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( H#1Priority: Cyber-Physical Systems
¢ Our lives depend on them.

) ’ f ‘
__ S At home: iRobot Roomba vacuums
() o 4 your house

An airplane is a network of computers.
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Types of attacks
* Sensor Attacks. Uncertainty makes
-Injection of faulty sensor measurements. attack stealthy. ?
Actuator attacks: LReeriginty

. Detection
acHon-of-faulr-comntrol inputs.

* Denial-of-Service attacks.

-Jamming of sensors/actuators.

Stealthy attacks.

AL at-earrTOt be detected.

W

>

?7?

State
Estimation

Ctuator attack

- Attack leads to
unsafe regions.

o o
)
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How to mitigate?

» Game Theory.
Secure decision making by considering worst-case scenaria.
Cooperation between operators using equilibrium-based concepts.

PLAN

L DO |

> Receding Horizon Control (RHC). |
Devises stable, optimal control laws. L o i
Allows constraints that characterize stealthy attacks. | s ' »t
> Moving Horizon Estimation.
Combines RHC and game-theory for secure state estimation. 17— 1 ’/
’_\\
_\\_/!l/ =] _-_|— I
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Framework description Georgia &

Plant Dynamics

Assumptions: ||d(t)|| < A
PRORS ()| < @, 1 € N,

Stealthiness: Y = 1Yp.

Attackers’ goals

Disturbance

(known by the » Cooperate to achieve stealthiness,

attackers) > Deteriorate the plant’s performance.
Attack-Free Dynamics
En(t) = Azp() + B (u(t) + dn(1)). Defender’s goals
Yh (t) = Cxp, (t)a Zlfh(to) = ZQ- > Estimate the initial condition.
» Regulate the system optimally.
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» Non-Stealthy attacks: Feedback control can be stopped after detection.
> Stealthy attacks: How to deal with those?

4 ) 4 ) 4 )
Estimate a worst-case Predict worst-case Control by computing
initial condition based on stealthy attacks using the the zero sum Nash
output history. attack-free model. equilibrium.

\_ J N\ / \. J

Control allocation
Lead to safe :
e . . guaranteeing secure
mitigation policies. Y
stabilization.
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State estimation and game-theoretic RHC

Problem

» Output data is collected over a past horizon [, — T, ti], 7 € N.

J

» State estimator uses the Iant model:

Incompatible

BUT!! |
RHC optimizes the future, teft;, t; +T], jeN.

Georgia P&
Tech
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Solution

Reverse the past model!
Reversed past model

N,
5,4(t) = —Azl(t)- B <u<ztjt>+d<2tjt>+z ag(tht)>, te[t;, t4T], j €N
[=1

\

z(t;), j € N, if and only if:

Theorem

=
o
Vo,
~
<.
N——"
I

Czl(t) = y(2t; — t), Yt € [t;, t; + T
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State estimation and game-theoretic RHC

Game-theoretic RHC

min max J%(t;) =
U tj

(de<T>HQd+r|u<T>uRd

i Constraints

Dynamic Path

(1) = Azt ( +zal +dd) Cai(t) = Calt),

N,

. d d d d

iy(t) = —Ax,(t) - B (Up(t) i Z Gy (1) + dp(t)> ; Disturbances bounded by A
=1

23 (t) = Azl () + B (u(t) + di(t)) . Boundary

Ca(to) = af(to) = w(to).
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Relaxed game

d t—i—T
b 2 @/ TS ST

—[la*(r)

N kg a=14° Ol pa a=l1ds Ol o a =11 pa A +2 s + Dl
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State estimation and game-theoretic RHC

Enforce path constraints by demanding:
er(t; +T) =exft; +T) =0

where:

)= fi |Czie) — 57
S10) =i, O @) — Ot

Georgia &
Tech
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State estimation and game-theoretic RHC Georgia &
Tech

—®

Stability Guarantees

4 Theorem: )

Closed trajectories are bounded for

<sufficiently small weighting matrices>on
_maximizers. 4

Terminal cost is an
ISS Lyapunov

//// CREATING THE NEXT"®
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State estimation and game-theoretic RHC Georgia &

What if the past output is available only intermittently?
Assume the output is available every 0 seconds.

//////// CREATING THE NEXT®
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But... what could the attackers do?
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The attackers’ point of view: equilibrium Georgia &
Tech

—®

Stealthiness

Theorem
Constrained RHC allows to

The attackers i< Ngan remain undetected over impose this.

the interval 1 = [tj, tj ‘|— T]|;/
C (z'(t) — (1)) = 0.-%TE [t;, t; + T,

Knowledge of disturbance
necessary for stealthiness.

—— Not equal tf’ actual defender
input!
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The attackers’ point of view: equilibrium Georgia &

Concavification
term

Cooperative game

~

B e i )= [T (Ol

]

pe — 12l e o

tj

Constraints \

Path
Disturbances bounded by A

Dynamic

(1) = Ao()) + B(x() + it dt))

Boundary
i i i Stealthiness Bt 4+ T =
() = HO:Eh(t) = (t>HIp’ B constraints J/ ’ /
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Level-k thinking

> A suitable framework to model boundedly rational agents (Camerer, Ho, 2004).

> A level-0 agent is assumed to follow a naive pattern.

> A more intelligent, level-1, agent derives his best response assuming the rest are level-0.
> A more intelligent, level-2, agent assumes the rest are level-1, and so on.

> The model grows up to level-k, where it is possible that k£ — o©.

2 M3

10 1
Level 1

v

h £

Level O
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Level-k thinking

Level O

1 . : a .
Solves the zero-sum game N, o 77 MaX, oz J;'0, assuming no one else attacks.

Level k

Solves the following zero-sum game,@suming everyone is level k1>
B : .
et [ (llg,

i

i (t) = Az} (t) + B(uj(t) + (Ng — 0@

+aik(t) +d(t)), Lt

min  max J'y (u}’;,ai,k; g Hxﬁﬁ(t7 —|—T)‘

_ . — ||ai k(T a_) dr
jin e — 0 k(D) e ) A7

subject to the dynamics, Vt € [t;,t; + 11,

with the constraint

s (8)] < £k, Dottt

HE NEXT"
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Minimize risk: Estimate cognitive level of other attackers.

Probability: attacker Database
is level i. policies. Distance between attack and [ Bias to(nitial beliefs.

database policies.

W)/ CREATING THE NEXT®



Simulations

Power System

N == g L Al 5 1
d [Aa-‘ = = _OL R, T, | | Ada [T—g-‘ ]
0 e B e e B
s Ao W= Afe,

d 1 defender.

O 2 stealthy attackers.

O Disturbance d = 0.05sin(7t).

O Disturbance and attackbound @ = A = 0.5.

O Prediction horizon of 1 [sec], control horizon of 0.2 [sec].

Georgia @
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0.2
5 0
e =]
i £ 02
Stability .
0 . h '4I
maintained
0.04 0.3y
o
% 0.03 E — 1
£ 0.01 .
G ) T I i i =l
o - 0 5 4 6 8 10 12
t[s]
Fig. 1: Evolwtion of the statcs and the prodictsd cost when the system Eig._l: Em}utinn of the anr.ml pn]ia?ies when the system 1s under
is under infinitely rational attacks for £ € [0, 6]. mfinitely rational attacks for t € [0, 6].
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Boundedly rational case: a level 3 & a level 1 attacker.
1r Y
02 .I'[l:'!] e 7. (]
.I'-_:I:!] Lv.1
01 w— 1 ] Lv.2
200
&
-0.1 F
0.2 : 5 6
0 2 4 B 8 10 12
t[s]
0.015 ; ——
. E "
S 001 =
g 4
£ 0.005 2
0 8 10 12
10 12
) ) ) Fig. 4: Evolution of the beliefs of the first attacker and the attack
Fig. 3: Evolution of the states and the predicted cost when the system policies when the system is under boundedly rational attacks for ¢ €
is under boundedly rational attacks for £ € |0, 6]. [0, 6].
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Security against Actuation Attacks
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Designing a control system involves the selection of its actuators.
¢ ACtuatOrS need tO Opﬁmize ContrO”abiIity. Intelligent Decision Maker/Controller (IDM/C)

* The number of actuators cannot be arbitrarily large. M seneauing gers sy, 3

Attacker
Network

But!! F o \ T

1 l’
Actuator .-
1

CPS are:
* Vulnerable to actuation attacks.
* Subject to unknown dynamics.

Adu!ator + Sensor el et .-~ Sensor
. . .

Physical World

________

Solution: Learning-based actuator placement.

CREATING THE NEXT"



Problem formulation Georgia &
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Continuous-time system:

t(t) = Ax(t) + B(u(t) + a(t)), z(0) = xo,

« z:RL = R" jsthe state.
« u, a:Ry — R™ are the control and the actuation attack.
« AcR™"™ BeR"™™ are the plant and input matrices.

The input matrix is such that B = [Bo By] , where:

* By =[B1, B2, ...y Bm—i] € R™(™=F) are gctuators already incorporated in the system.
* By = [v1, v, ..., vi] € R® are actuators that need to be selected.

CREATING THE NEXT"



Problem formulation Georgia
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> Let B={by,...,bn} be a set of available actuators.
> Problem: choose a set of actuators V = {01, V2, .+, ”Uk;} so that:
V),
= fV)

s.t. card(V) =k,
A is uncertain,

* fquantifies controllability & attack resilience.
* kisless than N.

* Only an upper bound of the spectral abscissa of A is known.

Problem 1: Find a metric f that quantifies both controllability and actuation
attack resilience, and which can be tractably estimated in a partially model-free

manner.

CREATING THE NEXT"



Problem formulation

Since A is not known, the metric f needs to be estimated.

Accordingly, the actuators will need to be placed adaptively:

Problem 3: Let {; € Ry, j € N, be time instants such that ¢;47 —¢; > 0,
Vj €N, tp = 0 and lim;_,, t; = co. Design an actuator-scheduling procedure
which will place actuators at each time instant ¢;, 7 € N, while guaranteeing
that V; eventually converges to the optimal set of actuators.

As a result of Problem 3, the closed-loop system is:
z(t) = AZ(t) + B(t)(u(t) + a(t)), z(0) = 20, V¢ 20,

where z : Ry — R™ are the new state trajectories, and

B(t) = [BO ij], Vit € [tj, tj_|_1), E=

Georgia &
Tech

—®
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Actuator evaluation metric Georgia &
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Solve a constrained zero-sum game:

min max J(u,a;tf)zéfo ' (u' (T)Ru(t)—a" (1) Ka(T)) dT

u a

< it t(t) = Ax(t) + B(u(t) + a(t)),
e 1),
u, a:[0, ty] = R™,

> A defender wants to regulate the CPS with minimum energy.
> An attacker wants to disrupt the regulation.

» K = K(V) =diagv([k1 k2 ... km ko, ko, ... ko, |T) = 0.
> R=R(V) =diagv([rg, 8, --- T8, Tv, Twy --- Tv.] L) = 0.
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Theorem: Let (A, B) be a controllable pair, and K > R. Then, the zero-sum
game admits a saddle-point solution (u*, a*), for all xo € R", with value

1
J () = J(u,a"; ty) = §a:OTeAthQ_1(tf)eAtfxo,

where Q(t¢) is the robust controllability Gramian:

Ly -
Q(ts) :/ e "B(R™! — K~YHBTe Tdr.
0

CREATING THE NEXT"
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In the specific case that the state matrix A is Hurwitz and ¢y = oo:

AQ+QAT +B(R™ = K™ )B" =0, Q@ =Q(c0).
If A is not Hurwitz, then define the discounted Gramian:
Q. = / e~2TeATB(R™Y — K~1)BTeA "dr
0

i /OO e(A—’yI)TB(R—l — K—I)BTG(A—’YI)TTdT’
0

Lemma: Given v > a(A), the Gramian @), is well defined and uniquely solves

the Lyapunov equation

(A—1D)Qy+Qy(A—yI)" + B(R™'—K "B =0.

CREATING THE NEXT"



Actuator evaluation metric Georgia &
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To minimize the average robust controllability, choose:

F(V) = tr(Q).

Only one Lyapunov equation need be solved to evaluate f!

////////// CREATING THE NEXT®
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Second advantage: f can be optimized in polynomial time!

tI‘((R_l—K_l)BTPfYB)IZ( = L TP’U—|—Z TP’)/BZ

veY

This decoupling of the effect of the actuators in f, aids at significantly reducing
computational complexity.

T T/ CREATING THE NEXT®
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The metric f can be described in a data-based fashion, given persistence of
excitation.

Definition: A signal ¢ : [tg, co) — R?, ty > 0, is persistently exciting if there
exist constants vy, 2, Ty > 0 such that

t—l—Tf
’71[ S / ¢(T)¢T(T)d7' S ’72[, T Z t().
t
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Theorem: Consider the state trajectories x in the absence of attacks, Vi > 0,
and let v > a(A). Then, the data-based, time-dependent equation

t
U7 (¢)vech (P,) + / 1Z(r)|I2dr =0, ¥t > T,
t—T

where T > 0, and ¥(t) € R*"+1)/2 ig the regression vector

U(t) = vech (W(t) + Wt(t) - diagm(W(t))) ,
WH=z'0)zt) -z ¢t -T)z({t—T)

‘/t_T<27:zT<T> ® 2(1)+22"(7) ® (B(r)u(r)))dr,

admits a constant solution with respect to P, which satisfies the model-based
Lyapunov equation. In addition, if ¥ is persistently exciting, this solution is
unique.
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Learning-based estimation of f Georgia &

Estimate P, with [37 by minimizing the error
E(t) = 5e*(t),

where e(t) is the databased LE:

e(t) = Ut (t)vech (]57> + /;T |z(r)|2dr, V¢ > T.

i/ CREATING THE NEXT®



Learning-based estimation of f Georgia &
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A

Define the estimation error f% =~ Py Py

CREATING THE NEXT"




Online actuator placement Georgia &
Tech

—®

Having an estimate of P, we can solve the approximate optimization:

e | T RN R
max JiEE tj)_;}(rv kDo T By(t5)v,

s.t. card(V) =k,

where f(; t;): 28 — R is an approximation of f(-) at t = t;.

Complexity: O(NloghN).

CREATING THE NEXT"
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Online actuator placement Georgia FAJ

34

Algorithm 1: Data-Based Actuator Placement

Online Placement Algorithm: Input: Constants £, > 1, > 0,7 =1,....N, and v >
aA).
Output: Actuator Selection Sequence {V;};en.
I: procedure
2: for t > 0 do
Gradient Learning Law: > 3 Tune Pf}, according to learning law (25).
4: if t =1t;, €N, then
Approximate Optimization: > 5 Sort the values (?b_l — k;l)b}ﬁf(tj)b% Vi =
I,....N.
6: Choose the set of actuators V; € B correspond-
ing the k& largest such values.
Switch Actuators: - 7 Set B(t) = [Bo | By,]. Vte [tj, tjt1).
8: end if
9: end for

10: end procedure

CREATING THE NEXT"
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max f,(W)=> (r," —k; Yo P +n),

VCB
veEY

Shily —card - — &

where 1., © = 1,..., N, are independent random variables, each following a
uniform distribution over the interval [0, 7], for some 77 > 0.

CREATING THE NEXT"
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In the steady state of the learning law, one can detect actuation attacks in a
partially model-free manner.

Consider the filter:

A W (t
echif = —51 = H‘I’( ()t)H2

(\I!rsr(t)vech (]5%8)

¢
+ / ||:18(T)||2 dT) Sherameh(\Py s Fostl)),
t—T

A

vech(P, s(T')) = vech(P,), t > T,

with kg > 0, and ¥, being ¥ at the steady state.

////////// CREATING THE NEXT®
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We consider the Innovative Control Effectors (ICE) eight-state aircraft, flying
at an altitude of 15,000 ft.

* N = llavailable actuators.

* k = 4 actuators picked.

* The learning parametersare 5 = 100, T' = 0.05.

* The optimal set of actuatorsis  V* = {b1, b3, bz, bio}
* The actuators are switched every 20 seconds.

For this algorithm, we choose the control weighting terms as r,, = 1, for all
¢ =1,...,N. In addition, the attack weighting terms are chosen as ky, = kp, =
1%5 = kbG = kb7 = 10, ]4354 — kbs — kbg — 2 and kbg = ]‘Cbn = 1.01.

CREATING THE NEXT"
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o ]
T

Entries of Estimate P, (t)

o

Estimation Error Norm || P, (t)||r

_4 1 L 1 1
0 L 1 1
0 100 200 300 400 0 100 200 300 400
t [sec| t [sec]
Figure 1. The evolution of the estimate of 2, resulting from the Figure 2. The evolution of the Frobenius norm of the estimation error
application of the learning law (25). ‘ ﬁﬂ"” .
F

The matrix P, is successfully identified!
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510 —~6F
g 9 3 U
g S?' 4: 4t .
75 -
= SE +
o ey
-:% 55 : 3 L I -
g s 2
< 54 E2f -
3 o
a
So Mgt ]
O 1 L L 1
0 100 200 300 400
[bec] t [sec]

Figure 3. The evolution of the actuator sequence V; that was created
due to Algorithm 1. Cyan color denotes that an actuator is chosen,
while black color denotes that an actuator is not being used.

Figure 4. The evolution of the actuator evaluation metric (17) for the
sequence I3(1) of actuators generated by Algorithm 1.

The optimal set of actuators is found after 300 s!
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Simulations

After 500 s, the detection is employed with k; = 2.

An attack takes place over t € [535, 565] s.

The attack is successtully detected.

Georgia P&
Tech

—®

1.4

1271

Detection Signal d(t)
o S
o o =

o
o~

o
no

0 L
500 520

540 560
t [sec|

580 600

Figure 5. The evolution of the detection signal d(t) over [ €

[500, 600] seconds.

CREATING THE NEXT"



Conclusion & future ideas Georgia &
Tech

—®

d Constructed an equilibrium and a non-equilibrium based decision making mechanism for stealthy
attackers.

 Developed a level-k thinking model for the attackers, along with a level estimator.

U Constructed a metric that evaluated both controllability and attack resilience.

J Estimated this metric in a partially model-free manner.

U Designed a learning-based actuator-placement algorithm, with optimality guarantees.

U Constructed a partially model-free attack detection scheme.

Future work

 Extension to cases of joint sensor-actuator attacks.

J Consideration of cases where more statistics of the disturbance are available.
d Implementation in a networked control setting with decentralized information.
U Development of resilient RHC to deal with possible DoS attacks.

U Extension to sensor placement.

d Extension to completely unknown systems.
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THANK YOU

For papers please see: kyriakos.ae.gatech.edu/
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