates converge to a fixed-point? 
     A: If the map  is contractive, yes, and convergence is linear.fθ( ⋅ )

• Q: Can we guarantee contractivity? 
     A: Yes! sufficient to bound Lipschitz constant of denoising CNN

• We use the “spectral normalization’’ technique of (Miyato et al., 2018)

DC

CNNθ( ⋅ )

fθ(x) = CNNθ(x − ηA⊤(Ax − y))x



MRI 8-fold Acceleration: Example Reconstruction
Ground Truth Zero-filled IFFT

Deep Unrolled Deep Equilibrium 
(Ours)

Data from FastMRI Gilton, Ongie, & Willett 2021
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MRI 8-fold Acceleration: Example Reconstruction
Ground Truth Zero-filled IFFT

Deep Unrolled Deep Equilibrium 
(Ours)

Deep Unrolled Deep Equilibrium (Ours)Ground Truth

Data from FastMRI Gilton, Ongie, & Willett 2021



Deep Equilibrium — Illustration of Convergence

DC fθ(x) = CNNθ(x − ηA⊤(Ax − y))x

iteration



Deep Equilibrium — Illustration of Convergence (MRI)

Re
co

ns
tru

ct
io

n 
PS

N
R

24
25
26
27
28
29
30
31
32

Iteration
0 50 100 150 200

Deep Equilibrium ProxGrad (Ours)
Plug-and-Play ProxGrad
Deep Unrolled ProxGrad -10



Deep Equilibrium — Illustration of Convergence
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Numerical results
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Conclusion

Pre-print on arXiv:

• Alternative Deep Equilibrium architectures based on 
   - Gradient Descent 
   - Alternating Directions Method of Multipliers (ADMM) 
with associated convergence guarantees. 

• Anderson acceleration of fixed-point scheme 

• Additional empirical results on MRI, deblurring, and compressed sensing

Plug-and-play Deep Unrolling
Convergence 
Guarantees

Reconstruction 
Accuracy

Deep Equilibrium

Paper also contains:
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Methods trained for a specific forward 
model  outperform model-agnostic 

training when data is limited…
A



… but methods trained for a specific 
forward model  break down when 

we transfer to a new forward model 
A0

A1

• MRI examples of model shift 
• Cartesian vs. non-Cartesian k-space sampling trajectories,  
• different undersampling factors,  
• different number of coils and coil sensitivity maps,  
• magnetic field inhomogeneity maps…



Image reconstruction by supervised learning — current paradigm

1. Collect and/or synthesize training data pairs  using a known 
forward model:  

   

2. Train a reconstruction network    by minimizing over a loss (e.g., 
MSE, SSIM) 

3. Reconstruct new measurements  by 

(xi, yi)

yi = A0xi + εi

fθ

y ̂x = fθ(y)

A⊤
0 A0x

k-space measurements  
y

reconstruction network 
fθ( ⋅ )

reconstructed image 
̂x = fθ(y)

e.g., 
accelerated 

MRI



Issue: Trained network is sensitive to changes in the forward model 

PSNR: 31.7 dB PSNR: 26.9 dB

U-net Recon 
same k-space 

sampling 
pattern as in training

U-net Recon 
different k-space 

sampling 
pattern than used 

in training 

~5 dB drop in PSNR

Ground Truth

Effect originally observed in Antun, Renna, Poon, Adcock, Hansen, 2019



Potential solutions
• Option 1: Retrain the network from scratch using the new forward 

model. 
• Issue: Computationally costly 
• Issue: Might not have ground truth data to retrain (have ’s but no ) 

• Option 2: Train on an ensemble of forward models. 
• Issue: High-dimensional set to sample from (e.g., all possible k-space 

masks) 
• Issue: Numerical evidence suggests this gives worse performance 

overall 

• Option 3: Use a model agnostic approach (e.g., Plug-and-Play or GAN) 
• Issue: May not have enough ground truth images to learn a sufficiently 

expressive model 

• Option 4 (Proposed): Adapt the network to solve the new inverse 
problem

yi x′ is



Model Adaptation for Image Reconstruction

Given a reconstruction network  trained to solve an inverse problem  
  

adapt/retrain/augment it to solve a new inverse problem 

  

(In this talk, assume new forward model  is known.)

fθ
y = A0x + ε

y = A1x + ε

A1

A0 A1

train on this 
k-space sampling mask

deploy on this 
k-space sampling mask

→
E.g.



Model adaptation

Key Idea:   
The composition  acts as an auto-encoder,  fθ ∘ A0 fθ(A0x) ≈ x

A⊤
0 A0x

simulated measurements  
A0x

reconstruction network 
fθ( ⋅ )

original image 
x

reconstructed image 
fθ(A0x)

Use auto-encoder property as a prior/regularizer in an  
iterative model-based reconstruction scheme



Model adaptation without calibration data
• We adopt a regularization-by-denoising (RED) approach using 

proximal gradient descent as base algorithm and  as our 
“denoiser”.  

• Motivated by cost function: 

   

regularization parameter  allows us trade-off 
between data-consistency and regularization 

• Proposed Iterative algorithm:  

fθ ∘ A0

min
x

∥A1x − y∥2
2 +λ x⊤(x − fθ(A0x))

λ

RED (Romano, Elad, & Milanfar 2017)

reuse the pre-trained network to regularize

data consistency step

x(k+1) = fθ(A0z(k))
z(k) = (A⊤

1 A1 + λI)−1(A⊤
1 y + λx(k))



Illustration on FastMRI knee data: 6x  6x acceleration→

Ground Truth
U-net Recon 

Train on /Test on A0 A0

No Model Adaptation 
Train on /Test on  A0 A1

Model Adaptation 
Train on /Test on  A0 A1

PSNR: 31.7 dB 
 SSIM: 0.80

PSNR: 26.9 dB 
 SSIM: 0.76

PSNR: 31.3 dB 
 SSIM: 0.78

different sampling pattern 
same number of linesA0 : A1 :



Illustration on FastMRI knee data: 6x  4x acceleration→

PSNR: 31.7 dB 
 SSIM: 0.80

PSNR: 26.4 dB 
 SSIM: 0.80

PSNR: 33.0 dB 
 SSIM: 0.83

sample 
more linesA0 : A1 :

Ground Truth
U-net Recon 

Train on /Test on A0 A0

No Model Adaptation 
Train on /Test on  A0 A1

Model Adaptation 
Train on /Test on  A0 A1



Illustration on FastMRI knee data: 6x  4x acceleration→

PSNR: 33.5 dB 
 SSIM: 0.83

PSNR: 26.4 dB 
 SSIM: 0.80

PSNR: 33.0 dB 
 SSIM: 0.83

sample 
more linesA0 : A1 :

Ground Truth
U-net Recon 

Train on /Test on A1 A1

No Model Adaptation 
Train on /Test on  A0 A1

Model Adaptation 
Train on /Test on  A0 A1



MRI Example
11

4x Acceleration 6x Acceleration 8x Acceleration2x Acceleration

k-space 
masks

Fully-sampled 
IFFT

R&R

No  
Adaptation

25.86 27.44 29.49 27.89

29.6929.8631.5335.34

Fig. 11: Using the R&R model adaptation approach permits using a U-Net trained for 6⇥ acceleration on MRI reconstruction
across a range of acceleration parameters. Without adaptation, the reconstruction quality decreases, even when more k-space
measurements are taken, as originally observed in [3]. We provide reconstruction PSNR (in dB) in each image. The inverse
solver here is a U-Net trained with the sampling mask in the second-to-last column (outlined in red). Todo: Is this R&R+? If
so, please label it as such.

Truth R&R+ Blur GAN Blur R&R+ SR GAN SR

Fig. 12: Comparison of model adaptation (R&R) with a
model-blind GAN-based reconstruction approach for motion
deblurring (Blur) and super-resolution (SR). While a GAN-
based approach only requires learning a single generative
network for all forward models, our results suggest that a
network trained for a specific forward model with same number
training samples gives better reconstructions. Best viewed
electronically.

networks are truly “solving” a given inverse problem, i.e., lead
to a well-defined inverse mapping of the measurement model.
However, to show this would require a much more detailed
analysis of the estimator defined by the R&R approach that is
beyond the scope of this work.

Finally, while we focused our attention on model drift, an
important open problem is how to adapt to simultaneous model
and data distribution drift, and understanding the extent to
which these effects can be treated independently. We hope to
address these questions in future work.
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Summary
• We introduce the problem of model adaptation for learned image 

reconstruction 
• Propose two solutions: 

• With calibration data: transfer learning approach (P&P) 
• Without calibration data: turn pre-trained network into regularizer (R&R) 

•  


• Extensions to the case where the new forward model  is unknown 
• An alternative approach for model adaptation with calibration data 

(R&R+) 
• Comparisons with other baselines (e.g., TV, RED with other 

denoisers, GAN’s) 
• Results on other inverse problems, including deblurring and super-

resolution.

A1



Thank you!


