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This is a picture of Giorgio in the ICMC-Summer Meeting on Differential Equations - 2008 Chapter together with
Jack Hale, Carlos Rocha and Xiaobiao Lin. Me and all of them were Hale’s students. The first applications of the

inertial manifold theory that I have studied are the works of Carlos Rocha on large diffusivity and the work of Giorgio
Fusco “On a explicity construction of an ODE which has the same dynamics as a scalar parabolic PDE” (see next).

Thank you Giorgio for the enlightenment!
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1. INTRODUCTION 

Suppose UE C*( [0, 11, R), a(x) >O, 0 d.u d I, f~ C3([0, l] x R, R) and 
consider the parabolic equation 

21, = (wz)., +fh If), O<r< 1, 

--pu+(l -p)IIUi-=O, .r = 0, t20 (11 
0X+(1-fJ)au,=O, s= 1: tao, 

where 0 < p, c ,< 1. It is known that for 4 < CI < 1 the initial value problem 
for Eq. (1) is well posed in the fractional power space X” associated with 
the operator A = -(a~,), with the boundary conditions [l]. If one puts 
some extra conditions on J; then by exploiting the properties of the 
Liapounov function 

where B is a term depending on the boundary conditions, one can show 
that ( 1) defines a semiflow on x” and that the set 

d={qsI(bEXy,lI w solution tlzrough q5 is clrfi37ed i37 ( - cc:‘) ‘7; ) and boundedj 

is compact, connected and is a global attractor for the semiflow (this, as 
well as abstract theory of infinite dimensional dynamical systems, can be 

* This research was supported by the National Science Foundation under Contract MC 
19057?4-05. 

0022-0396,‘87 : 
Copyright 0 198'3 by Academic Press, inc. 

All rghts oi reproduction in any rorm resemd. 

The interval [0, 1] is split in several sub-intervals with the diffusion a being large in the interior of the subintervals
and small in the end points. This forces the solutions to be approximately constant in each subinterval leading to a
finite dimensional dynamics governed by a explicitly constructed ode.
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Main goal

Inertial manifold theory, saddle point property and robustness of
exponential dichotomy are topics that have been treated separately
in the literature with distinct proofs.

As a common feature, they all have the purpose of ‘splitting’ the
space in order to understand the dynamics.

Our goal is to give a unified treatment to these topics and to some
further applications to autonomous and non-autonomous problems.
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Basic Terminology

Let (X , ‖ · ‖) be a Banach space and Consider the IVP

u̇ = A(t)u + f (t, u), t > τ

u(τ) = u0 ∈ X ,
(1)

where f :R×X→X is continuous, f (t, 0)=0, for all t∈R, and
∃ `>0 such that‖f (t, u)−f (t, ũ)‖6`‖u−ũ‖, ∀ (t, u), (t, ũ)∈R×X .

The assumption that f (t, ·) be globally Lipschitz and f (t, 0) = 0
may seem too restrictive but this can be circumvented for the
intended analysis and are chosen in to simplify the calculations.
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Assume that the linear (unbounded) operators {A(t) : t∈R} are
such that, for each (τ, u0)∈R×X there exists a ‘unique solution’
(denoted by u(t, τ, u0)=:L(t, τ)u0, t>τ) of

u̇ = A(t)u, t > τ,

u(τ) = u0 ∈ X ,
(2)

and {L(t, τ) : t > τ}⊂L(X ) is an evolution process, that is,

L(t,t)= IdX ,

L(t, s)L(s, τ)=L(t, τ), t>s>τ and, for each u0∈X ,

{(t, τ)∈R2 : t>τ}3(t, τ) 7→L(t, τ)u0∈X is continuous.
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With this, the solutions of (1) are given by a nonlinear evolution
process {T (t, τ) : t > τ} ⊂ C(X ) which is implicitly defined by the
variation of constants formula, that is, for t>τ and u0∈X ,

T (t, τ)u0 =L(t, τ)u0+

∫ t

τ
L(t, s)f (s,T (s, τ)u0) ds, (3)

u̇ = A(t)u + f (t, u), t > τ

u(τ) = u0 ∈ X ,
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Exponential Spliting & Dichotomy

Exponential dichotomy is the nonautonomous notion of
hyperbolicity which, for each time, splits the space into two
invariant linear subspaces, one with exponential expansion and
another with exponential attraction.

Its study goes back to Perron, Massera and Schäffer
[P-MZ-30, MS-Ann-58, MS-Ann-59, MS-AcPrss-66].

Many developments have been achieved ever since. We mention
the books [DK-AMST-74, Coppel-LNM-78, H-LNM-81,
SY-AMS-00, BV-LNM-08, CLR-AMS-13].
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Definition (Exponential Splitting)

A linear evolution process {L(t, τ) : t>τ}⊂L(X ) has exponential
splitting, with constant M > 1, exponents γ, ρ ∈ R, with γ > ρ,
and projections {Q(t) : t ∈ R} ⊂ L(X ), if

i) Q(t)L(t, τ) = L(t, τ)Q(τ), for all t > τ ,

ii) L(t, τ) : Im(Q(τ))→ Im(Q(t)) is an isomorphism, with
inverse denoted by L(τ, t), t > τ ,

iii) the following estimates hold

‖L(t, τ)Q(τ)‖L(X ) 6 Me−ρ(t−τ), t 6 τ,

‖L(t, τ)(I − Q(τ))‖L(X ) 6 Me−γ(t−τ), t > τ.
(4)
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If ω=−ρ=γ>0, {L(t, τ) : t > τ} has exponential dichotomy
with constant M > 1, exponent ω and projections {Q(t) : t∈R}.

{L(t, τ) : t > τ} has exponential splitting, with constant M,
exponents γ > ρ and projections {Q(t) : t ∈ R} if and only if

{e(γ− γ−ρ
2

)(t−τ)L(t, τ) : t > τ} has exponential dichotomy, with
constant M, exponent ω= γ−ρ

2 and projections {Q(t) : t∈R}.

Its most important properties are the description of the local
dynamics and its robustness under perturbations.
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R(I−Q(t))

λ>0>ρ

R(Q(t))

−−−−−−−−
λ>ρ>0

Figure: Exponential Splitting.
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Inertial Manifolds & Saddle Point Property

The saddle-point property is of local nature. It arises as a nonlinear
version of the linear exponential dichotomy.

The inertial manifold is of global nature. It arises as a nonlinear
version of exponential splitting, with the purpose to reduce the
relevant dynamics to that of an invertible dynamical system.

Our proof is inspired in the work of Henry [H-LNM-81] which in
turn draws its inspiration from Hale [H-ODE-69]. The idea goes
back to Lyapunov [Lyapunov-50] and Pliss [Pliss-Iz-64] for the
reduction principle with the splitting at zero (center manifolds).

The terminology was introduced by Foias, Sell & Temam in
[FST-JDE-88]. See [Z-PRSEA-14] and for a recent account and
[KS-JDDE-02] for the non-autonomous case. We introduce the
idea of a stable manifold of an inertial manifold, given as a graph.
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Let us define an inertial manifold for a nonlinear evolution process.

Definition

A family {M(t) ⊆ X : t ∈ R} is called an inertial manifold for
the evolution process {T (t, τ) : t > τ}, if

1 M(t) is a Lipschitz manifold, for each t ∈ R.

2 {M(t) : t∈R} is invariant (T (t, τ)M(τ)=M(t), t > τ).

3 {M(t) : t ∈ R} is exponentially attracting with respect to the
elapsed time,
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We give a somewhat different proof of the existence of the inertial
manifold and its exponential attraction.

Our proof includes the possibility that the inertial manifold be a
graph of a possibly unbounded map.

We introduce the notion and prove the existence of a stable
manifold of an inertial manifold, which again is given by a graph.

We also include the possibility that the manifold be repelling
instead of attracting. This is suitable for the fine description of the
behavior of solutions inside an unstable manifold.
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With this, the saddle point property becomes a corollary of the
invariant manifold theorem.

Also, if f is linear and −ρ = γ > 0, the inertial manifold is a family
of linear spaces which, together with their stable manifolds give a
decomposition of the space and an exponential dichotomy.

This will lead to the result on robustness of exponential dichotomy.
The same result can be used to obtain robustness of an
exponential splitting.
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R(Q(t))

R(I−Q(t))

Stable Manifold

Inv. Manifold

γ>0>ρ (SPP)

−−−−−−−−−−−−−−
γ>ρ>0 Intertial Manifold

Figure: Invariant manifold and its stable manifold.
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Invariant Manifolds &Their Stable Manifolds

Assume that {L(t, τ) : t>τ} has exponential splitting with constant
M>1, exponents γ>ρ and projections {Q(t) : t∈R}. Assume also
that f : R× X → X is continuous, f (t, 0) = 0, f (t, ·) :X→X is
Lipschitz with constant `>0, for all t ∈ R and that κ satisfies

0 <
M2(1 + κ)

γ−ρ
` − 2M(1 + κ)

6 κ < 1, (5)

which can be achieved if

γ − ρ
`

> max{M2 + 2M +
√

8M3, 3M2 + 2M}, (6)
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Define LΣ(κ) as the set of functions Σ : R× X → X such that

Σ(t, 0) = 0, t∈R,
Σ(t, u)=Σ(t,Q(t)u)∈ Im(I−Q(t)), (t, u) ∈ R×X ,
‖Σ(t, u)−Σ(t, ũ)‖ 6 κ‖u−ũ‖, (t, u), (t, ũ) ∈ R×X ,

(7)

and LΘ(κ) as the set of functions Θ : R× X → X such that

Θ(t, 0) = 0, t∈R,
Θ(t, u)=Θ(t, (I − Q(t))u)∈ Im(Q(t)), (t, u) ∈ R×X ,
‖Θ(t, u)−Θ(t, ũ)‖ 6 κ‖u−ũ‖, (t, u), (t, ũ) ∈ R×X ,

(8)
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The Invariant Manifold Theorem

Theorem (IMT)

Under these assumptions, there is a Σ∗ ∈ LΣ(κ) such that, if

M(t) := {u ∈ X : u = q + Σ∗(t, q), q ∈ Im(Q(t))}, t ∈ R, (9)

{M(t) : t ∈ R} yields an invariant manifold for {T (t, τ) : t > τ}.
Furthermore, if PΣ∗(t)u := Q(t)u + Σ∗(t,Q(t)u), (t, u) ∈ R×X,

(i) {M(t) : t ∈ R} has controlled growth: for any u ∈ X, t 6 τ ,

‖T (t, τ)PΣ∗(τ)u‖6M(1+κ)e−(ρ+`M(1+κ))(t−τ)‖PΣ∗(τ)u‖. (10)

(ii) If δ :=γ−M`−M2`2(1+κ)(1+M)
γ−ρ−`M(1+κ) , {M(t) : t∈R} satisfies:

‖(I−PΣ∗(t))T (t, τ)u‖6M‖(I−PΣ∗(τ))u‖e−δ(t−τ), (11)

for u∈X, t>τ . If δ > 0 the invariant manifold is exponentially
attracting and it is called an inertial manifold. Skip to [??]
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Stable Manifold of an Invariant Manifold

Theorem (SMIM)

There is a Θ∗ ∈ LΘ(κ) such that, if

N (t) :={u∈X :u=Θ∗(t, p)+p, p ∈ Im(I−Q(t))}, t ∈ R, (12)

{N (t) : t∈R} yields a positively invariant family for{T (t, τ) : t>τ}.
Moreover, if PΘ∗(t)u :=Θ∗(t, (I−Q(t))u)+(I−Q(t))u, (t,u)∈R×X,

‖T (t, τ)PΘ∗(τ)u‖ 6 M(1+κ)e−(γ−`M(1+κ))(t−τ)‖PΘ∗(τ)u‖, (13)

t > τ , u ∈ X, and

‖u − PΘ∗(τ)u‖ 6 Me δ̂(t−τ)‖(I − PΘ∗(t))T (t, τ)u‖, (14)

t > τ , u ∈ X, where δ̂ = ρ+ M`+ M2`2(1+κ)(1+M)
γ−ρ−M`(1+κ) .

Furthermore, if γ > 0, {Im(PΘ∗(t)) : t ∈ R} is the stable manifold
of the inertial manifold {Im(PΣ∗(t)) : t ∈ R}. Skip to [??]
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Asymptotic Phase

If the projections have finite rank we also have.

Corollary (Asymptotic Phase)

Under the hypothesis of Theorem (IMT ), if dimIm(Q(τ))<∞ and

δ̄ := `

[
γ − ρ
`
−M(2 + κ)− M2(1 + κ)(1 + M)

γ−ρ
` −M(1 + κ)

]
> 0,

there exists c>0 such that, for any u0∈X, there exists a solution
[τ,∞)3 t 7→(q̄(t),Σ∗(t, q̄(t)))∈M(t) such that

‖T (t, τ)u0 − (q̄(t) + Σ∗(t, q̄(t)))‖X
6 ce−δ(t−τ)‖(I − Q(τ))u0 − Σ∗(τ, q(τ)))‖X

where δ is given in Theorem 3 . Skip to [??]
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The Saddle Point Property

We now obtain the saddle point property as corollary of Theorems
3 and 4. First we define the unstable and stable sets of 0.

W u(0) :=

{
(τ,u0)∈R×X : there is a solution u : (−∞, τ ]→X
such that u(τ)=u0 and lim

t→−∞
u(t)=0,

}
(15a)

W s(0) :=

{
(τ,u0)∈R×X : there is a solution u : [τ,∞)→X
such that u(τ)=u0 and lim

t→+∞
u(t)=0.

}
(15b)

For a characterization as graphs of the unstable and stable
manifolds of global hyperbolic solutions see [CL-JDE-07]. Here
they follow from Theorems (IMT) and (SMIM).
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R(Q(t))

R(I−Q(t)

W s (0)(t)

W u(0)(t)

Figure: Unstable and stable manifolds.
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Corollary

Suppose that the linear evolution process {L(t, τ) : t > τ} has
exponential dichotomy, with constant M > 1, exponent ω > 0
(ω = γ = −ρ) and a family of projections {Q(t) : t ∈ R}. Then,
for suitably small ` > 0, there are continuous functions
Σu ∈ LΣ(κ) and Θs ∈ LΘ(κ) such that the unstable and stable
manifolds of u∗ = 0 are given by

W u(0)={(τ, u)∈R×X :u=Q(τ)u+Σu(τ,Q(τ)u)}, (16a)

W s(0)={(τ, u)∈R×X :u=Θs(τ, (I−Q(τ))u))+(I−Q(τ))u}. (16b)

Moreover, solutions within the unstable (resp. stable) manifold
exponentially decay to zero backwards (resp. forwards) in time,
according to (10) and (13).
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Proof: For ` > 0 sufficiently small, (6) is satisfied and δ > 0, and
we obtain the graph of Σ∗ from Theorem 3. We now prove that
the unstable set W u(0) defined in (15a) coincides with the graph
of Σu := Σ∗. Clearly, from (10), the graph of Σu is contained in
the unstable set. Now, from (11), for any solution
z(t) = T (t, τ)z(τ), t0 > t > τ in the unstable set,

‖(I−Q(t))T (t, τ)z(τ)−Σu(t,Q(t)T (t, τ)z(τ))‖X
6 e−δ(t−τ)‖(I−PΣu(τ))z(τ)‖X , t > τ.

(17)

Since δ > 0, we obtain that (I − Q(t))z(t) = Σu(t,Q(t)z(t)) for
all t ∈ R as τ → −∞, and thus such backward solution in the
unstable set lies in the graph of Σu. The case of stable manifold is
analogous applying Theorem 4.
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Fine Description within Invariant Manifolds

No, we describe a finer growth and decay structure within invariant
manifolds, in case of an additional spectral splitting.

This allows for the comparison between two different growth
(decay) rates within the unstable (stable) manifold, which dictates
the directions solutions approach towards the past (future).

We may apply this result to asymptotically autonomous PDEs
extending known results in the autonomous case, see [BF-NA-86,
Lemma 2.2] and [A-JDE-86, Lemma 6].
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Im(Q∗(t))

Ker(Q∗(t)Q(t))

W u
slow

(0)

W u
fast

(0)

u

T(τ,t)u

PfastT(τ,t)u

PslowT(τ,t)u

Figure: The local dynamics inside the unstable manifold of u∗ ≡ 0. Note that
solutions in W u(0)\W u

fast(0) are tangent space of W u
slow (0) as t → −∞.
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Corollary

Suppose that the linear evolution process {L(t, τ) : t>τ} has
exponential splitting, with constant M, exponents γ>ρ, and
projections {Q(t) : t∈R}. If {L(t, τ) : t>τ} has another
exponential splitting with constant M∗ > 1, exponents γ∗ > ρ∗,
ρ > γ∗ and projections {Q∗(t) : t ∈ R}, then, for ` > 0 is suitably
small, then there are graphs corresponding to the fast and slow
submanifolds represented by W u

fast(0),W u
slow(0) of the invariant

manifold represented by W u(0) such that

lim
τ→−∞

‖(I − Pslow (τ))T (τ, t)u‖
‖(I − Pfast(τ))T (τ, t)u‖

= 0, (18)

for any (τ, u) ∈W u(0)\W u
fast(0), where Pfast(·) and Pslow (·)

denote the nonlinear projections onto W u
fast(0) and W u

slow(0).
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Proof: For (τ, u0) ∈W u(0) \W u
fast(0), we obtain from (11) that

‖(I−Pfast(t))T (t, τ)u0‖6Me−δ∗(t−τ)‖(I−Pfast(τ))u0‖, t>τ. (19)

where δ∗=γ∗−M`−M2`2(1+κ)(1+M)
γ∗−ρ∗−`M(1+κ) . Similarly, from (14) we have

‖(I−Pslow (τ))u0‖6Me δ̂∗(t−τ)‖(I−Pslow (t))T (t, τ)u0‖, t>τ. (20)

where δ̂∗ = ρ∗ −M`+ M2`2(1+κ)(1+M)
γ∗−ρ∗−M`(1+κ) .

Therefore, the bounds (19) and (20) applied to u0 = T (τ, t)u yield

‖(I−Pslow (τ))T (τ, t)u‖
‖(I−Pfast(τ))T (τ, t)u‖

6M2e−
ˆ̂δ∗(t−τ) ‖(I−Pslow (t))u0‖

‖(I−Pfast(t))u0‖
, t>τ.

where ˆ̂
δ∗ = γ∗ − ρ∗ − 2M`− 2M2`2(1+κ)(1+M)

γ∗−ρ∗−`M(1+κ) . The limit τ→−∞

yields the desired claim, since ˆ̂
δ∗ > 0, for suitably small `>0.
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Robustness of Exponential Dichotomy

Now we obtain the robustness of exponential dichotomy applying
Theorems 3 and 4 in a linear setting. Consider the linear equation,

u̇ = A(t)u + B(t)u, t > τ, u(τ) = u0. (21)

withR3 t 7→B(t)∈L(X ) strongly continuous and sup
t∈R
‖B(t)‖L(X )6`.

The evolution process {T (t, τ) : t>τ}⊂L(X ) associated to (21) is

T (t, τ) = L(t, τ) +

∫ t

τ
L(t, s)B(s)T (s, τ) ds, t > τ. (22)

Thus, we can obtain a linear invariant manifold and its stable
manifold for (22).
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Corollary (Linear)

Suppose that {L(t, τ) : t > τ} has exponential splitting with
constant M, exponents γ > ρ and projections {Q(t) : t ∈ R}.

If (6) is satisfied, there are Σ∗ ∈ LΣ(κ) and Θ∗ ∈ LΘ(κ),
Σ∗(t, ·),Θ∗(t, ·) ∈ L(X ) such that

{PΣ∗(t)(X ) : t ∈ R} is invariant and {PΘ∗(t)(X ) : t ∈ R} is
positively invariant;

{T (t, τ) : t > τ} given by (22) satisfies and (11), (14) and

‖T (t, τ)PΣ∗(τ)‖L(X )6M(1+κ)e−(ρ+M`(1+κ))(t−τ), t6τ,

‖T (t, τ)PΘ∗(τ)‖L(X )6M(1+κ)e−(γ−M`(1+κ))(t−τ), t>τ,
(23)
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Proof: The proof follows from Theorem 3 with f (t, ·) being a
bounded (uniformly with respect to t) linear operator . Since
f (t, ·) is linear, taking Σ(t, ·) linear, G (Σ) will also be linear and so
will be the fixed point. Similarly, Θ∗ will also be linear.

Next, we show the robustness of the exponential dichotomy.
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Corollary

If {L(t, τ) : t > τ} has exponential dichotomy with constant
M > 1, exponent γ > 0 and projections {Q(t) : t ∈ R}. and
supt∈R ‖B(t)‖L(X ) 6 `, where ` > 0 satisfies

` <
2γ

3M(M + 1)
. (24)

Then {T (t, τ) : t>τ} has exponential dichotomy with constant
M` :=M(1+κ`), exponent γ` := γ − `M(1+κ`) and projections
{Q`(t) : t∈R}with κ` given in Corollary (Linear). Moreover,

sup
t∈R
‖Q(t)− Q`(t)‖L(X ) 6

2κ`
1− 2κ`

. (25)

Proof: We prove that X = Im(PΣ∗(t))⊕Im(PΘ∗(t)) showing that,
for each u ∈ X there exists a unique vu ∈ X such that,

Alexandre N. Carvalho Universidade de São Paulo Inertial Manifolds, Dichotomy and the Saddle Point Property



Main goal and setup of the problem
Invariant Manifolds & Their Stable Manifolds

Applications

The Saddle Point Property
Fine Description within Invariant Manifolds
Robustness of Exponential Dichotomy

Q(t)

I−Q(t)

Σ∗(t,·)

Θ∗(t,·)

PΘ∗ (t)u

PΣ∗ (t)u

u

Q(t)

I−Q(t)

Σ∗(t,·)

Θ∗(t,·)

Q(t)vu

(I−Q(t))vu

u

vu

u =

PΣ∗ (t)vu︷ ︸︸ ︷
Q(t)vu + Σ∗(t, vu) +

PΘ∗ (t)vu︷ ︸︸ ︷
(I − Q(t))vu + Θ∗(t, vu)

= vu + Σ∗(t, vu) + Θ∗(t, vu) = (I + Σ∗(t, ·) + Θ∗(t, ·))vu

(26)
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Clearly, if κ < 1
2 , vu = (I + Σ∗(t, ·) + Θ∗(t, ·))−1u and

‖vu‖X 6 ‖(I + Σ∗(t, ·) + Θ∗(t, ·))−1u‖ 6 ‖u‖X
1− 2κ

. (27)

DefineQ`(t) as the projection onto Im(PΣ∗(t)) along Im(PΘ∗(t)), that
isQ`(t)u :=PΣ∗(t)vu and (I−Q`(t))u=PΘ∗(t)vu,∀ (t, u)∈R×X .

Since {Im(Q`(t)) : t∈R} is ivariantT(t,τ)Q`(τ)=Q`(t)T(t,τ), t>τ .

Equations (23) and (27) imply the desired exponential bounds.

Hence, {T (t, τ) : t > τ} has exponential dichotomy with constant
M` := M(1 + κ) and exponent γ` := γ − `M(1 + κ) > 0.
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Sinceu=vu+Σ∗(t, vu)+Θ∗(t, vu),Q(t)u=Q(t)vu+Θ∗(t, vu), from

Q(t)Σ∗(t, vu) = 0 and

Q(t)Θ∗(t, vu) = Θ∗(t, vu).

Also, by definition Q`(t)u = PΣ∗(t)vu = Q(t)vu + Σ∗(t, vu).

Therefore,

Q(t)u−Q`(t)u=(Θ∗(t, ·)−Σ∗(t, ·))((I +Σ∗(t, ·)+Θ∗(t, ·))−1)u.

Since Σ∗,Θ∗ are bounded with norms in (0, 1
2 )3κ`, (25) follows.
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Thank you very much for your attention!!

Muito obrigado pela atenção
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