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With a lot of help from my friends ...
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With a lot of help from my $$$ friends ...
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Earth science



5

Earth observation
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The Earth data deluge
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Prediction of crop yield from space



9

How is our coastline and ocean?
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What about our atmosphere and air quality?
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Some machine learning applications

One soil map
https://map.onesoil.ai

Global wealth map    
http://penny.digitalglobe.com

Disease mapping           
https://www.healthmap.org

Flood analyzer
http://floods.wri.org
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The challenges
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ML in Earth science rocks… only when some things happen!

● Strong spatial and temporal correlations
● Big data accessible
● Cheap computing resources available
● Fast scalable ML models available
● No expert knowledge needed
● High prediction accuracy is enough
● Understanding the system is not that relevant
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Machine/deep learning challenges
● Do Models respect Physics Laws?
● What did the ML model learn?
● Do they get cause-effect relations?
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Physics-aware* machine learning

                F(X,                     ) = y

* aka physics-guided, physics-informed, ...
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The truth is that...

At AGU 2017, New Orleans, USA
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A simple taxonomy

“Living in the Physics - Machine Learning Interplay for Earth Observation” 
Camps-Valls et al. AAAI Fall Series 2020 Symposium on Physics-guided AI for Accelerating Scientific Discovery, 2020. arxiv.org/abs/2010.09031
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1- Constrained optimization

● ML minimizing model errors & violations of the physical laws

“Theory-guided Data Science”, Karpatne, A. et al.  IEEE Trans. Know. Data Eng., 2017.
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1- Constrained optimization

● ML minimizing errors & predictions independent of sensitive factors

● Independence measured with HSIC

● Closed form solution with kernels

● Probabilistic interpretation with GPs:

“Fair Kernel Learning” Perez, 
Laparra, Gomez, Camps-Valls, G. 
ECML, 2017.
“Consistent Regression of 
Biophysical Parameters with 
Kernel Methods” Díaz, Peréz-
Suay, Laparra, Camps-Valls, 
IGARSS 2018
“Kernel Dependence 
Regularizers and Gaussian 
Processes with application to 
Algorithmic Fairness” Zhu Li, 
Perez-Suay, Camps-Valls and 
Sejdinovic, Submitted 2018
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1- Constrained optimization

● ML minimizing errors & predictions independent of human factors

“Fair Kernel Learning” Perez, Laparra, Gomez, Camps-Valls, G. ECML, 2017.
“Consistent Regression of Biophysical Parameters with Kernel Methods” Díaz, Peréz-Suay, Laparra, Camps-Valls, IGARSS 2018
“Kernel Dependence Regularizers and Gaussian Processes with application to Algorithmic Fairness” Zhu Li, Perez-Suay, Camps-Valls and Sejdinovic, Submitted 2018
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2- Blending observations and simulations for extrapolation

● Let ML talk to physical models for extrapolation

“Joint Gaussian Processes for Biophysical Parameter Retrieval” Svendsen, Martino, Camps-Valls, IEEE TGARS 2018
“Physics-aware Gaussian processes in remote sensing”  Camps-Valls, G. et al. Applied Soft Computing, 2018.
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3- Convolution processes & encoding ODEs

● Transfer learning across time and space

"Latent force models." Alvarez, Mauricio, David Luengo, and Neil D. Lawrence. 
Artificial Intelligence and Statistics. PMLR, 2009.
“Integrating Domain Knowledge in Data-driven Earth Observation with 
Process Convolutions” Svendsen, Muñoz, Piles, Camps-Valls, IEEE TGARS. 2021



23

3- Convolution processes & encoding ODEs

● Encode ODEs governing the system + Learn latent forces driving it

"Latent force models." Alvarez, Mauricio, David Luengo, and Neil D. Lawrence. 
Artificial Intelligence and Statistics. PMLR, 2009.
“Integrating Domain Knowledge in Data-driven Earth Observation with 
Process Convolutions” Svendsen, Muñoz, Piles, Camps-Valls, IEEE TGARS. 2021
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3- Convolution processes & encoding ODEs

● LFM-GP learns to estimate SM from uneven sampled time series ...
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3- Convolution processes & encoding ODEs

● … and also learns driving forces, and one resembles precipitation
● … plus the time-decay constant of the ODE!
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4- Hybrid modeling framework



27

4- Hybrid machine learning

“Deep learning and process understanding for data-driven Earth System Science”, Reichstein, Camps-Valls et al. Nature, 2019.
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4- Hybrid machine learning
● ML that learns laws of physics (e.g. model-data consistency, mass and energy conservation)

“Deep learning and process understanding
for data-driven Earth System Science” 
Reichstein, Camps-Valls et al. Nature, 2019.

B: A motion field is learned with a 
convolutional-deconvolutional net, 
and the motion field is further 
processed with a physical model

A: “Physisizing” a deep 
learning architecture by 
adding one or several physical 
layers after the multilayer
neural network

“Deep Learning for Physical Processes: 
Incorporating Prior Scientific Knowledge”. 
de Bezenac, Pajot, & Gallinari, arXiv:1711.07970 (2017).
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4- Hybrid machine learning
● ML that learns laws of physics (e.g. model-data consistency, mass and energy conservation)

"Physics‐constrained machine learning of evapotranspiration." 
Zhao, Wen Li, et al. Geophysical Research Letters 46.24 (2019): 14496-14507.
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5- Emulating complex codes with machine learning
● GP Emulation = Uncertainty quantification/propagation + Sensitivity analysis + Speed

“Emulation of Leaf, Canopy and Atmosphere Radiative Transfer Models for Fast Global Sensitivity Analysis”, 
Verrelst, Camps-Valls et al  Remote Sensing of Environment, 2016
“Emulation as an accurate alternative to interpolation in sampling radiative transfer codes”,
Vicent and Camps-Valls, IEEE Journal Sel. Topics Rem. Sens, Apps. 2018

https://www.mdpi.com/2072-4292/8/8/673
https://ieeexplore.ieee.org/document/8510901
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6- Going generative

“Modelling mountain snowpack dynamics with cGANs”, A. Albert et al, Arxiv, 2018

● Estimate snow water 
equivalent (SWE)

● A conditional GAN with 
a physics-informed loss:
– Higher elevation, 

more snow
– Consistency with 

water mask
– Penalize 

differences 
between cGAN and 
Phys Model
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7- Parametrizations with variational inference
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7- Parametrizations with variational inference

“Variational inference over radiative transfer model for biophysical parameter retrieval”
D. Svendsen, L. Martino, V. Laparra, G. Camps-Valls, Machine Learning, 2021

● An RTM is a deterministic model mapping 
parameters (‘causes’,c) to radiances 
(‘effects’, E)

● Assume a Gaussian prior
● The evidence/marginal likelihood is hard to 

integrate w/ RTM inside the Gaussian mean!
● VAE is orders of magnitude faster than 

MCMC, but problems with multimodal 
distributions
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Conclusions
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Take-home message

“AI is not deep learning, 
dude! Give Physics a 
Chance.”
“Towards a Collective Agenda on AI for Earth Science Data Analysis” 
Tuia, Roscher, Wegner, Jacobs, Zhu, and Camps-Valls, G. IEEE Geoscience and Remote Sensing Magazine 2021, arxiv.org/abs/2104.05107
“Living in the Physics - Machine Learning Interplay for Earth Observation” 
Camps-Valls et al. AAAI Fall Series 2020 Symposium on Physics-guided AI for Accelerating Scientific Discovery, 2020. arxiv.org/abs/2010.09031
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