
Efficient and Modular
Implicit Differentiation

Mathieu Blondel

Joint work with: Q. Berthet, M. Cuturi, R. Frostig, S. Hoyer,
F. Llinares-López, F. Pedregosa, J-P. Vert

June 4, 2021

Illustration Examples

Gradient-based learning

Gradient-based training algorithms are the workhorse of modern
machine learning.

Deriving gradients by hand is tedious and error prone.

This becomes quickly infeasible for complex models.

Changes to the model require rederiving the gradient.

Deep learning = GPU + data + autodiff

This talk: differentiating optimization problem solutions

Mathieu Blondel Efficient and Modular Implicit Differentiation 1 / 46

Outline

1 Automatic differentiation

2 Argmin differentiation

3 Proposed framework

4 Experimental results

Mathieu Blondel Efficient and Modular Implicit Differentiation 2 / 46

Automatic differentiation

Evaluates the derivatives of a function at a given point.

Not the same as numerical differentiation.

Not the same as symbolic differentiation, which returns a
“human-readable” expression.

In a neural network context, reverse autodiff is often known as
backpropagation.

Mathieu Blondel Efficient and Modular Implicit Differentiation 3 / 46

Automatic differentiation

A program is defined as the composition of primitive operations that
we know how to derive.

The user can focus on the forward computation / model.
import jax.numpy as jnp

from jax import grad, jit

def predict(params, inputs):

for W, b in params:

outputs = jnp.dot(inputs, W) + b

inputs = jnp.tanh(outputs)

return outputs

def logprob_fun(params, inputs, targets):

preds = predict(params, inputs)

return jnp.sum((preds - targets)**2)

grad_fun = jit(grad(logprob_fun))

Mathieu Blondel Efficient and Modular Implicit Differentiation 4 / 46

Automatic differentiation

Modern frameworks support higher-order derivatives

Mathieu Blondel Efficient and Modular Implicit Differentiation 5 / 46

def tanh(x):

y = jnp.exp(-2.0 * x)

return (1.0 - y) / (1.0 + y)

fp = grad(tanh)

fpp = grad(grad(tanh))

...

Forward-mode vs. Reverse-mode

Forward-mode
Computes Jacobian vector products (JVPs) along the forward pass

Each JVP call builds one column of the Jacobian

Efficient for tall Jacobians (more outputs than inputs)

Need not store intermediate computations

Reverse-mode
Computes vector Jacobian products (VJPs) in reverse order

Each VJP call builds one row of the Jacobian

Efficient for wide matrices (more inputs than outputs)

Needs to store intermediate computations

Mathieu Blondel Efficient and Modular Implicit Differentiation 6 / 46

Key components of an autodiff system

JVPs and/or VJPs for all primitive operations

Obtaining the computational graph
Ahead of time (from source or using a DSL)

Just in time (graph is built while being executed)

Topological sort

Forward-mode: forward pass (JVPs)

Reverse-mode: forward pass + backward pass (VJPs)

Mathieu Blondel Efficient and Modular Implicit Differentiation 7 / 46

Outline

1 Automatic differentiation

2 Argmin differentiation

3 Proposed framework

4 Experimental results

Mathieu Blondel Efficient and Modular Implicit Differentiation 8 / 46

Notation

Small letters for scalar-valued functions, e.g., f

The gradient of f : Rd → R

∇f (x) =


∂f
∂x1

(x)
...

∂f
∂xd

(x)

 ∈ Rd

The Hessian of f : Rd → R evaluated at x ∈ Rd

∇2f (x) =



∂2f (x)
∂x2

1
· · · ∂2f (x)

∂x1 ∂xd

...
. . .

...

∂2f (x)
∂xd ∂x1

· · · ∂2f (x)
∂x2

d


∈ Rd×d

Mathieu Blondel Efficient and Modular Implicit Differentiation 9 / 46

Notation

Capital letters for vector-valued functions, e.g., F

The Jacobian of F : Rd → Rp evaluated at x ∈ Rd

∂F (x) =


∂F1(x)
∂x1

· · · ∂F1(x)
∂xd

...
. . .

...
∂Fp(x)
∂x1

· · · ∂Fp(x)
∂xd

 =

∇F1(x)>
...

∇Fp(x)>

 ∈ Rp×d

Jacobian-vector product (JVP) with u ∈ Rd

∂F (x)u ∈ Rp

Vector-Jacobian product (VJP) with v> ∈ Rp

v>∂F (x) ∈ Rd

Mathieu Blondel Efficient and Modular Implicit Differentiation 10 / 46

Argmin differentiation

Consider the optimization

x?(θ) = argmin
x∈Rd

f (x , θ)

where f : Rd × Rn → R is twice differentiable

x? : Rn → Rd is an implicit function

Extensions: constrained optimization, non-smooth optimization

How to compute the Jacobian ∂x?(θ) ∈ Rd×n?

Autodiff cannot be used as is: x?(θ) has no closed form in general

Mathieu Blondel Efficient and Modular Implicit Differentiation 11 / 46

Argmin differentiation

Application 1: bi-level optimization

argmin
θ∈Rn

h(θ) = g(x?(θ))︸ ︷︷ ︸
outer problem

subject to x?(θ) = argmin
x∈Rd

f (x , θ)︸ ︷︷ ︸
inner problem

Gradient of the outer problem: ∇h(θ) = ∂x?(θ)>∇g(x?(θ))

Useful in hyperparam optimization, meta-learning

Application 2: “optimization as a layer”

· · · → x?(θ)→ . . .

Can impose structure on the output via regularization or constraints

Application 3: sensitivity analysis; ∂x?(θ) may be interesting in its
own right (e.g., to answer a scientific question)

Mathieu Blondel Efficient and Modular Implicit Differentiation 12 / 46

Unrolling

Consider the sequence produced by an iterative algorithm

x0(θ), x1(θ), . . . , xK (θ)

where
xk (θ) = T (xk−1(θ), θ)

If the algorithm is convergent, x̂(θ) = xK (θ) can be used as an
approximation of x?(θ)

Idea: use ∂x̂(θ) as an approximation of ∂x?(θ)

Mathieu Blondel Efficient and Modular Implicit Differentiation 13 / 46

Unrolling

Pros
relatively simple (can use autodiff transparently)

derivatives ∂x̂(θ) are consistent with forward pass x̂(θ)

Cons
must reimplement the algorithm from scratch using the autodiff
system (cannot reuse state-of-the-art software)

not all algorithms are autodiff friendly,

complexity scales linearly with n (forward-mode)

memory scales linearly with K (reverse-mode), which is especially
problematic on GPU

the latter can be mitigated by using checkpointing, which trade-offs
recomputations for smaller memory requirement

Mathieu Blondel Efficient and Modular Implicit Differentiation 14 / 46

Implicit differentiation

Use some optimality conditions to mathematically derive an
expression of ∂x?(θ)

Examples that have been used in the past:
Stationary conditions

Karush–Kuhn–Tucker (KKT) conditions

Proximal gradient fixed point

Often involves the resolution of a linear system

So far, the derivation and implementation were case-by-case and
sometimes complicated

Not flexible: modeling changes require rederiving the expression of
∂x?(θ)

Mathieu Blondel Efficient and Modular Implicit Differentiation 15 / 46

cvxpy layers

cvxpy: an optimization toolbox for easily formulating convex
optimization problems

Reduces all problems to linear conic programing

cvxpy layers (Agrawal et al 2019): making cvxpy differentiable

Uses conic programming optimality conditions to derive a formula
of the Jacobian

Pro: very general (supports any convex problem)

Con: conic solvers are rarely the state-of-the-art for each specific
problem instance

Mathieu Blondel Efficient and Modular Implicit Differentiation 16 / 46

Outline

1 Automatic differentiation

2 Argmin differentiation

3 Proposed framework

4 Experimental results

Mathieu Blondel Efficient and Modular Implicit Differentiation 17 / 46

Overview

Makes it very easy to add implicit differentiation on top of any solver
(ability to reuse state-of-the-art implementations)

The user provides (in Python) a mapping F : Rd × Rn → Rd

capturing the optimality conditions solved by the solver

We combine autodiff of F and implicit differentiation to
automatically differentiate x?(θ)

Decouples the implicit differentiation mechanism from the optimality
condition speficiation (in previous works, they were intertwined)

Flexible: no mathematical derivation needed from the user, ability
to experiment easily

Mathieu Blondel Efficient and Modular Implicit Differentiation 18 / 46

Example: differentiating ridge regression
X_tr, y_tr = load_data()

def f(x, theta): # objective function

residual = jnp.dot(X_tr, x) - y_tr

return (jnp.sum(residual ** 2) + theta * jnp.sum(x ** 2)) / 2

F = jax.grad(f) # optimality condition

@custom_root(F)

def ridge_solver(theta):

XX = jnp.dot(X_tr.T, X_tr)

Xy = jnp.dot(X_tr.T, y_tr)

I = jnp.eye(X_tr.shape[0])

return jnp.linalg.solve(XX + theta * I, Xy)

print(jax.jacobian(ridge_solver)(10.0))

Mathieu Blondel Efficient and Modular Implicit Differentiation 19 / 46

Differentiating a root

Let F : Rd × Rn → Rd be a user-provided mapping, capturing the
optimality conditions of a problem

An optimal solution x?(θ) should be a root of F :

F (x?(θ), θ) = 0

Implicit function theorem: ∂x?(θ) exists if ∂1F is a square invertible
matrix at (x?(θ), θ)

Using the chain rule, we get

∂1F (x?(θ), θ)∂x?(θ) + ∂2F (x?(θ), θ) = 0

⇐⇒−∂1F (x?(θ), θ)︸ ︷︷ ︸
A∈Rd×d

∂x?(θ)︸ ︷︷ ︸
J∈Rd×n

= ∂2F (x?(θ), θ)︸ ︷︷ ︸
B∈Rd×n

Mathieu Blondel Efficient and Modular Implicit Differentiation 20 / 46

Differentiating a fixed point

In many case x?(θ) will be a fixed point:

x?(θ) = T (x?(θ), θ)

where T : Rd × Rn → Rd

This is of course a special case since we can define

F (x?(θ), θ) = T (x?(θ), θ)− x?(θ) = 0

Mathieu Blondel Efficient and Modular Implicit Differentiation 21 / 46

Gradient descent

Let x?(θ) be implicitly defined as

x?(θ) = argmin
x∈Rd

f (x , θ),

where f : Rd × Rn → R is twice differentiable

F is simply the gradient mapping

F (x , θ) = ∇1f (x , θ)

Equivalently, we can use the gradient descent fixed point

T (x , θ) = x − η∇1f (x , θ)

for any η > 0

Mathieu Blondel Efficient and Modular Implicit Differentiation 22 / 46

KKT conditions

Consider the problem

argmin
z∈Rp

f (z, θ) subject to G(z, θ) ≤ 0, H(z, θ) = 0

where G and H can be vector-valued

The stationarity, primal feasibility and complementary slackness
conditions give

∇1f (z, θ) + [∂1G(z, θ)]>λ+ [∂1H(z, θ)]>ν = 0
H(z, θ) = 0

λ ◦G(z, θ) = 0

where ν ∈ Rq and λ ∈ Rr
+ are the dual variables

This can be written as F (x?(θ), θ) = 0 if we denote
x?(θ) = (z?(θ), ν?(θ), λ?(θ))

Mathieu Blondel Efficient and Modular Implicit Differentiation 23 / 46

KKT conditions

In code:

grad = jax.grad(f)

def F(x, theta):

z, nu, lambd = x

theta_f, theta_H, theta_G = theta

_, H_vjp = jax.vjp(H, z, theta_H)

stationarity = (grad(z, theta_f) + H_vjp(nu)[0])

primal_feasability = H(z, theta_H)

_, G_vjp = jax.vjp(G, z, theta_G)

stationarity += G_vjp(lambd)[0]

comp_slackness = G(z, theta_G) * lambd

return stationarity, primal_feasability, comp_slackness

Mathieu Blondel Efficient and Modular Implicit Differentiation 24 / 46

Quadratic programming

Consider the QP

argmin
z∈Rp

f (z, θ) =
1
2

z>Qz + c>z s.t. H(z, θ) = Ez − d = 0,

G(z, θ) = Mz − h ≤ 0.

The KKT conditions for this QP can again be written as
F (x?(θ), θ) = 0 if we write

x?(θ) = (z?(θ), ν?(θ), λ?(θ))
θ = (Q, c,E ,d ,M,h)

Just need to express f , H and G directly in Python

Mathieu Blondel Efficient and Modular Implicit Differentiation 25 / 46

Proximal gradient fixed point

Let x?(θ) be implicitly defined as

x?(θ) := argmin
x∈Rd

f (x , θ) + g(x , θ)

where g : Rd × Rn → R is potentially non-smooth

We can use the proximal gradient fixed point

T (x , θ) = proxηg(x − η∇1f (x , θ), θ)

where we defined the proximity operator

proxg(y , θ) := argmin
x∈Rd

1
2
‖x − y‖22 + g(x , θ)

Proximal operators are Lipschitz continuous and therefore
differentiable almost everywhere

Many enjoy a closed-form (soft thresholding, block soft
thresholding, ...)

Mathieu Blondel Efficient and Modular Implicit Differentiation 26 / 46

Proximal gradient fixed point

In code:

grad = jax.grad(f)

def T(x, theta):

theta_f, theta_g = theta

return prox(x - grad(x, theta_f), theta_g)

Mathieu Blondel Efficient and Modular Implicit Differentiation 27 / 46

Projected gradient fixed point

Let x?(θ) be implicitly defined as

x?(θ) = argmin
x∈C(θ)

f (x , θ)

where C(θ) is a convex set depending on θ

We can use the projected gradient fixed point

T (x , θ) = projC(x − η∇1f (x , θ), θ)

where we defined the Euclidean projection operator

projC(y , θ) := argmin
x∈C(θ)

‖x − y‖22

Our library provides plenty of reusable projections

Mathieu Blondel Efficient and Modular Implicit Differentiation 28 / 46

Summary of optimality mappings

Name Solution needed Oracles needed

Stationary Primal ∇1f
KKT Primal and dual ∇1f , H, G, ∂1H, ∂1G

Proximal gradient Primal ∇1f , proxηg
Projected gradient Primal ∇1f , projC

Mirror descent Primal ∇1f , projϕC , ∇ϕ
Newton Primal [∇2

1f (x , θ)]−1, ∇1f (x , θ)
Block proximal gradient Primal [∇1f]j , [proxηg]j

Conic programming Residual map root projRp×K∗×R+

Oracles are accessed through their JVP or VJP.

Mathieu Blondel Efficient and Modular Implicit Differentiation 29 / 46

Computing JVPs and VJPs

Integrating x?(θ) in forward-mode autodiff requires JVPs

To obtain the JVP Ju, solve

A(Ju) = Bu

Integrating x?(θ) in reverse-mode autodiff requires VJPs

To obtain the VJP v>J, solve

A>u = v

then
v>J = u>AJ = u>B

Mathieu Blondel Efficient and Modular Implicit Differentiation 30 / 46

Solving the linear systems

When A is positive semi-definite, we can use conjugate gradient

When A is indefinite, we can use GMRES or BiCGSTAB

All algorithms only require access to A or A> through matrix-vector
products (linear maps)

Since A = ∂1F and B = ∂2F , we only access to JVPs or VJPs of F

When A is indefinite, an alternative is the normal equation

A>AJ = A>B

which can be solved using conjugate gradient

Mathieu Blondel Efficient and Modular Implicit Differentiation 31 / 46

Features needed from an autodiff system

JVPs and VJPs

Second derivatives when F includes the gradient mapping
∇1f (x , θ)

Custom JVPs and VJPs: this is how we are able to create
@custom_root and @custom_fixed_point

jax.vmap: vectorizing map (automatic batching)

jax.linear_transpose: automatic transposition of linear maps

Mathieu Blondel Efficient and Modular Implicit Differentiation 32 / 46

Jacobian bounds

In practice, we almost never get x?(θ) and thus never solve

−∂1F (x?(θ), θ)︸ ︷︷ ︸
A∈Rd×d

∂x?(θ)︸ ︷︷ ︸
J∈Rd×n

= ∂2F (x?(θ), θ)︸ ︷︷ ︸
B∈Rd×n

Let J(x̂ , θ) be the solution of the linear system at x̂ instead of x?(θ)

Under regularity conditions on ∂1F and ∂2F , we can show (Thm 1)

‖J(x̂ , θ)− J(x?(θ), θ)‖ = ‖J(x̂ , θ)− ∂x?(θ)‖ < C‖x̂ − x?(θ)‖

i.e., J is Lipschitz

We then apply this result to the (proximal) gradient descent fixed
point under regularity conditions directly on f and proxg (cf.
corollaries 1 and 2)

Mathieu Blondel Efficient and Modular Implicit Differentiation 33 / 46

Outline

1 Automatic differentiation

2 Argmin differentiation

3 Proposed framework

4 Experimental results

Mathieu Blondel Efficient and Modular Implicit Differentiation 34 / 46

Hyperparam optim of multiclass SVMs

Goal: find hyperparameters that perform well on validation data

x?(θ) ∈ Rm×k : optimal dual variables

θ ∈ R+: regularization parameter

bi-level optimization problem

min
θ=exp(λ)

1
2
‖XvalW (x?(θ), θ)− Yval‖2

F︸ ︷︷ ︸
outer problem

s.t. x?(θ) = argmin
x∈C

θ

2
‖W (x , θ)‖2

F︸ ︷︷ ︸
inner problem

where

C := 4k × . . .4k

W (x , θ) := X>tr(Ytr − x)/θ ∈ Rp×k

Mathieu Blondel Efficient and Modular Implicit Differentiation 35 / 46

Hyperparam optim of multiclass SVMs

0 2000 4000 6000 8000 10000
Number of features

0

50

100

150

Ru
nt

im
e

pe
r s

te
p

(s
ec

on
ds

) Mirror descent (MD)
Unrolling
Implicit diff (ID)

0 2000 4000 6000 8000 10000
Number of features

0

100

200

300

400

500
Proximal gradient (PG)

Unrolling
Implicit diff (ID)

0 2000 4000 6000 8000 10000
Number of features

0

100

200

300

400

500

Block coordinate descent (BCD)
Unrolling
ID w/ MD fixed point
ID w/ PG fixed point

Mathieu Blondel Efficient and Modular Implicit Differentiation 36 / 46

Hyperparam optim of multiclass SVMs
X_tr, Y_tr, X_val, Y_val = load_data()

def W(x, theta): # dual-primal map

return jnp.dot(X_tr.T, Y_tr - x) / theta

def f(x, theta): # inner objective

return 0.5 * theta * jnp.sum(W(x, theta) ** 2)

grad = jax.grad(f)

proj = jax.vmap(projection_simplex)

def T(x, theta):

return proj(x - grad(x, theta))

@custom_fixed_point(T)

def msvm_dual_solver(theta):

[...]

return x_star # solution of the dual objective

def outer_loss(lambd):

theta = jnp.exp(lambd)

x_star = msvm_dual_solver(theta) # inner solution

Y_pred = jnp.dot(W(x_star, theta), X_val)

return 0.5 * jnp.sum((Y_pred - Y_val) ** 2)

print(jax.grad(outer_loss)(lambd))

Mathieu Blondel Efficient and Modular Implicit Differentiation 37 / 46

Task-driven dictionary learning

Goal: breast cancer survival prediction from gene expression data

x?(θ) ∈ Rm×k : sparse codes (atom weights for each sample)

θ ∈ Rk×p: dictionary of k atoms

bi-level optimization problem

min
θ∈Rk×p,w∈Rk ,b∈R

σ(x?(θ)w + b; ytr)︸ ︷︷ ︸
outer problem

s.t. x?(θ) ∈ argmin
x∈Rm×k

f (x , θ) + g(x)︸ ︷︷ ︸
inner problem

where

f (x , θ) := `(Xtr, xθ) : data reconstruction error
σ : binary logistic loss

Mathieu Blondel Efficient and Modular Implicit Differentiation 38 / 46

Task-driven dictionary learning

Method L1 logreg L2 logreg DictL + L2 logreg Task-driven DictL

AUC (%) 71.6± 2.0 72.4± 2.8 68.3± 2.3 73.2± 2.1

binary classification problem to discriminate patients who survive
longer than 5 years (m1 = 200) vs patients who die within 5 years
of diagnosis (m0 = 99) from p = 1,000 gene expression values

Performs better than using the original features with 100 fewer
variables

Mathieu Blondel Efficient and Modular Implicit Differentiation 39 / 46

Task-driven dictionary learning

X_tr, y_tr = load_data()

def f(x, theta): # dictionary loss

residual = X_tr - jnp.dot(x, theta)

return huber_loss(residual)

grad = jax.grad(f)

def T(x, theta): # proximal gradient fixed point

return prox_lasso(x - grad(x, theta))

@custom_fixed_point(T)

def sparse_coding(theta): # inner objective

[...]

return x_star # lasso solution

def outer_loss(theta, w): # task-driven loss

x_star = sparse_coding(theta) # sparse codes

y_pred = jnp.dot(x_star, w)

return logloss(y_tr, y_pred)

print(jax.grad(outer_loss, argnums=(0,1)))

Mathieu Blondel Efficient and Modular Implicit Differentiation 40 / 46

Dataset distillation

Goal: learn a small “distilled” datataset such that a model trained
on this data performs well on the original data

x?(θ) ∈ Rp×k : logistic regression weights

θ ∈ Rk×p: distilled images (“class prototypes”)

bi-level optimization problem

min
θ∈Rk×p

f (x?(θ),Xtr; ytr)︸ ︷︷ ︸
outer problem

s.t. x?(θ) ∈ argmin
x∈Rp×k

f (x , θ; [k]) + ε‖x‖2

︸ ︷︷ ︸
inner problem

where

f (W ,X ; y) := `(y ,XW)

` : multiclass logistic loss

Mathieu Blondel Efficient and Modular Implicit Differentiation 41 / 46

Dataset distillation (MNIST)

Via implicit diff
Dataset Distillation (MNIST). Generalization Accuracy: 0.8556

Via unrolling (4x slower)
Dataset Distillation (MNIST). Generalization Accuracy: 0.8556

Mathieu Blondel Efficient and Modular Implicit Differentiation 42 / 46

Dataset distillation

X_tr, y_tr = load_data()

logloss = jax.vmap(loss.multiclass_logistic_loss)

def f(x, theta, l2reg=1e-3): # inner objective

scores = jnp.dot(theta, x)

distilled_labels = jnp.arange(10)

penalty = l2reg * jnp.sum(x * x)

return jnp.mean(logloss(distilled_labels, scores)) + penalty

F = jax.grad(f)

@custom_root(F)

def logreg_solver(theta):

[...]

return x_star

def outer_loss(theta):

x_star = logreg_solver(theta) # inner solution

scores = jnp.dot(X_tr, x_star)

return jnp.mean(logloss(y_tr, scores))

print(jax.grad(outer_loss)(theta))

Mathieu Blondel Efficient and Modular Implicit Differentiation 43 / 46

Molecular dynamics

Goal: sensitivity analysis of molecular dynamics

x?(θ) ∈ Rk×2: coordinates of k particles

θ ∈ R+: diameter of small particles

optimization problem

x?(θ) = argmin
x∈Rk×m

f (x , θ) :=
∑
i,j

U(xi,j , θ)

where U(xi,j , θ) is the pairwise potential energy function

Mathieu Blondel Efficient and Modular Implicit Differentiation 44 / 46

Molecular dynamics: ∂x?(θ) ∈ Rk×2

Mathieu Blondel Efficient and Modular Implicit Differentiation 45 / 46

Conclusion

A general framework combining implicit differentiation with autodiff
of optimality conditions

Flexibility to try out ideas easily

Ability to add implicit differentiation on top of existing solvers

Arxiv preprint: https://arxiv.org/abs/2105.15183

Open-source release: coming soon!

Thank you for your attention!

Mathieu Blondel Efficient and Modular Implicit Differentiation 46 / 46

https://arxiv.org/abs/2105.15183

	Automatic differentiation
	Argmin differentiation
	Proposed framework
	Experimental results

