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1. Introduction
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Our model: A class of periodic systems of DDEs with (finite) delay and
impulses:







x′i(t) = −di(t)xi(t) +
n∑

j=1,j 6=i

aij(t)xj(t) + gi(t, xit) for t 6= tk,

∆(xi(tk)) := xi(t
+
k )− xi(tk) = Iik(xi(tk)), k ∈ Z, i = 1, . . . , n,

(1)

where: τ is the time-delay,

· xt = (x1t, . . . , xnt) = x|[t−τ.t]
is the past history of the state, defined by

xt(s) = x(t+ s) for s ∈ [−τ, 0]

· the solutions x(t) are piecewise continuous, left continuous, with jump
discontinuities at tk (k ∈ Z) given by Iik(xi(tk))

· di(t), aij(t), gi(t, ϕ) continuous, nonnegative and ω-periodic in t (ω > 0),

· the impulses at times tk occur with periodicity ω
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• GOAL: To find sufficient conditions for the existence of (at least) one
positive periodic solution for the impulsive delay differential equation
(IDDE) (1)
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• GOAL: To find sufficient conditions for the existence of (at least) one
positive periodic solution for the impulsive delay differential equation
(IDDE) (1)

• Our criteria can be applied to broad families of concrete models:

· discrete/distributed, finite/infinite delay

· systems incorporating general impulses whose signs may vary

· and a very general nonlinearity g

(in general, the nonlinearities g are non-monotone)
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• GOAL: To find sufficient conditions for the existence of (at least) one
positive periodic solution for the impulsive delay differential equation
(IDDE) (1)

• Our criteria can be applied to broad families of concrete models:

· discrete/distributed, finite/infinite delay

· systems incorporating general impulses whose signs may vary

· and a very general nonlinearity g

(in general, the nonlinearities g are non-monotone)

• As usual, our method uses a fixed point argument (Krasnoselskii)

• Our technique is based on the construction of an original operator, whose
fixed points are the periodic solutions we are looking for
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• Scalar periodic impulsive DDEs:

(See e.g. Du and Feng 04; A. Wan et al. 04; D. Jiang et al 04,08; Yan 05,07; X. Li

et al. 05; Liu and Takeuchi 07; Chu and Nieto 08; Saker and Alzabut 09; Meng and

Yan 15; Zhang and Feng 15, Dai and Bao 16, etc....)

... but

• There are only few results for periodic systems of DDEs, almost all for the
situation without impulses.

Here:

Generalization of results obtained for scalar IDDE in Faria & Oliveira, JDDE
(2019), Buedo-Fernandez & Faria, MMAS (2020)
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• Periodic (nonimpulsive) systems of DDEs:

⋆ periodic n-dim LV models:
Li, JMAA (2000)
Tang & Zou, PAMS 2006
Benhadri, Caraballo & Zeghdoudi, Opuscula Math. 2020

⋆ periodic n-dim DDEs x′(t) = f(t, x(t), x(t− τ )) (f ≥ 0)
Amster & Bondorevsky, AMC (2021)

⋆ periodic n-dim Nicholson systems:
Ding & Fu, J Exp Theor Artificial Intel (2020)
TF, JDE (2017)
Huang, Wang & Huang, EJDE (2020)
Troib, FDE (2014)
Wang, Liu & Chen, MMAS (2019)

• Periodic impulsive systems of DDEs:

Liu & Gong, Abstr. Appl. Anal. (2013), on neural networks
Zhang, Huang & Wei, Adv. Diff. Equ.(2015), on a 2-dim impulsive Nicholson system



Impulsive Delay Differential Equations (IDDE)
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finite delay τ > 0: I = [−τ, 0]

• PC := PC([−τ, 0],Rn), space of functions ϕ : [−τ, 0] → R
n which are

piecewise continuous (i.e., finite number of jump discontinuities) and left
continuous,

• Phase space: Banach space of normalized (from the left) regulated functions

R(I;Rn) := PC in the space of bounded fcs B(I;Rn) with

‖ϕ‖ = sup
−τ≤θ≤0

|ϕ(θ)|
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finite delay τ > 0: I = [−τ, 0]

• PC := PC([−τ, 0],Rn), space of functions ϕ : [−τ, 0] → R
n which are

piecewise continuous (i.e., finite number of jump discontinuities) and left
continuous,

• Phase space: Banach space of normalized (from the left) regulated functions

R(I;Rn) := PC in the space of bounded fcs B(I;Rn) with

‖ϕ‖ = sup
−τ≤θ≤0

|ϕ(θ)|

• IC at t = 0: x(s) = φ(s), s ∈ [−τ, 0],
i.e.,

x0 := x|[−τ,0]
= φ ∈ PC



Abstract setting:
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· ω > 0 is the period
· (tk)k∈Z is an “ω-periodic sequence” of given points where the impulses
occur, 0 ≤ t1 < · · · < tp < ω, tk+np = tk + nω,∀n ∈ Z, k = 1, . . . , p



Abstract setting:

8

· ω > 0 is the period
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• Define the Banach space

X := X(Rn) ={x : R → R
n | x is ω−periodic, continuous for all t 6= tk,

there exist x(t−k ), x(t
+
k ) and x(t

−
k ) = x(tk), for k ∈ Z}

and X̃ :={xt : x ∈ X, t ∈ R}

(2)

• our models are from math biology X+ := {x ∈ X : x(t) ≥ 0, t ∈ [0, ω]}
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· ω > 0 is the period
· (tk)k∈Z is an “ω-periodic sequence” of given points where the impulses
occur, 0 ≤ t1 < · · · < tp < ω, tk+np = tk + nω,∀n ∈ Z, k = 1, . . . , p

• Define the Banach space

X := X(Rn) ={x : R → R
n | x is ω−periodic, continuous for all t 6= tk,

there exist x(t−k ), x(t
+
k ) and x(t

−
k ) = x(tk), for k ∈ Z}

and X̃ :={xt : x ∈ X, t ∈ R}

(2)

• our models are from math biology X+ := {x ∈ X : x(t) ≥ 0, t ∈ [0, ω]}

• X is endowed with the norm ‖ · ‖∞, simply denoted by ‖ · ‖, and with the
partial order ≤ induced by the cone X+: y1 ≤ y2 if y2 − y1 ∈ X+
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• x ∈ X =⇒ xt ∈ PC, i.e., X̃ := {xt : x ∈ X, t ∈ R} ⊂ PC

• an isometry:

X ∋ x 7→ x0 = x|[−τ,0]
∈ PC ⊂ R([−τ, 0];Rn)

(w.l.g. for τ ≥ ω), so X can be interpreted as a complete subspace of the
phase space R([−τ, 0];Rn).
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• x ∈ X =⇒ xt ∈ PC, i.e., X̃ := {xt : x ∈ X, t ∈ R} ⊂ PC

• an isometry:

X ∋ x 7→ x0 = x|[−τ,0]
∈ PC ⊂ R([−τ, 0];Rn)

(w.l.g. for τ ≥ ω), so X can be interpreted as a complete subspace of the
phase space R([−τ, 0];Rn).

THUS:

• From now on, for the purpose of finding periodic solutions of an IDDE, we
“forget” the phase space R([−τ, 0];Rn) and work on

X with ‖ · ‖ = ‖ · ‖∞



A remark on infinite memory

10

HERE: To simplify the exposition, we only consider systems with finite delay.

The consideration of models with infinite delay goes back to Volterra’s population
models (1920’s, 1930’s) (where typically the “memory functions” appear as integral
kernels) e.g. in predator-prey models:

ẋ(t) = x(t)[a− bx(t)− cy(t)−

∫ ∞

0

k1(s)x(t− s)ds−

∫ ∞

0

k2(s)y(t− s)ds]

ẏ(t) = y(t)[−d+ px(t)− qy(t) +

∫ ∞

0

k3(s)x(t− s)ds−

∫ ∞

0

k4(s)y(t− s)ds]

a, b, c, d, p, q > 0, ki(s) ≥ 0 continuous, ki ∈ L1[0,∞)

(the delay effects diminish gradually when going back in time)
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HERE: To simplify the exposition, we only consider systems with finite delay.

The consideration of models with infinite delay goes back to Volterra’s population
models (1920’s, 1930’s) (where typically the “memory functions” appear as integral
kernels) e.g. in predator-prey models:

ẋ(t) = x(t)[a− bx(t)− cy(t)−

∫ ∞

0

k1(s)x(t− s)ds−

∫ ∞

0

k2(s)y(t− s)ds]

ẏ(t) = y(t)[−d+ px(t)− qy(t) +

∫ ∞

0

k3(s)x(t− s)ds−

∫ ∞

0

k4(s)y(t− s)ds]

a, b, c, d, p, q > 0, ki(s) ≥ 0 continuous, ki ∈ L1[0,∞)

(the delay effects diminish gradually when going back in time)

IC at t = 0: (x(s), y(s)) = φ(s), s ≤ 0, i.e., (x, y)|(−∞,0] = φ ∈ B ⊂ C((−∞, 0];R2)

The treatment of infinite delay requires a careful choice of an admissible phase space,
which must satisfy some axiomatic (Hale & Kato, Funkcial. Ekvac.’78)
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impulses, infinite delay: I = (−∞, 0]:

• PC(I;Rn): the space of functions ϕ : (−∞, 0] → R
n whose restrictions

ϕ|[−τ,0]
to any interval [−τ, 0] are piecewise continuous and left continuous

However: PC(I;Rn) is not a good space; moreover, PC(I;Rn) 6⊂ B(I;Rn),
for B(I;Rn) the space of bounded fcs.

• With the identification x ≡ x0 = x|(−∞,0]
, the space X of ω-periodic

functions with jump discontinuities at (tk) is also seen as a (closed) subspace
of an appropriate phase space B ⊂ PC,

X ⊂ B, ‖x‖∞ ∼ ‖xt‖B ∀x ∈ X
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impulses, infinite delay: I = (−∞, 0]:

• PC(I;Rn): the space of functions ϕ : (−∞, 0] → R
n whose restrictions

ϕ|[−τ,0]
to any interval [−τ, 0] are piecewise continuous and left continuous

However: PC(I;Rn) is not a good space; moreover, PC(I;Rn) 6⊂ B(I;Rn),
for B(I;Rn) the space of bounded fcs.

• With the identification x ≡ x0 = x|(−∞,0]
, the space X of ω-periodic

functions with jump discontinuities at (tk) is also seen as a (closed) subspace
of an appropriate phase space B ⊂ PC,

X ⊂ B, ‖x‖∞ ∼ ‖xt‖B ∀x ∈ X

—–

HERE: To simplify the exposition, we only consider systems with finite delay.

(See e.g. Buedo-Fernandez & Faria, MMAS 2020, for scalar IDDE with ∞ delay...)
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





x′i(t) = −di(t)xi(t) +

n∑

j=1,j 6=i

aij(t)xj(t) + gi(t, xit) for t 6= tk,

∆(xi(tk)) := xi(t
+
k )− xi(tk) = Iik(xi(tk)), k ∈ Z, i = 1, . . . , n

(1)

(H1) Iik : R+ → R are continuous and ∃ p ∈ N such that 0 ≤ t1 < · · · < tp < ω (for
some ω > 0) and

tk+p = tk + ω, Ii,k+p = Iik, k ∈ Z, i = 1, . . . , n

bbb bb

0 t1 ωt2
. . . tp

bb b bb

tp+1 2ωtp+2
. . . t2p

b

3ω. . .

(H2) There exist αik > −1 and ηik such that

αiku ≤ Iik(u) ≤ ηiku, u ≥ 0, k ∈ {1, . . . , p}

and, if n > 1 there exist lim
u→0+

u

u+ Iik(u)
, i = 1, . . . , n, k = 1, . . . , p;

(H3)
∏p

k=1(1 + ηik) < e
∫

ω

0
di(t) dt, i = 1, . . . , n
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(H4) (i) the functions di, aij gi : R× X̃(R) → R
+ are continuous, ω-periodic in

t ∈ R (∀i, j), with
∫ ω

0
di(s) ds > 0,

g(t, xt) := (g1(t, x1t), . . . , gn(t, xnt))

is bounded on bounded sets of R× X̃;

(ii) if n > 1 either
∫ ω

0
aij(s) ds > 0 for all i 6= j or

∫ ω

0
gi(s, 0) ds > 0, for each

i = 1, . . . , n.

(H5) The function
G(t, x) := g(t, xt) for t ∈ R, x ∈ X+

is uniformly equicontinuous for t ∈ [0, ω] on bounded sets of X+, i.e.,

∀A ⊂ X+ bounded and ∀ε > 0, ∃δ > 0:

maxt∈[0,ω] ‖G(t, x)−G(t, y)‖ < ε for all x, y ∈ A with ‖x− y‖ < δ.



Remarks about the hypotheses
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⋆ Conditions (H1) and (H4)(i) give the ω-periodicity of system (1).

⋆ The situation without impulses is included in our setting: Iik ≡ 0 for all k

⋆ Here, the impulses are allowed to be negative or to change signs!

⋆ (H2) guarantees that, at the impulsive points tk, solutions of (1) with
x(t−k ) = x(tk) > 0 must satisfy

xi(t
+
k ) = xi(tk) + Iik(xi(tk)) ≥ (1 + αik)xi(tk) > 0, k ∈ N.
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⋆ Conditions (H1) and (H4)(i) give the ω-periodicity of system (1).

⋆ The situation without impulses is included in our setting: Iik ≡ 0 for all k

⋆ Here, the impulses are allowed to be negative or to change signs!

⋆ (H2) guarantees that, at the impulsive points tk, solutions of (1) with
x(t−k ) = x(tk) > 0 must satisfy

xi(t
+
k ) = xi(tk) + Iik(xi(tk)) ≥ (1 + αik)xi(tk) > 0, k ∈ N.

⋆ Assumptions (H2) and (H3) are significantly weaker than the ones usually
considered in the literature for the scalar case (n = 1), where:

· the impulses are nonnegative & additional restrictions on Ik(u)
u

close to 0 and ∞ or
· the impulses are linear Ik(u) = αku , with

∏p

k=1(1 + αk) = 1

[Simple example: If αk ≡ α ∀k, the latter condition is satisfied only if α = 0 (no

impulses!), whereas our setting only requires −1 < α < e
1
p

∫

ω

0
a(t) dt − 1.]



Remarks about the hypotheses (cont.)
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⋆ For n > 1 : for aij , gi(·, 0) ∈ C+
ω (R), we have imposed

(H4)(ii): aij 6≡ 0 ∀j 6= i, or gi(·, 0) 6≡ 0

(note that aij 6≡ 0 iff
∫ ω

0
aij(s) ds > 0 (j 6= i) and gi(·, 0) 6≡ 0 iff

∫ ω

0
gi(s, 0) ds > 0)

The role of (H4)(ii) is to preclude the existence of periodic solutions with one
component positive but with others that may vanish.
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⋆ For n > 1 : for aij , gi(·, 0) ∈ C+
ω (R), we have imposed

(H4)(ii): aij 6≡ 0 ∀j 6= i, or gi(·, 0) 6≡ 0

(note that aij 6≡ 0 iff
∫ ω

0
aij(s) ds > 0 (j 6= i) and gi(·, 0) 6≡ 0 iff

∫ ω

0
gi(s, 0) ds > 0)

The role of (H4)(ii) is to preclude the existence of periodic solutions with one
component positive but with others that may vanish.

⋆ The role of (H5) is to guarantee that the operator Φ defined below is compact.



Some auxiliary functions:
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• X and X+, with ‖ · ‖ = ‖ · ‖∞

Define (i = 1, . . . , n, k ∈ Z):

Di(t) =

∫ t

0

di(s) ds, Jik(u) =







u

u+ Iik(u)
, u > 0,

lim
u→0+

u

u+ Iik(u)
, u = 0,

Bi(t;xi) =
∏

k:tk∈[0,t)

Jik(xi(tk)) and

B̃i(s, t;xi) =
Bi(s;xi)

Bi(t;xi)
=

∏

k:tk∈[t,s)

Jik(xi(tk)) for 0 ≤ t ≤ s ≤ t+ ω, x ∈ X+;

for t = ω : Di(ω) =

∫ ω

0

di(s) ds,

Γi(xi) =
(

Bi(ω;xi)e
Di(ω) − 1

)−1

for i = 1, . . . , n, x ∈ X+.

Recall: (H3)

p
∏

k=1

(1 + ηik) < e

∫ω
0 di(t) dt

⇒ Bi(ω;xi)e
Di(ω) > 1, ∀x ∈ X+, so Γi are well-defined.



Properties of these auxiliary functions:
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Assume (H1)–(H4). For i = 1, . . . , n, k ∈ Z, x = (x1, . . . , xn) ∈ X+:

• Jik are continuous and bounded: Jik(u) =
1

1+
Iik(u)

u

with Ik(u)
u

∈ [αik, ηik] =⇒

(1 + ηik)
−1 ≤ Jik(u) ≤ (1 + αik)

−1, u ≥ 0

• Γi : X
+(R) → (0,∞) are continuous and bounded: 0 < Γi ≤ Γi(xi) ≤ Γi

where Γi :=
(

∏p
k=1

(1 + αik)−1eDi(ω) − 1
)−1

,Γi :=
(

∏p
k=1

(1 + ηik)−1eDi(ω) − 1
)−1

• B̃i(s, t;xi) are bounded:1 0 < Bi ≤ B̃i(s, t;xi) ≤ Bi

• B̃i(s+ ω, t+ ω;xi) = B̃i(s, t;xi) for t ≤ s ≤ t+ ω and ϕ ∈ X+(R)

1Recall that there is a finite number of impulses on each interval of length ≤ ω.
NOTE THAT, with linear impulses Iik(u) = ηiku,

Jik ≡ (1 + ηik)
−1 (constants) and Bi(t;x) ≡ Bi(t) =

∏
k:tk∈[0,t)(1 + ηik)

−1.



Construction of an operator on a new cone:
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• a new cone
K = K(σ) := {x ∈ X+ : xi(t) ≥ σi‖xi‖, t ∈ [0, ω], i = 1, . . . , n}, with
σ ∈ (0, 1)n

• an operator Φ = (Φ1, . . . ,Φn) : X
+ → X+,

(Φix)(t) = Γi(xi)

∫ t+ω

t

B̃i(s, t;xi)e
∫ s

t
di(r) dr

(
∑

j 6=i

aij(s)xj(s) + gi(s, xis)

)

ds

for x = (x1, . . . , xn) ∈ X+, t ≥ 0
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• a new cone
K = K(σ) := {x ∈ X+ : xi(t) ≥ σi‖xi‖, t ∈ [0, ω], i = 1, . . . , n}, with
σ ∈ (0, 1)n

• an operator Φ = (Φ1, . . . ,Φn) : X
+ → X+,

(Φix)(t) = Γi(xi)

∫ t+ω

t

B̃i(s, t;xi)e
∫ s

t
di(r) dr

(
∑

j 6=i

aij(s)xj(s) + gi(s, xis)

)

ds

for x = (x1, . . . , xn) ∈ X+, t ≥ 0

LEMMA 1. Assume (H1)–(H4), take σ = (σ1, . . . , σn) with

0 < σi ≤ BiBi
−1
e−Di(ω) for i = 1, . . . , n, and K = K(σ). THEN:

(i) Φ(K) ⊂ K.
(ii) If x ∈ K \ {0}, x is a fixed point of Φ iff x is a positive ω-periodic
solution of (1).
(iii) If in addition (H5) holds, Φ is completely continuous on K \ {0}



Remark:

19

• If x(t) = (x1(t), . . . , xn(t)) is a solution of (1), the function
y(t) = (y1(t), . . . , yn(t)), where yi(t) = Bi(t;xi)xi(t), i = 1, . . . , n, is continuous,
because

Jik(xi(tk)) =
xi(tk)

xi(t
+
k )

• Rather than using sums of the impulses, the key idea is to account for the
impulses in a multiplicative mode by means of the products of the functions Jik(u):

in this way, Bi(t;xi) =
∏

k:tk∈[0,t) Jik(xi(tk)) are used to “glue” the pieces of the
solution’s graph at impulse times tk, so that it becomes continuous.
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• If x(t) = (x1(t), . . . , xn(t)) is a solution of (1), the function
y(t) = (y1(t), . . . , yn(t)), where yi(t) = Bi(t;xi)xi(t), i = 1, . . . , n, is continuous,
because

Jik(xi(tk)) =
xi(tk)

xi(t
+
k )

• Rather than using sums of the impulses, the key idea is to account for the
impulses in a multiplicative mode by means of the products of the functions Jik(u):

in this way, Bi(t;xi) =
∏

k:tk∈[0,t) Jik(xi(tk)) are used to “glue” the pieces of the
solution’s graph at impulse times tk, so that it becomes continuous.

• Instead of Φ, the following operator has been considered for scalar IDDEs:

(Ψy)(t) = (eD(ω)−1)−1

[ ∫ t+ω

t

g(s, ys)e
∫

s

t
d(u) du ds+

∑

k:tk∈[t,t+ω)

Ik(y(tk))e
∫ tk
t d(u) du

]

(the impulses multiplied by the Green function G(t, s) = e
∫ s
t d(u) du

eD(ω)−1
are summed up to

time t).



Krasnoselskii Theorem:
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Let X be a Banach space, K a cone in Xr,R ∈ R
+ with r 6= R and

Ar0,R0
:= {x ∈ K : r0 ≤ ‖x‖ ≤ R0}, where r0 = min{r, R}, R0 = max{r, R}.

Let T : Ar0,R0
−→ K be a completely continuous operator such that

(i) Tx 6= λx for all x ∈ K with ‖x‖ = R and λ > 1;
(ii) There exists ψ ∈ K \ {0} such that x 6= Tx+ λψ for all x ∈ K with ‖x‖ = r

and all λ > 0.

Then T has a fixed point x ∈ Ar0,R0
which moreover satisfies r0 < ‖x‖ < R0.
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Let X be a Banach space, K a cone in Xr,R ∈ R
+ with r 6= R and

Ar0,R0
:= {x ∈ K : r0 ≤ ‖x‖ ≤ R0}, where r0 = min{r, R}, R0 = max{r, R}.

Let T : Ar0,R0
−→ K be a completely continuous operator such that

(i) Tx 6= λx for all x ∈ K with ‖x‖ = R and λ > 1;
(ii) There exists ψ ∈ K \ {0} such that x 6= Tx+ λψ for all x ∈ K with ‖x‖ = r

and all λ > 0.

Then T has a fixed point x ∈ Ar0,R0
which moreover satisfies r0 < ‖x‖ < R0.

Next: Under some additional conditions,

one shows that ∃ 0 < r < R such that Φ satisfies (i),(ii) 2

=⇒ there is an ω-periodic solution x∗ > 0 in a conical sector Ar0,R0 of K

2Combination of both the compressive (r > R) and expansive (r < R) forms can lead to
the existence of more than one positive period solution to (1).



3. Main results
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(H6) There are constants r0, R0 with 0 < r0 < R0 and functions b1i, b2i ∈ C+
ω (R)

with
∫ ω

0
bqi(t) dt > 0 (q = 1, 2), such that for i = 1, . . . , n, x ∈ K and t ∈ [0, ω]

it holds:

gi(t, xit) ≥ b1i(t)u if 0 < u ≤ xi ≤ r0,

gi(t, xit) ≤ b2i(t)u if R0 ≤ xi ≤ u.
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(H6) There are constants r0, R0 with 0 < r0 < R0 and functions b1i, b2i ∈ C+
ω (R)

with
∫ ω

0
bqi(t) dt > 0 (q = 1, 2), such that for i = 1, . . . , n, x ∈ K and t ∈ [0, ω]

it holds:

gi(t, xit) ≥ b1i(t)u if 0 < u ≤ xi ≤ r0,

gi(t, xit) ≤ b2i(t)u if R0 ≤ xi ≤ u.

Theorem 1. Assume (H1)–(H6) and that, for b1i, b2i as in (H6),

c0i := ΓiBi min
t∈[0,ω]

∫ t+ω

t

e
∫ s

t
di(r) dr

(∑

j 6=i

aij(s) + b1i(s)
)

ds ≥ 1,

C∞
i := ΓiBi max

t∈[0,ω]

∫ t+ω

t

e
∫ s
t
di(r) dr

(∑

j 6=i

aij(s) + b2i(s)
)

ds ≤ 1, i = 1, . . . , n.

THEN there exists (at least) one positive ω-periodic solution x∗(t) of (1)

(Moreover, x∗(t) ∈ K, for σi = BiBi
−1
e−Di(ω) (1 ≤ i ≤ n) as in LEMMA 1.)



Proof:
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(i) Φx 6= λx for all x ∈ K with ‖x‖ = R and λ > 1:
⋆ Fix r0, R0 as in (H6), let R ≥ R0(min1≤i≤n σi)

−1 and x ∈ K with ‖x‖ = R.
Choose i such that ‖x‖ = ‖xi‖ = R.
⋆ xi(t) ≤ R and xi(t) ≥ σi‖xi‖ = σiR ≥ R0 for t ∈ [0, ω], thus, from the 2nd
inequality in (H6),

gi(t, xit) ≤ b2i(t)R.

Using the properties in Lemma 1 and C∞
i ≤ 1, we have

‖Φix‖ ≤ RΓiBi max
t∈[0,ω]

∫ t+ω

t

e
∫

s

t
di(r) dr

[∑

j 6=i

aij(s) + b2i(s))
]

ds = RC∞
i ≤ R.

In particular, we conclude that Φx 6= λx for all λ > 1 and x ∈ K with ‖x‖ = R.
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(i) Φx 6= λx for all x ∈ K with ‖x‖ = R and λ > 1:
⋆ Fix r0, R0 as in (H6), let R ≥ R0(min1≤i≤n σi)

−1 and x ∈ K with ‖x‖ = R.
Choose i such that ‖x‖ = ‖xi‖ = R.
⋆ xi(t) ≤ R and xi(t) ≥ σi‖xi‖ = σiR ≥ R0 for t ∈ [0, ω], thus, from the 2nd
inequality in (H6),

gi(t, xit) ≤ b2i(t)R.

Using the properties in Lemma 1 and C∞
i ≤ 1, we have

‖Φix‖ ≤ RΓiBi max
t∈[0,ω]

∫ t+ω

t

e
∫

s

t
di(r) dr

[∑

j 6=i

aij(s) + b2i(s))
]

ds = RC∞
i ≤ R.

In particular, we conclude that Φx 6= λx for all λ > 1 and x ∈ K with ‖x‖ = R.

(ii) ∃ψ ∈ K \ {0} such that x 6= Φx+ λψ for all x ∈ K with ‖x‖ = r and all λ > 0:
⋆ Take r ≤ min1≤i≤n σir0, ψ ≡ 1 := (1, . . . , 1) and consider any λ > 0. For x ∈ K
with ‖x‖ = r, we claim that x 6= Φx+ λψ.

⋆ Suppose otherwise that there are λ > 0, x ∈ K with ‖x‖ = r and x = Φx+ λ1.
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⋆ Let µ := mint∈[0,ω] min1≤i≤n xi(t). We have 0 < λ ≤ µ ≤ xi(t) ≤ r ≤ r0, thus
the 1st inequality in (H6) implies

gi(t, xit) ≥ b1i(t)µ,

which, together with the constraint c0i ≥ 1, yields

(Φix)(t) ≥ µΓiBi min
t∈[0,ω]

∫ t+ω

t

e
∫

s

t
di(r) dr

[∑

j 6=i

aij(s) + b1i(s)
]

ds = µc0i ≥ µ.

⋆ Next, choose t∗ ∈ [0, ω] and i∗ ∈ {1, . . . , n} such that xi∗(t
∗) < µ+ λ.

From x = Φx+ λ1 ,

µ > xi∗(t
∗)− λ = (Φi∗x)(t

∗) ≥ µ,

a contradiction.
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⋆ Let µ := mint∈[0,ω] min1≤i≤n xi(t). We have 0 < λ ≤ µ ≤ xi(t) ≤ r ≤ r0, thus
the 1st inequality in (H6) implies

gi(t, xit) ≥ b1i(t)µ,

which, together with the constraint c0i ≥ 1, yields

(Φix)(t) ≥ µΓiBi min
t∈[0,ω]

∫ t+ω

t

e
∫

s

t
di(r) dr

[∑

j 6=i

aij(s) + b1i(s)
]

ds = µc0i ≥ µ.

⋆ Next, choose t∗ ∈ [0, ω] and i∗ ∈ {1, . . . , n} such that xi∗(t
∗) < µ+ λ.

From x = Φx+ λ1 ,

µ > xi∗(t
∗)− λ = (Φi∗x)(t

∗) ≥ µ,

a contradiction.

(i),(ii) are proven, thus Krasnoselskii Theorem gives the existence of a fixed point x∗

for Φ in Kr,R = {x ∈ K : r ≤ ‖x‖ ≤ R}, i.e., a positive ω-periodic solution of (1).



“sublinear case”: a refinement
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Theorem 1+. Assume (H1)–(H6) and that there is v = (v1, . . . , vn) > 0 such
that, for b1i, b2i as in (H6),

c0i (v) :=ΓiBi min
t∈[0,ω]

∫ t+ω

t

e
∫ s

t
di(r) dr

(∑

j 6=i

v−1
i vjaij(s) + b1i(s)

)

ds ≥ 1,

C∞
i (v) :=ΓiBi max

t∈[0,ω]

∫ t+ω

t

e
∫ s

t
di(r) dr

(∑

j 6=i

v−1
i vjaij(s) + b2i(s)

)

ds ≤ 1,

i = 1, . . . , n.

THEN there exists (at least) one positive ω-periodic solution x∗(t) of (1).



“superlinear case”:
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Theorem 2. Assume (H1)–(H5) and

(H6*) There are constants r0, R0 with 0 < r0 < R0 and functions
b1i, b2i ∈ C+

ω (R) with
∫ ω

0 bqi(t) dt > 0 (q = 1, 2), such that for
i = 1, . . . , n, x ∈ K and t ∈ [0, ω] it holds:

gi(t, xit) ≤ b1i(t)u if 0 < xi ≤ u ≤ r0,

gi(t, xit) ≥ b2i(t)u if xi ≥ u ≥ R0.

If there is a vector v = (v1, . . . , vn) > 0 such that for i = 1, . . . , n

C0
i (v) := ΓiBi max

t∈[0,ω]

∫ t+ω

t

e
∫ s

t
di(r) dr

(∑

j 6=i

v−1
i vjaij(s) + b1i(s)

)

ds ≤ 1,

c∞i (v) := ΓiBi min
t∈[0,ω]

∫ t+ω

t

e
∫ s

t
di(r) dr

(∑

j 6=i

v−1
i vjaij(s) + b2i(s)

)

ds ≥ 1.

THEN there exists (at least) one positive ω-periodic solution x∗(t) of (1).



Further criteria:
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• For (1), define the n× n matrices of functions in C+
ω (R) given by

D(t) = diag (d1(t), . . . , dn(t)), A(t) =
[
aij(t)

]
, (3)

(with aii(t) := 0∀i)

• Assume (H1)–(H6).

• For b1i(t), b2i(t) as in (H6), define

B1(t) = diag (b11(t), . . . , b1n(t)), B2(t) = diag (b21(t), . . . , b2n(t))



A pointwise comparison criterion:
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Corollary 1. Existence of a positive ω-periodic solution of (1) IF

• ∃ v > 0:

M2

[

B2(t) +A(t)
]

v ≤ D(t)v ≤M1

[

B1(t) +A(t)
]

v, t ∈ [0, ω] (H7)

i.e., m2i

(∑

j 6=i

vjaij(t)+vib2i(t)
)

≤ vidi(t) ≤ m1i

(∑

j 6=i

vjaij(t)+vib1i(t)
)

, ∀i, t ∈ [0, ω]

where M1 = diag(m11, . . . ,m1n), M2 = diag(m21, . . . ,m2n),

m1i := ΓiBi(e
Di(ω) − 1), m2i := ΓiBi(e

Di(ω) − 1), i = 1, . . . , n;
(4)

Proof. From (H7),

∑

j 6=i

vjaij(s) + vib1i(s) ≥ m
−1
1i vidi(s),

∑

j 6=i

vjaij(s) + vib2i(s) ≤ m
−1
2i vidi(s) =⇒

c
0
i (v) ≥ m

−1
1i Γi Bi min

t∈[0,ω]

∫

t+ω

t

e

∫ s
t di(r) dr

di(s) ds = m
−1
1i Γi Bi(e

Di(ω)
− 1) = 1,

C
∞
i (v) ≤ m

−1
2i Γi Bi max

t∈[0,ω]

∫

t+ω

t

e

∫ s
t di(r) dr

di(s) ds = m
−1
2i Γi Bi(e

Di(ω)
− 1) = 1.



An average comparison criterion:
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Corollary 2. Existence of a positive ω-periodic solution of (1) IF

• ∃ v > 0:
∫ ω

0
N2

[

B2(t) +A(t)
]

v dt ≤ v ≤

∫ ω

0
N1

[

B1(t) +A(t)
]

v dt, (H8)

i.e., n2i

∫ ω

0

(∑

j 6=i

vjaij(s) + vib1i(s)
)

ds ≤ vi ≤ n1i

∫ ω

0

(∑

j 6=i

vjaij(s) + vib2i(s)
)

ds ∀i

for

N1 = diag(n11, . . . , n1n), N2 = (n21, . . . , n2n),

n1i := ΓiBi, n2i := ΓiBie
Di(ω), i = 1, . . . , n.

(5)

(Proof. Trivial)

Recall:

Γi :=
(
∏p

k=1(1 + αik)
−1eDi(ω) − 1

)−1

,Γi :=
(
∏p

k=1(1 + ηik)
−1eDi(ω) − 1

)−1



DDEs without impulses
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x′i(t) = −di(t)xi(t) +
∑

j 6=i

aij(t)xj(t) + gi(t, xit), i = 1, . . . , n, (6)

⋆ Γi(u) ≡
(
eDi(ω) − 1

)−1
and Bi(t, u) ≡ 1

⋆ M1 =M2 = I and

N1 = diag
(
eD1(ω)−1, . . . , eDn(ω)−1

)−1
, N2 = diag

(
1−e−D1(ω), . . . , 1−e−Dn(ω)

)−1



DDEs without impulses
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x′i(t) = −di(t)xi(t) +
∑

j 6=i

aij(t)xj(t) + gi(t, xit), i = 1, . . . , n, (6)

⋆ Γi(u) ≡
(
eDi(ω) − 1

)−1
and Bi(t, u) ≡ 1

⋆ M1 =M2 = I and

N1 = diag
(
eD1(ω)−1, . . . , eDn(ω)−1

)−1
, N2 = diag

(
1−e−D1(ω), . . . , 1−e−Dn(ω)

)−1

Corollaries 1’&2’. Assume (H4)–(H6). For the matrices in
D(t), A(t), B1(t), B2(t) as above, suppose that for some v > 0:

(a) either B2(t)v ≤
[
D(t)−A(t)

]
v ≤ B1(t)v for t ∈ [0, ω];

(b) or







∫ ω

0

[

B2(t) +A(t)
]

v dt ≤ diag
(
1− e−D1(ω), . . . , 1− e−Dn(ω)

)
v

∫ ω

0

[

B1(t) +A(t)
]

v dt ≥ diag
(
eD1(ω) − 1, . . . , eDn(ω) − 1

)
v.

Then, there exists a positive ω-periodic solution of (6).



4. Applications
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Example 1. A periodic Nicholson system with distributed delays:

x′i(t) = −di(t)xi(t) +
∑

j 6=i

aij(t)xj(t)

+
m∑

l=1

βil(t)

∫ t

t−τil(t)

γil(s)xi(s)e
−cil(s)xi(s) ds

︸ ︷︷ ︸

gi(t,xit)

, i = 1, . . . , n,
(N)
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Example 1. A periodic Nicholson system with distributed delays:

x′i(t) = −di(t)xi(t) +
∑

j 6=i

aij(t)xj(t)

+
m∑

l=1

βil(t)

∫ t

t−τil(t)

γil(s)xi(s)e
−cil(s)xi(s) ds

︸ ︷︷ ︸

gi(t,xit)

, i = 1, . . . , n,
(N)

Biological interpretation:

One or multiple species, n classes or patches, with migration of the populations
among classes

xi(t) - density of the species on class i
aij(t) (j 6= i) - migration coefficient from class j to class i (w.l.g. aii ≡ 0)
di(t) - coefficient of instantaneous loss for class i: death rate on class i plus the
emigration rates of the population that leaves class i:
di(t) = mi(t) +

∑

j 6=i aji(t), (mi > 0)

birth function on class i (Nicholson-type):
∑m

k=1 βik(t)
∫ t

t−τil(t)
γil(s)hik(xi(s)) ds
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hik(u) = xe−cik(t)u

Ricker nonlinearities h(u) = ue−cu (c > 0):

h(u) = ue−cu

h(0) = 0, h′(0) = 1, h(u)/u→ 0 as t→ ∞
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hik(u) = xe−cik(t)u

Ricker nonlinearities h(u) = ue−cu (c > 0):

h(u) = ue−cu

h(0) = 0, h′(0) = 1, h(u)/u→ 0 as t→ ∞

• The nonlinearities are bounded =⇒ B2(t) can be taken arbitrarily small

• With

bi(t) :=
m∑

l=1

βil(t)

∫ t

t−τil(t)

γil(s) ds, t ≥ 0, i = 1, . . . , n

and B(t) = diag (b1(t), . . . , bn(t)), (H6) holds with

B1(t) = (1− ε)B(t), B2(t) = εI (∀ε > 0)
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Proposition 1. 3

IF (with v = (1, . . . ,1)):

(i) either
∑

j 6=i

aij(t) ≤6≡ di(t) ≤6≡

∑

j 6=i

aij(t) + bi(t), ∀t ∈ [0, ω]

(ii) or eDi(ω)

∫ ω

0

∑

j 6=i

aij(t) dt ≤ (eDi(ω) − 1) ≤

∫ ω

0
(
∑

j 6=i

aij(t) + bi(t)) dt

THEN system (N) has a positive ω-periodic solution.

3with no impulses: m1i = m2i = 1, n1i = (eDi(ω)
− 1)−1, n2i = eDi(ω)(eDi(ω)

− 1)−1



Impulsive version of (N):

33







x′i(t) = −di(t)xi(t) +
∑

j 6=i

aij(t)xj(t)

+

m∑

l=1

βil(t)

∫ t

t−τil(t)

γil(s)xi(s)e
−cil(s)xi(s) ds, t 6= tk,

xi(t
+
k )− xi(tk) = Iik(xi(tk)), k ∈ Z, i = 1, . . . , n.

(IN)

where 0 ≤ t1 < t2 < · · · < tp < ω, tk+p = tk + ω, ∀k (p impulses on [0, ω]).

Take e.g. Iik(u) = I(u) := sinu, u ≥ 0, ∀k.
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





x′i(t) = −di(t)xi(t) +
∑

j 6=i

aij(t)xj(t)

+

m∑

l=1

βil(t)

∫ t

t−τil(t)

γil(s)xi(s)e
−cil(s)xi(s) ds, t 6= tk,

xi(t
+
k )− xi(tk) = Iik(xi(tk)), k ∈ Z, i = 1, . . . , n.

(IN)

where 0 ≤ t1 < t2 < · · · < tp < ω, tk+p = tk + ω, ∀k (p impulses on [0, ω]).

Take e.g. Iik(u) = I(u) := sinu, u ≥ 0, ∀k.

Then:
⋆ − 1

π
≤ Iik(u)

u
≤ 1, u > 0, thus (H2) holds with αik = − 1

π
, ηik = 1

⋆ (H3) is satisfied if 2p < e
∫

ω

0
di(t) dt ∀i

With the above notations: Jik(u) = (1 + sinu
u

)−1, ∃Jik(0) = lim
u→0+

J(u) =
1

2
, Bi =

1, Bi = 2−p,Γi = ((eDi(ω)2−p − 1)−1,Γi = (eDi(ω) − 1)−1

Plugging these constants to evaluate Mq(t), Nq(t) (q = 1, 2) in (4), (5), from Cor

1 & 2 (with v = ~1):
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Proposition 2. IF
(a) either

eDi(ω) − 1

2−peDi(ω) − 1

∑

j 6=i

aij(t) ≤6≡ di(t) ≤6≡ 2−p
(∑

j 6=i

aij(t) + bi(t)
)

, ∀t ∈ [0, ω], ∀i

(b) or

(eDi(ω) − 1)2

2−peDi(ω) − 1

∫ ω

0

∑

j 6=i

aij(t)dt ≤ (eDi(ω) − 1) ≤

∫ ω

0

(∑

j 6=i

aij(t) + bi(t)
)

dt, ∀i

THEN (IN) admits at least one positive ω-periodic solution.



Example 2. A simple autonomous planar Nicholson system
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{

x′1(t) = −d1x1(t) + a1x2(t) + β1x1(t− τ1)e
−c1x1(t−τ1)

x′2(t) = −d2x2(t) + a2x1(t) + β2x2(t− τ2)e
−c2x2(t−τ2)

(di, ai, βi, ci, τi > 0)



Example 2. A simple autonomous planar Nicholson system

35

{

x′1(t) = −d1x1(t) + a1x2(t) + β1x1(t− τ1)e
−c1x1(t−τ1)

x′2(t) = −d2x2(t) + a2x1(t) + β2x2(t− τ2)e
−c2x2(t−τ2)

(di, ai, βi, ci, τi > 0)

• community matrix: M =

[
β1 − d1 a1
a2 β2 − d2

]

.

• s(M) ≤ 0 ⇐⇒ 0 is GAS (globally asymptotically stable) (in the set of all
non-negative solutions), where s(M) = max{Reλ : λ ∈ σ(M)}.

(e.g. with di = 2, ai = βi = 1, i = 1, 2, σ(M) = {0,−2} =⇒ 0 is GAS)



Example 2. A simple autonomous planar Nicholson system

35

{

x′1(t) = −d1x1(t) + a1x2(t) + β1x1(t− τ1)e
−c1x1(t−τ1)

x′2(t) = −d2x2(t) + a2x1(t) + β2x2(t− τ2)e
−c2x2(t−τ2)

(di, ai, βi, ci, τi > 0)

• community matrix: M =

[
β1 − d1 a1
a2 β2 − d2

]

.

• s(M) ≤ 0 ⇐⇒ 0 is GAS (globally asymptotically stable) (in the set of all
non-negative solutions), where s(M) = max{Reλ : λ ∈ σ(M)}.

(e.g. with di = 2, ai = βi = 1, i = 1, 2, σ(M) = {0,−2} =⇒ 0 is GAS)

Remark. This contradicts the assertion in Zhang, Huang & Wei, Adv. Diff.
Equ.(2015), of existence of a positive (ω-periodic) solution for the above system with
ω-periodic coefficients (rather than autonomous).
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• Fix any ω > 0 and add e.g. a single linear, constant, positive impulse on
each component and on each interval of length ω:

∆xi(tk) = ηixi(tk), i = 1, 2, k ∈ Z (7)

• With v = (1, 1) in Corol. 1: this destroys the GAS of the trivial solution if

0 < ηi <
e2ω − 1

e2ω + 1
, i = 1, 2 =⇒ ∃ a positive ω−periodic solution !



Final Comments:
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• There is only a couple of previous works proving the existence of positive
periodic solutions for systems of differential equations with delays and
impulses

(Moreover, as a particular case our work shows that same claims in Zang et al., Adv

Dif Eqs 2015, are not correct!)

• Our approach also applies to impulsive systems (1) with infinite delay

• For the scalar case: very few papers have “average” criteria, relating the
averages of the coefficients over [0, ω]



Future:

38

• For n > 1 , how to eliminate/weaken hypothesis (H4)(ii), and still derive
the existence of an ω-periodic solution with all components positive?
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• Once the existence of a positive periodic solution x∗(t) is established:
provide sufficient conditions for its global attractivity!

(This depends strongly on the particular gi(t, xit) and on the impulses!)
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DDEs, such as Lotka-Volterra models, Nicholson systems with “nonlinear
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• For n > 1 , how to eliminate/weaken hypothesis (H4)(ii), and still derive
the existence of an ω-periodic solution with all components positive?

• Once the existence of a positive periodic solution x∗(t) is established:
provide sufficient conditions for its global attractivity!

(This depends strongly on the particular gi(t, xit) and on the impulses!)

• Apply the present technique to treat other families of impulsive systems of
DDEs, such as Lotka-Volterra models, Nicholson systems with “nonlinear
mortality terms”, etc.

• Treat the case of almost periodic systems of DDEs with impulses.

(For non-impulsive equations and systems: the usual operators whose fixed points we

are looking for are not compact, therefore other techniques have been used, by

imposing conditions that allow the use of Lyapunov functionals, Banach contraction

principle, monotone operators... )
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THANK YOU!
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