Stability of the Lyapunov exponents of randomly perturbed quasi-periodic cocycles

Pedro Duarte

8th IST-IME Meeting September 9, 2022

Pedro Duarte

Stability of the Lyapunov exponents of rand8th IST-IME Meeting September 9, 2022

In Memoriam of

Jorge Sotomayor

Pedro Duarte

Stability of the Lyapunov exponents of rand8th IST-IME Meeting September 9, 2022

∃ ► < ∃ ►</p>

Joint work with

Ao Cai (PUC-Rio) Silvius Klein (PUC-Rio)

Pedro Duarte

Stability of the Lyapunov exponents of rand8th IST-IME Meeting September 9, 2022

-∢ ≣ ▶

Linear Schrödinger 1-dimensional Equation

$$i\hbar \frac{\partial \psi}{\partial t} = (-\Delta + V) \psi =: \mathcal{H}_V \psi$$

$$\mathfrak{H}_V : \mathfrak{U} \subseteq L^2(\mathbb{R}) \to L^2(\mathbb{R})$$
 is called
the Schrödinger Operator

The dynamics of the LSE depends on the **spectral properties** of the Schrödinger operator.

Pedro Duarte

Stability of the Lyapunov exponents of rand8th IST-IME Meeting September 9, 2022

Discrete 1-dimensional Schrödinger Operator

 $V: \mathbb{Z} \to \mathbb{R}$ bounded **potential** $V = (V_n)_{n \in \mathbb{Z}}$

 $H_V:\ell^2(\mathbb{Z})\to\ell^2(\mathbb{Z})$

$$(H_V\psi)_n := -(\psi_{n+1} + \psi_{n-1}) + V_n\psi_n$$

Question How does the behavior of the potential V influences the spectral properties of the Schrödinger operator H_V ?

Spectral types of the Schrödinger Operators

- Absolutely continuous spectrum
- Singular continuous spectrum
- Pure point spectrum

Pedro Duarte

Stability of the Lyapunov exponents of rand8th IST-IME Meeting September 9, 2022

Spectral types of the Schrödinger Operators

- Absolutely continuous spectrum \Rightarrow Conductive medium
- Singular continuous spectrum
- Pure point spectrum \Rightarrow Insulating medium

Pedro Duarte

Quasiperiodic Schrödinger Operators

 $\alpha \in \mathbb{T}^1 := \mathbb{R}/\mathbb{Z}$ irrational frequency, $\alpha \notin \mathbb{Q}/\mathbb{Z}$ $V : \mathbb{T}^1 \to \mathbb{R}$ smooth or analytic

The family of sequences $V_{\theta}(n) := V(\theta + n \alpha)$, determines the family of **quasiperiodic Schrödinger operators** $H_{\theta} : \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$,

$$(H_{\theta}\psi)_{n} := -(\psi_{n+1} + \psi_{n-1}) + V(\theta + n\alpha)\psi_{n}$$

'Quasiperiodic Schrödinger-type operators naturally arise in solid state physics, describing the influence of an external magnetic field on the electrons of a crystal' **S. Jitomirskaya**

Hofstadter's Butterfly

The **Almost Mathieu Operator** is the quasi-periodic Schrödinger Operator determined by the family of potentials

$$V_{\lambda} : \mathbb{T} \to \mathbb{R}, \quad V_{\lambda}(x) := 2 \lambda \cos(2\pi x).$$

Random Schrödinger Operators

 $(\Omega, \mathcal{F}, \mathbb{P})$ probability space $\{V_n(\omega)\}_{n \in \mathbb{Z}}$ i.i.d. random process, $\omega \in \Omega$

This i.i.d. process determines the family of **Anderson-Bernoulli** also known as **Random Schrödinger operators**

$$(H_{\omega}\psi)_{n} := -(\psi_{n+1} + \psi_{n-1}) + V_{n}(\omega)\psi_{n}$$

These operators have **pure point spectrum** with an eigen-basis consisting of eigen-functions with exponential decay as $n \to \pm \infty$, a phenomenon known as **Anderson Localization** (AL).

Dynamically Defined Schrödinger Operators

 $f: M \to M$ map preserving an **ergodic measure** $f_*\mu = \mu \in \operatorname{Prob}(M)$ $V: M \to \mathbb{R}$ bounded measurable function

The **Schrödinger operator dynamically defined** by (f, μ, V) is the family of operators $H_x: \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$

$$\left[H_{\mathsf{x}}\psi\right]_{\mathsf{n}} := -(\psi_{\mathsf{n}+1} + \psi_{\mathsf{n}-1}) + V(f^{\mathsf{n}}(\mathsf{x}))\psi_{\mathsf{n}}$$

for $\psi = \{\psi_n\}_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z})$ and $x \in M$.

Theorem (Pastur-1980)

If (f, μ) is ergodic then the Schrödinger operators H_x have the same spectrum for μ -almost every $x \in M$.

Linear Cocycle

A **linear cocycle** is a bundle map $F: X \times \mathbb{R}^m \to X \times \mathbb{R}^m$, $F(\omega, v) = (f\omega, A(\omega)v)$,

where

- (X, μ) is a probability space;
- $f: X \to X$ is a measurable transformation preserving μ ;
- $A: X \to \operatorname{GL}_m(\mathbb{R})$ is a **bounded measurable** function.

The iterates of F are given by

$$F^n(\omega, v) = (f^n \omega, A^n(\omega) v)$$

$$A^n(\omega) := A(f^{n-1}\omega) \cdots A(f\omega) A(\omega)$$

Lyapunov exponents

Theorem (Furstenberg-Kesten – 1960)

Under the previous assumptions, the following limit (fiber growth rate) exists and is constant for μ -almost every $\omega \in X$,

$$L := \lim_{n \to +\infty} \frac{1}{n} \log \|A^n(\omega)\|.$$

This number is denoted by $L_1(A) = L_1(f, \mu, A)$ and referred to as

the **first Lyapunov exponent** of the linear cocycle (f, μ, A) .

The Tangent Map

X smooth manifold

f:X
ightarrow X smooth map preserving some ergodic measure μ

The **tangent map** $Tf : TX \to TX$ defined by

$$Tf(x,v) := (fx, Df_x v).$$

is the prototype model of a linear cocycle.

The Lyapunov exponent

$$L_1(f,\mu) := \lim_{n \to \infty} \frac{1}{n} \log \|Df_x^n\|$$
$$= \lim_{n \to \infty} \frac{1}{n} \log \|Df_{f^{n-1}x} \cdots Df_{fx} Df_x\|$$

measures the infinitesimal divergence speed of orbits of the map f.

Pedro Duarte

Schrödinger Cocycles

 $f: X \to X$ $f_*\mu = \mu$ ergodic $V: X \to \mathbb{R}$ bounded and measurable.

Schrödinger cocycle

$$F_E: X \times \mathbb{R}^2 \to X \times \mathbb{R}^2$$
, $F_E(\omega, v) := (f\omega, A_E(\omega)v)$, where
 $A_E(\omega) := \begin{bmatrix} V(\omega) - E & -1 \\ 1 & 0 \end{bmatrix} \in SL_2(\mathbb{R}).$

Orbits of F_E are formal solutions of the Eigenvalue equation

$$\begin{bmatrix} \psi_{n+1} \\ \psi_n \end{bmatrix} = A_E^n(\omega) \begin{bmatrix} \psi_0 \\ \psi_{-1} \end{bmatrix} \quad \Leftrightarrow \quad H_\omega \, \psi = E \, \psi$$

Pedro Duarte

イロト 不得 トイヨト イヨト 二日

Operator spectrum versus Lyapunov spectrum

 A_E is uniformly hyperbolic $\Rightarrow H_{\omega}$ has no eigenvalues $\Rightarrow L_1(A_E) > 0$

Theorem (R. Johnson – 1986) If $supp(\mu) = X$ then for μ -almost every $\omega \in X$ and $E \in \mathbb{R}$, A_E is uniformly hyperbolic $\Leftrightarrow E \notin \operatorname{spec}(H_\omega)$

$$\operatorname{spec}(H_{\omega}) = \{E \in \mathbb{R} : L_1(A_E) = 0 \text{ or } A_E \text{ is non uniformly hyperbolic} \}$$

Thouless Formula and the Integrated Density of States

Theorem

 $f: X \to X$ $f_*\mu = \mu$ ergodic $V: X \to \mathbb{R}$ bounded and measurable.

$$L_1(A_E) = \int_{\mathbb{R}} \log |E - x| \, dN(x)$$

where N(E) is the so called integrated density of states of $\{H_{\omega}\}_{\omega \in X}$.

N(E) measures the asymptotic relative number of eigenvalues $\leq E$ of finite dimensional truncations of H_{ω} . Useful Ergodic Properties for Anderson Localization

- $L_1(A_E) > 0$, for all $E \in \mathbb{R}$;
- A good modulus of continuity (e.g. Hölder) for $E \mapsto L_1(A_E)$;
- Large Deviation Estimates: $\exists C < \infty \ \forall \varepsilon > 0 \ \exists c(\varepsilon) > 0, \ n_0(\varepsilon) \in \mathbb{N}$ such that $\forall n \ge n_0(\varepsilon) \quad \forall E \in \mathbb{R}$,

$$\mu\left\{\omega\in X: \left|\frac{1}{n}\log\|A_E^n(\omega)\|-L_1(A_E)\right|>\varepsilon\right\}< C\,\exp\left(-c(\varepsilon)\,n\right)$$

Useful Ergodic Properties for Anderson Localization

- $L_1(A_E) > 0$, for all $E \in \mathbb{R}$;
- A good modulus of continuity (e.g. Hölder) for $E \mapsto L_1(A_E)$;
- Large Deviation Estimates: $\exists C < \infty \ \forall \varepsilon > 0 \ \exists c(\varepsilon) > 0, \ n_0(\varepsilon) \in \mathbb{N}$ such that $\forall n \ge n_0(\varepsilon) \quad \forall E \in \mathbb{R}$,

$$\mu\left\{\omega\in X: \ \left|\frac{1}{n}\log\|A_E^n(\omega)\|-L_1(A_E)\right|>\varepsilon\right\}<\underbrace{C\exp\left(-c(\varepsilon)n\right)}_{\text{exponential type}}$$

Useful Ergodic Properties for Anderson Localization

- $L_1(A_E) > 0$, for all $E \in \mathbb{R}$;
- A good modulus of continuity (e.g. Hölder) for $E \mapsto L_1(A_E)$;
- Large Deviation Estimates: $\exists C < \infty \ \forall \varepsilon > 0 \ \exists c(\varepsilon) > 0, \ n_0(\varepsilon) \in \mathbb{N}$ such that $\forall n \ge n_0(\varepsilon) \ \forall E \in \mathbb{R}, \leftarrow$ uniform large deviations

$$\mu\left\{\omega\in X: \left|\frac{1}{n}\log\|A_E^n(\omega)\|-L_1(A_E)\right|>\varepsilon\right\}< C\,\exp\left(-c(\varepsilon)\,n\right)$$

Jiangong You's Problem

Consider a quasiperiodic potential to which one adds a small random noise

Denote by $A_{\varepsilon,E}$ the corresponding family of Schrödinger cocycles.

Question

Is the Lyapunov exponent stable, i.e.,

$$L_1(A_E) = \lim_{\varepsilon \to 0} L_1(A_{\varepsilon,E}) ?$$

Pedro Duarte

Stability of the Lyapunov exponents of rand8th IST-IME Meeting September 9, 2022

Mixed Random-Quasiperiodic Operators

 $\begin{array}{ll} V: \mathbb{T}^d \to \mathbb{R} & \text{class } C^1 \text{-function}; \\ (\Sigma, \mu) & \text{Polish probability space with } \Sigma = \text{supp}(\mu) \text{ compact}; \\ \alpha: \Sigma \to \mathbb{T}^d & \text{random frequency}; \\ \nu: \Sigma \to \mathbb{R} & \text{random noise}; \end{array}$

The base map $f: \Sigma^{\mathbb{Z}} \times \mathbb{T}^d \to \Sigma^{\mathbb{Z}} \times \mathbb{T}^d$,

$$f(\omega, \theta) := (\sigma \omega, \theta + \alpha(\omega_0))$$

preserves $\mu^{\mathbb{Z}} \times m$, which we assume to be **ergodic**.

The mixed random-quasiperiodic potential is $\mathcal{V}: \Sigma^{\mathbb{Z}} \times \mathbb{T}^d \to \mathbb{R}$,

$$\mathcal{V}(\omega,\theta) := V(\theta) + \nu(\omega_0),$$

determines the so called mixed Schrödinger operators.

Positivity of the Lyapunov exponent

Theorem (Cai-D-Klein)

Under very mild conditions the Lyapunov exponent of a mixed random-quasiperiodic cocycle is positive at all energies $E \in \mathbb{R}$.

For instance,:

- If the frequency α : Σ → T^d is constant it is enough that the noise
 ν : Σ → ℝ is not constant;
- If the noise ν is constant and V : T^d → R is analytic it is enough that ∃a, b ∈ Σ such that α(b) − α(a) is ergodic.

This result is one of many extensions of a classical Theorem of **Harry Furstenberg** which gives a criterion for the positivity of the LE for random linear cocycles.

イロト イポト イラト イラト

Continuity of the Lyapunov exponents

The mixed Schrödinger cocycles depend on the data

$$(V, \mu, \alpha, \nu, E) \mapsto A_{V, \mu, \alpha, \nu, E}$$

Theorem (Cai-D-Klein)

Under the same mild conditions, if either

- α is constant and ergodic (but the noise ν is non-constant); or else
- the measure μ := α_{*}μ ∈ Prob(T^d) satisfies a mixing Diophantine condition, i.e., ∃C < ∞ and τ > 0 such that

$$|\hat{\mu}(k)| \leq 1 - rac{\mathcal{C}}{\|k\|^{ au}} \quad orall k \in \mathbb{Z}^d \setminus \{0\}.$$

then the Lyapunov exponent is a locally Hölder continuous function of the above data.

Uniform Large Deviations

The mixed Schrödinger cocycles depend on the data

$$(V, \mu, \alpha, \nu, E) \mapsto A_{V, \mu, \alpha, \nu, E}$$

Theorem (Cai-D-Klein)

Under the same mild conditions, if either

- α is constant and ergodic (but the noise ν is non-constant); or else
- the measure μ := α_{*}μ ∈ Prob(T^d) satisfies a mixing Diophantine condition

$$|\hat{\mu}(k)| \leq 1 - rac{\mathcal{C}}{\|k\|^{ au}} \quad orall k \in \mathbb{Z}^d \setminus \{0\}.$$

then uniform Large Deviation Estimates of exponential type hold, where the uniformity refers to the above parameters.

Stability of the Lyapunov exponents

•
$$V: \mathbb{T}^d \to \mathbb{R}$$
 analytic potential;

• $\alpha \in \mathbb{T}^d$ satisfying a **Diophantine Condition**;

•
$$\rho \in \operatorname{Prob}([-1, 1])$$
 such that $\exists C < \infty, \beta > 0$
 $\forall x \in [-1, 1], \forall 0 < r < 1 \ \rho([x, x + r]) \leq C r^{\beta}.$

The base map $f: [-1,1]^{\mathbb{Z}} imes \mathbb{T}^d o [-1,1]^{\mathbb{Z}} imes \mathbb{T}^d$,

$$f(\omega, heta) := (\sigma \omega, heta + lpha)$$

preserves the **ergodic** measure $\rho^{\mathbb{Z}} \times m$.

The previous data determines the **mixed Schrödinger operator** with potential $\mathcal{V}_{V,\varepsilon}: [-1,1]^{\mathbb{Z}} \times \mathbb{T}^d \to \mathbb{R}$,

$$\mathcal{V}_{V,\varepsilon}(\omega,\theta) := V(\theta) + \varepsilon \,\omega_0.$$

Stability of the Lyapunov exponents

Theorem (Cai-D-Klein)

Given the following data,

- $V : \mathbb{T}^d \to \mathbb{R}$ is analytic;
- $\alpha \in \mathbb{T}^d$ satisfies a Diophantine Condition;
- $\rho \in \operatorname{Prob}([-1,1])$ is such that $\exists C < \infty, \beta > 0$ $\forall x \in [-1,1], \forall 0 < r < 1 \ \rho([x,x+r]) \leq C r^{\beta}.$

then

$$L_1(A_{V,\alpha,E}) = \lim_{\varepsilon \to 0} L_1(A_{V,\alpha,\rho,\varepsilon,E})$$

with locally uniform convergence in the data.

Stability of the Lyapunov exponents

Theorem (Cai-D-Klein)

Given the following data,

- $V : \mathbb{T}^d \to \mathbb{R}$ is analytic;
- $\alpha \in \mathbb{T}^d$ satisfies a Diophantine Condition;
- $L_1(A_{V, \alpha, E_0}) > 0$;
- $\rho \in \operatorname{Prob}([-1,1])$ is such that $\exists C < \infty, \beta > 0$

 $\forall x \in [-1, 1], \ \forall 0 < r < 1 \
ho([x, x + r]) \le C \ r^{\beta}.$

then in a neighborhood of (V, $\alpha, \rho, 0, E_0$) the map

$$(V,\alpha,\rho,\varepsilon,E)\mapsto L_1(A_{V,\alpha,\rho,\varepsilon,E})$$

is weak-Hölder continuous. Moreover, uniform large deviation estimates of sub-exponential type hold in this neighborhood.

・ロト ・ 同ト ・ ヨト ・ ヨト

Strategy of the proof

Abstract Continuity Theorem (D-Klein 2016) Uniform large deviation estimates of exponential (sub-exponential) type $\downarrow \downarrow$ $A \mapsto L_1(A)$ is locally Hölder (weak-Hölder) continuous.

By proximity for $\varepsilon \approx 0$, Uniform LDE for $A_E \Rightarrow$ LDE for $A_{V,\varepsilon,E}$ up to time $n_0(\varepsilon) := \log^{1/2}(\varepsilon^{-1})$

Strategy of the proof

- For $\varepsilon \approx 0$, Uniform LDE for $A_E \Rightarrow$ LDE for $A_{V,\varepsilon,E}$ up to time $n_0(\varepsilon) := \log^{1/2}(\varepsilon^{-1}).$
- Because of the random noise \Rightarrow LDE for $A_{V,\varepsilon,E}$ of exponential type hold beyond the time scale $n_1(\varepsilon) := \log^2(\varepsilon^{-1}) = n_0(\varepsilon)^4$.
- A sort of interpolating argument, based on the Avalanche Principle, gives LDE for A_{V,ε,E} of sub-exponential type at all intermediate time scales n₀(ε) ≤ n ≤ n₁(ε).

A sufficient condition for LDE of exponential type for all $n \ge n_1$ is that $\forall (\theta, \hat{\rho}) \in \mathbb{T}^d \times \mathbb{P}(\mathbb{R}^2)$, with large probability one has

$$\frac{1}{n_1} \log \|A_{\varepsilon,E}^{n_1}(\omega,\theta) p\| \geq \frac{1}{2} L_1(A_E)$$

Pedro Duarte

Stability of the Lyapunov exponents of rand8th IST-IME Meeting September 9, 2022

A sufficient condition for LDE of exponential type for all $n \ge n_1$ is that $\forall (\theta, \hat{\rho}) \in \mathbb{T}^d \times \mathbb{P}(\mathbb{R}^2)$, with large probability one has

$$rac{1}{n_1}\,\log \|\mathcal{A}^{n_1}_{arepsilon,\mathcal{E}}(\omega, heta)\, heta\|\geq rac{1}{2}\,\mathcal{L}_1(\mathcal{A}_{\mathcal{E}})$$

A sufficient condition for LDE of exponential type for all $n \ge n_1$ is that $\forall (\theta, \hat{\rho}) \in \mathbb{T}^d \times \mathbb{P}(\mathbb{R}^2)$, with large probability one has

$$\frac{1}{n_1} \log \|A_{\varepsilon,E}^{n_1}(\omega,\theta) p\| \geq \frac{1}{2} L_1(A_E)$$

Stability of the Lyapunov exponents of rand8th IST-IME Meeting September 9, 2022

A sufficient condition for LDE of exponential type for all $n \ge n_1$ is that $\forall (\theta, \hat{\rho}) \in \mathbb{T}^d \times \mathbb{P}(\mathbb{R}^2)$, with large probability one has

$$rac{1}{n_1} \, \log \|\mathcal{A}_{arepsilon, \mathcal{E}}^{n_1}(\omega, heta) \,
ho\| \geq rac{1}{2} \, L_1(\mathcal{A}_{\mathcal{E}})$$

Problems

- The assumption on the dimension of ρ plays a technical role in the proof. Can it be removed?
- ② Can we obtain uniform large deviation estimates and a modulus of continuity when L₁(A_{V,α,E₀}) = 0?
- Or an we obtain uniform large deviation estimates and a modulus of continuity when the frequency α_ε = α + O(ε) is random?
- Gan these results be extended to cocycles over partially hyperbolic maps?

The End

Thank You

- Ao Cai, Pedro Duarte, Silvius Klein, Furstenberg Theory of Mixed Random-Quasiperiodic Cocycles, https://arxiv.org/abs/2201.04745
- Ao Cai, Pedro Duarte, Silvius Klein, **Mixed Random-Quasiperiodic Cocycles**, https://arxiv.org/abs/2109.09544

Pedro Duarte

Stability of the Lyapunov exponents of rand8th IST-IME Meeting September 9, 2022