Periodic solutions for systems of impulsive delay differential equations

Teresa Faria
CMAFCIO, Faculty of Sciences
University of Lisbon teresa.faria@fc.ul.pt

joint work with Rubén Figueroa (Univ. Santiago de Compostela)
8th IST-IME Meeting
Lisbon, September 5-9, 2022
FCT
Fundaçāo
para a Ciência
e a Tecnologia

1. Introduction our model: a family of periodic systems of impulsive DDEs goals \& setting
2. Preliminary results construction of a suitable operator
3. Main Results criteria for the existence of a positive periodic solution
4. Applications Examples: Nicholson-type systems

In: TF, R. Figueroa, DCDS-B (2022), doi: 10.3934/dcdsb. 2022070

1. Introduction

Our model: A class of periodic systems of DDEs with (finite) delay and impulses:

$$
\left\{\begin{array}{l}
x_{i}^{\prime}(t)=-d_{i}(t) x_{i}(t)+\sum_{j=1, j \neq i}^{n} a_{i j}(t) x_{j}(t)+g_{i}\left(t, x_{i t}\right) \text { for } t \neq t_{k}, \tag{1}\\
\Delta\left(x_{i}\left(t_{k}\right)\right):=x_{i}\left(t_{k}^{+}\right)-x_{i}\left(t_{k}\right)=I_{i k}\left(x_{i}\left(t_{k}\right)\right), k \in \mathbb{Z}, \quad i=1, \ldots, n,
\end{array}\right.
$$

where: τ is the time-delay,

- $x_{t}=\left(x_{1 t}, \ldots, x_{n t}\right)=x_{[t-\tau . t]}$ is the past history of the state, defined by

$$
x_{t}(s)=x(t+s) \text { for } s \in[-\tau, 0]
$$

- the solutions $x(t)$ are piecewise continuous, left continuous, with jump discontinuities at $t_{k}(k \in \mathbb{Z})$ given by $I_{i k}\left(x_{i}\left(t_{k}\right)\right)$
- $d_{i}(t), a_{i j}(t), g_{i}(t, \varphi)$ continuous, nonnegative and ω-periodic in $t(\omega>0)$,
- the impulses at times t_{k} occur with periodicity ω
- GOAL: To find sufficient conditions for the existence of (at least) one positive periodic solution for the impulsive delay differential equation (IDDE) (1)
- GOAL: To find sufficient conditions for the existence of (at least) one positive periodic solution for the impulsive delay differential equation (IDDE) (1)
- Our criteria can be applied to broad families of concrete models:
- discrete/distributed, finite/infinite delay
- systems incorporating general impulses whose signs may vary
- and a very general nonlinearity g
(in general, the nonlinearities g are non-monotone)
- GOAL: To find sufficient conditions for the existence of (at least) one positive periodic solution for the impulsive delay differential equation (IDDE) (1)
- Our criteria can be applied to broad families of concrete models:
- discrete/distributed, finite/infinite delay
- systems incorporating general impulses whose signs may vary
- and a very general nonlinearity g
(in general, the nonlinearities g are non-monotone)
- As usual, our method uses a fixed point argument (Krasnoselskii)
- Our technique is based on the construction of an original operator, whose fixed points are the periodic solutions we are looking for

References:

- Scalar periodic impulsive DDEs:
(See e.g. Du and Feng 04; A. Wan et al. 04; D. Jiang et al 04,08; Yan 05,07; X. Li et al. 05; Liu and Takeuchi 07; Chu and Nieto 08; Saker and Alzabut 09; Meng and Yan 15; Zhang and Feng 15, Dai and Bao 16, etc....)
... but
- There are only few results for periodic systems of DDEs, almost all for the situation without impulses.

Here:
Generalization of results obtained for scalar IDDE in Faria \& Oliveira, JDDE (2019), Buedo-Fernandez \& Faria, MMAS (2020)

Some references for systems:

- Periodic (nonimpulsive) systems of DDEs:
\star periodic n-dim LV models:
Li, JMAA (2000)
Tang \& Zou, PAMS 2006
Benhadri, Caraballo \& Zeghdoudi, Opuscula Math. 2020
* periodic n-dim DDEs $x^{\prime}(t)=f(t, x(t), x(t-\tau))(f \geq 0)$

Amster \& Bondorevsky, AMC (2021)

* periodic n-dim Nicholson systems:

Ding \& Fu, J Exp Theor Artificial Intel (2020)
TF, JDE (2017)
Huang, Wang \& Huang, EJDE (2020)
Troib, FDE (2014)
Wang, Liu \& Chen, MMAS (2019)

- Periodic impulsive systems of DDEs:

Liu \& Gong, Abstr. Appl. Anal. (2013), on neural networks
Zhang, Huang \& Wei, Adv. Diff. Equ.(2015), on a 2-dim impulsive Nicholson system

Impulsive Delay Differential Equations (IDDE)
finite delay $\tau>0: I=[-\tau, 0]$

- $P C:=P C\left([-\tau, 0], \mathbb{R}^{n}\right)$, space of functions $\varphi:[-\tau, 0] \rightarrow \mathbb{R}^{n}$ which are piecewise continuous (i.e., finite number of jump discontinuities) and left continuous,
- Phase space: Banach space of normalized (from the left) regulated functions $R\left(I ; \mathbb{R}^{n}\right):=\overline{P C}$ in the space of bounded fcs $B\left(I ; \mathbb{R}^{n}\right)$ with

$$
\|\varphi\|=\sup _{-\tau \leq \theta \leq 0}|\varphi(\theta)|
$$

finite delay $\tau>0$: $I=[-\tau, 0]$

- $P C:=P C\left([-\tau, 0], \mathbb{R}^{n}\right)$, space of functions $\varphi:[-\tau, 0] \rightarrow \mathbb{R}^{n}$ which are piecewise continuous (i.e., finite number of jump discontinuities) and left continuous,
- Phase space: Banach space of normalized (from the left) regulated functions $R\left(I ; \mathbb{R}^{n}\right):=\overline{P C}$ in the space of bounded fcs $B\left(I ; \mathbb{R}^{n}\right)$ with

$$
\|\varphi\|=\sup _{-\tau \leq \theta \leq 0}|\varphi(\theta)|
$$

- IC at $t=0: \quad x(s)=\phi(s), s \in[-\tau, 0]$,
i.e.,

$$
x_{0}:=x_{\left.\right|_{[-\tau, 0]}}=\phi \in P C
$$

Abstract setting:

- $\omega>0$ is the period
- $\left(t_{k}\right)_{k \in \mathbb{Z}}$ is an " ω-periodic sequence" of given points where the impulses occur, $0 \leq t_{1}<\cdots<t_{p}<\omega, t_{k+n p}=t_{k}+n \omega, \forall n \in \mathbb{Z}, k=1, \ldots, p$

Abstract setting:

- $\omega>0$ is the period
- $\left(t_{k}\right)_{k \in \mathbb{Z}}$ is an " ω-periodic sequence" of given points where the impulses occur, $0 \leq t_{1}<\cdots<t_{p}<\omega, t_{k+n p}=t_{k}+n \omega, \forall n \in \mathbb{Z}, k=1, \ldots, p$
- Define the Banach space

$$
\begin{align*}
X:=X\left(\mathbb{R}^{n}\right)= & \left\{x: \mathbb{R} \rightarrow \mathbb{R}^{n} \mid x \text { is } \omega-\text { periodic, continuous for all } t \neq t_{k},\right. \\
& \text { there exist } \left.x\left(t_{k}^{-}\right), x\left(t_{k}^{+}\right) \text {and } x\left(t_{k}^{-}\right)=x\left(t_{k}\right), \text { for } k \in \mathbb{Z}\right\} \\
\text { and } \tilde{X}:= & \left\{x_{t}: x \in X, t \in \mathbb{R}\right\} \tag{2}
\end{align*}
$$

- our models are from math biology $X^{+}:=\{x \in X: x(t) \geq 0, t \in[0, \omega]\}$

Abstract setting:

- $\omega>0$ is the period
- $\left(t_{k}\right)_{k \in \mathbb{Z}}$ is an " ω-periodic sequence" of given points where the impulses occur, $0 \leq t_{1}<\cdots<t_{p}<\omega, t_{k+n p}=t_{k}+n \omega, \forall n \in \mathbb{Z}, k=1, \ldots, p$
- Define the Banach space

$$
\begin{align*}
X:=X\left(\mathbb{R}^{n}\right)= & \left\{x: \mathbb{R} \rightarrow \mathbb{R}^{n} \mid x \text { is } \omega-\text { periodic, continuous for all } t \neq t_{k}\right. \\
& \text { there exist } \left.x\left(t_{k}^{-}\right), x\left(t_{k}^{+}\right) \text {and } x\left(t_{k}^{-}\right)=x\left(t_{k}\right), \text { for } k \in \mathbb{Z}\right\} \\
\text { and } \tilde{X}:= & \left\{x_{t}: x \in X, t \in \mathbb{R}\right\} \tag{2}
\end{align*}
$$

- our models are from math biology $X^{+}:=\{x \in X: x(t) \geq 0, t \in[0, \omega]\}$
- X is endowed with the norm $\|\cdot\|_{\infty}$, simply denoted by $\|\cdot\|$, and with the partial order \leq induced by the cone $X^{+}: y_{1} \leq y_{2}$ if $y_{2}-y_{1} \in X^{+}$
- $x \in X \Longrightarrow x_{t} \in P C$, i.e., $\tilde{X}:=\left\{x_{t}: x \in X, t \in \mathbb{R}\right\} \subset P C$
- an isometry:

$$
X \ni x \mapsto x_{0}=x_{\left.\right|_{[-\tau, 0]}} \in P C \subset R\left([-\tau, 0] ; \mathbb{R}^{n}\right)
$$

(w.l.g. for $\tau \geq \omega$), so X can be interpreted as a complete subspace of the phase space $R\left([-\tau, 0] ; \mathbb{R}^{n}\right)$.

- $x \in X \Longrightarrow x_{t} \in P C$, i.e., $\tilde{X}:=\left\{x_{t}: x \in X, t \in \mathbb{R}\right\} \subset P C$
- an isometry:

$$
X \ni x \mapsto x_{0}=x_{[-\tau, 0]} \in P C \subset R\left([-\tau, 0] ; \mathbb{R}^{n}\right)
$$

(w.l.g. for $\tau \geq \omega$), so X can be interpreted as a complete subspace of the phase space $R\left([-\tau, 0] ; \mathbb{R}^{n}\right)$.

THUS:

- From now on, for the purpose of finding periodic solutions of an IDDE, we "forget" the phase space $R\left([-\tau, 0] ; \mathbb{R}^{n}\right)$ and work on

$$
X \quad \text { with } \quad\|\cdot\|=\|\cdot\|_{\infty}
$$

HERE: To simplify the exposition, we only consider systems with finite delay.
The consideration of models with infinite delay goes back to Volterra's population models (1920's, 1930's) (where typically the "memory functions" appear as integral kernels) e.g. in predator-prey models:

$$
\begin{aligned}
& \quad \dot{x}(t)=x(t)\left[a-b x(t)-c y(t)-\int_{0}^{\infty} k_{1}(s) x(t-s) d s-\int_{0}^{\infty} k_{2}(s) y(t-s) d s\right] \\
& \dot{y}(t)=y(t)\left[-d+p x(t)-q y(t)+\int_{0}^{\infty} k_{3}(s) x(t-s) d s-\int_{0}^{\infty} k_{4}(s) y(t-s) d s\right] \\
& a, b, c, d, p, q>0, k_{i}(s) \geq 0 \text { continuous, } k_{i} \in L^{1}[0, \infty) \\
& \text { (the delay effects diminish gradually when going back in time) }
\end{aligned}
$$

HERE: To simplify the exposition, we only consider systems with finite delay.
The consideration of models with infinite delay goes back to Volterra's population models (1920's, 1930's) (where typically the "memory functions" appear as integral kernels) e.g. in predator-prey models:

$$
\begin{gathered}
\dot{x}(t)=x(t)\left[a-b x(t)-c y(t)-\int_{0}^{\infty} k_{1}(s) x(t-s) d s-\int_{0}^{\infty} k_{2}(s) y(t-s) d s\right] \\
\dot{y}(t)=y(t)\left[-d+p x(t)-q y(t)+\int_{0}^{\infty} k_{3}(s) x(t-s) d s-\int_{0}^{\infty} k_{4}(s) y(t-s) d s\right]
\end{gathered}
$$

$a, b, c, d, p, q>0, k_{i}(s) \geq 0$ continuous, $k_{i} \in L^{1}[0, \infty)$
(the delay effects diminish gradually when going back in time)
IC at $t=0:(x(s), y(s))=\phi(s), s \leq 0$, i.e., $\left.(x, y)\right|_{(-\infty, 0]}=\phi \in \mathcal{B} \subset C\left((-\infty, 0] ; \mathbb{R}^{2}\right)$
The treatment of infinite delay requires a careful choice of an admissible phase space, which must satisfy some axiomatic (Hale \& Kato, Funkcial. Ekvac.'78)
impulses, infinite delay: $I=(-\infty, 0]$:

- $P C\left(I ; \mathbb{R}^{n}\right)$: the space of functions $\varphi:(-\infty, 0] \rightarrow \mathbb{R}^{n}$ whose restrictions $\varphi_{[-\tau, 0]}$ to any interval $[-\tau, 0]$ are piecewise continuous and left continuous However: $P C\left(I ; \mathbb{R}^{n}\right)$ is not a good space; moreover, $P C\left(I ; \mathbb{R}^{n}\right) \not \subset B\left(I ; \mathbb{R}^{n}\right)$, for $B\left(I ; \mathbb{R}^{n}\right)$ the space of bounded fcs.
- With the identification $x \equiv x_{0}=x_{(-\infty, 0)}$, the space X of ω-periodic functions with jump discontinuities at $\left(t_{k}\right)$ is also seen as a (closed) subspace of an appropriate phase space $\mathcal{B} \subset P C$,

$$
X \subset \mathcal{B}, \quad\|x\|_{\infty} \sim\left\|x_{t}\right\|_{\mathcal{B}} \quad \forall x \in X
$$

impulses, infinite delay: $I=(-\infty, 0]$:

- $P C\left(I ; \mathbb{R}^{n}\right)$: the space of functions $\varphi:(-\infty, 0] \rightarrow \mathbb{R}^{n}$ whose restrictions $\varphi_{[-\tau, 0]}$ to any interval $[-\tau, 0]$ are piecewise continuous and left continuous However: $P C\left(I ; \mathbb{R}^{n}\right)$ is not a good space; moreover, $P C\left(I ; \mathbb{R}^{n}\right) \not \subset B\left(I ; \mathbb{R}^{n}\right)$, for $B\left(I ; \mathbb{R}^{n}\right)$ the space of bounded fcs.
- With the identification $x \equiv x_{0}=x_{(-\infty, 0])}$, the space X of ω-periodic functions with jump discontinuities at $\left(t_{k}\right)$ is also seen as a (closed) subspace of an appropriate phase space $\mathcal{B} \subset P C$,

$$
X \subset \mathcal{B}, \quad\|x\|_{\infty} \sim\left\|x_{t}\right\|_{\mathcal{B}} \quad \forall x \in X
$$

HERE: To simplify the exposition, we only consider systems with finite delay.
(See e.g. Buedo-Fernandez \& Faria, MMAS 2020, for scalar IDDE with ∞ delay...)

2. Preliminary results

$$
\left\{\begin{array}{l}
x_{i}^{\prime}(t)=-d_{i}(t) x_{i}(t)+\sum_{j=1, j \neq i}^{n} a_{i j}(t) x_{j}(t)+g_{i}\left(t, x_{i t}\right) \text { for } t \neq t_{k} \tag{1}\\
\Delta\left(x_{i}\left(t_{k}\right)\right):=x_{i}\left(t_{k}^{+}\right)-x_{i}\left(t_{k}\right)=I_{i k}\left(x_{i}\left(t_{k}\right)\right), k \in \mathbb{Z}, \quad i=1, \ldots, n
\end{array}\right.
$$

(H1) $\quad I_{i k}: \mathbb{R}^{+} \rightarrow \mathbb{R}$ are continuous and $\exists p \in \mathbb{N}$ such that $0 \leq t_{1}<\cdots<t_{p}<\omega$ (for some $\omega>0$) and

$$
\begin{aligned}
& t_{k+p}=t_{k}+\omega, \quad I_{i, k+p}=I_{i k}, \quad k \in \mathbb{Z}, i=1, \ldots, n \\
& 0_{0} \dot{t}_{1} \quad \mathbf{t}_{2} \cdots \dot{t}_{p} \dot{\omega} \quad \dot{t}_{p+1} \quad \dot{t}_{p+2} \cdot \dot{t}_{2 p} 2 \omega \quad \cdots \quad 3 \omega
\end{aligned}
$$

(H2) There exist $\alpha_{i k}>-1$ and $\eta_{i k}$ such that

$$
\alpha_{i k} u \leq I_{i k}(u) \leq \eta_{i k} u, \quad u \geq 0, k \in\{1, \ldots, p\}
$$

and, if $n>1$ there exist $\lim _{u \rightarrow 0^{+}} \frac{u}{u+I_{i k}(u)}, i=1, \ldots, n, k=1, \ldots, p$;
(H3) $\quad \prod_{k=1}^{p}\left(1+\eta_{i k}\right)<e^{\int_{0}^{\omega} d_{i}(t) d t}, i=1, \ldots, n$
(H4) (i) the functions $d_{i}, a_{i j} g_{i}: \mathbb{R} \times \tilde{X}(\mathbb{R}) \rightarrow \mathbb{R}^{+}$are continuous, ω-periodic in $t \in \mathbb{R}(\forall i, j)$, with $\int_{0}^{\omega} d_{i}(s) d s>0$,

$$
g\left(t, x_{t}\right):=\left(g_{1}\left(t, x_{1 t}\right), \ldots, g_{n}\left(t, x_{n t}\right)\right)
$$

is bounded on bounded sets of $\mathbb{R} \times \tilde{X}$;
(ii) if $n>1$ either $\int_{0}^{\omega} a_{i j}(s) d s>0$ for all $i \neq j$ or $\int_{0}^{\omega} g_{i}(s, 0) d s>0$, for each $i=1, \ldots, n$.
(H5) The function

$$
G(t, x):=g\left(t, x_{t}\right) \quad \text { for } \quad t \in \mathbb{R}, x \in X^{+}
$$

is uniformly equicontinuous for $t \in[0, \omega]$ on bounded sets of X^{+}, i.e.,
$\forall A \subset X^{+}$bounded and $\forall \varepsilon>0, \exists \delta>0$:

$$
\max _{t \in[0, \omega]}\|G(t, x)-G(t, y)\|<\varepsilon \text { for all } x, y \in A \text { with }\|x-y\|<\delta
$$

Remarks about the hypotheses

夫 Conditions (H 1) and $(\mathrm{H} 4)(\mathrm{i})$ give the ω-periodicity of system (1).
\star The situation without impulses is included in our setting: $I_{i k} \equiv 0$ for all k

* Here, the impulses are allowed to be negative or to change signs!
$\star(\mathrm{H} 2)$ guarantees that, at the impulsive points t_{k}, solutions of (1) with
$x\left(t_{k}^{-}\right)=x\left(t_{k}\right)>0$ must satisfy

$$
x_{i}\left(t_{k}^{+}\right)=x_{i}\left(t_{k}\right)+I_{i k}\left(x_{i}\left(t_{k}\right)\right) \geq\left(1+\alpha_{i k}\right) x_{i}\left(t_{k}\right)>0, k \in \mathbb{N} .
$$

Remarks about the hypotheses

\star Conditions (H 1) and $(\mathrm{H} 4)(\mathrm{i})$ give the ω-periodicity of system (1).
\star The situation without impulses is included in our setting: $I_{i k} \equiv 0$ for all k

* Here, the impulses are allowed to be negative or to change signs!
$\star(\mathrm{H} 2)$ guarantees that, at the impulsive points t_{k}, solutions of (1) with
$x\left(t_{k}^{-}\right)=x\left(t_{k}\right)>0$ must satisfy

$$
x_{i}\left(t_{k}^{+}\right)=x_{i}\left(t_{k}\right)+I_{i k}\left(x_{i}\left(t_{k}\right)\right) \geq\left(1+\alpha_{i k}\right) x_{i}\left(t_{k}\right)>0, k \in \mathbb{N} .
$$

* Assumptions (H2) and (H3) are significantly weaker than the ones usually considered in the literature for the scalar case ($n=1$), where:
- the impulses are nonnegative \& additional restrictions on $\frac{I_{k}(u)}{u}$ close to 0 and ∞ or
- the impulses are linear $I_{k}(u)=\alpha_{k} u$, with $\prod_{k=1}^{p}\left(1+\alpha_{k}\right)=1$
[Simple example: If $\alpha_{k} \equiv \alpha \forall k$, the latter condition is satisfied only if $\alpha=0$ (no impulses!), whereas our setting only requires $-1<\alpha<e^{\frac{1}{p} \int_{0}^{\omega} a(t) d t}-1$.]

Remarks about the hypotheses (cont.)

\star For $n>1$: for $a_{i j}, g_{i}(\cdot, 0) \in C_{\omega}^{+}(\mathbb{R})$, we have imposed (H4)(ii): $a_{i j} \not \equiv 0 \forall j \neq i$, or $g_{i}(\cdot, 0) \not \equiv 0$
(note that $a_{i j} \not \equiv 0$ iff $\int_{0}^{\omega} a_{i j}(s) d s>0(j \neq i)$ and $g_{i}(\cdot, 0) \not \equiv 0$ iff $\int_{0}^{\omega} g_{i}(s, 0) d s>0$)

The role of $(\mathrm{H} 4)(\mathrm{ii})$ is to preclude the existence of periodic solutions with one component positive but with others that may vanish.

Remarks about the hypotheses (cont.)

\star For $n>1$: for $a_{i j}, g_{i}(\cdot, 0) \in C_{\omega}^{+}(\mathbb{R})$, we have imposed (H4)(ii): $a_{i j} \not \equiv 0 \forall j \neq i$, or $g_{i}(\cdot, 0) \not \equiv 0$
(note that $a_{i j} \not \equiv 0$ iff $\int_{0}^{\omega} a_{i j}(s) d s>0(j \neq i)$ and $g_{i}(\cdot, 0) \not \equiv 0$ iff $\int_{0}^{\omega} g_{i}(s, 0) d s>0$)

The role of $(\mathrm{H} 4)(\mathrm{ii})$ is to preclude the existence of periodic solutions with one component positive but with others that may vanish.
\star The role of $(\mathrm{H} 5)$ is to guarantee that the operator Φ defined below is compact.

Some auxiliary functions:

- X and X^{+}, with $\|\cdot\|=\|\cdot\|_{\infty}$

Define $(i=1, \ldots, n, k \in \mathbb{Z})$:

$$
\begin{aligned}
& D_{i}(t)=\int_{0}^{t} d_{i}(s) d s, \quad J_{i k}(u)=\left\{\begin{array}{l}
\frac{u}{u+I_{i k}(u)}, u>0 \\
\lim _{u \rightarrow 0^{+}} \overline{u+I_{i k}(u)}, u=0
\end{array}\right. \\
& B_{i}\left(t ; x_{i}\right)=\prod_{k: t_{k} \in[0, t)} J_{i k}\left(x_{i}\left(t_{k}\right)\right) \text { and } \\
& \tilde{B}_{i}\left(s, t ; x_{i}\right)=\frac{B_{i}\left(s ; x_{i}\right)}{B_{i}\left(t ; x_{i}\right)}=\prod_{k: t_{k} \in[t, s)} J_{i k}\left(x_{i}\left(t_{k}\right)\right) \text { for } 0 \leq t \leq s \leq t+\omega, x \in X^{+} ; \\
& \text {for } t=\omega: \quad D_{i}(\omega)=\int_{0}^{\omega} d_{i}(s) d s, \\
& \qquad \Gamma_{i}\left(x_{i}\right)=\left(B_{i}\left(\omega ; x_{i}\right) e^{D_{i}(\omega)}-1\right)^{-1} \quad \text { for } \quad i=1, \ldots, n, x \in X^{+} .
\end{aligned}
$$

Recall: $(\mathrm{H} 3) \prod_{k=1}^{p}\left(1+\eta_{i k}\right)<e^{\int_{0}^{\omega} d_{i}(t) d t} \Rightarrow B_{i}\left(\omega ; x_{i}\right) e^{D_{i}(\omega)}>1, \forall x \in X^{+}$, so Γ_{i} are well-defined.

Properties of these auxiliary functions:

Assume (H1)-(H4). For $i=1, \ldots, n, k \in \mathbb{Z}, x=\left(x_{1}, \ldots, x_{n}\right) \in X^{+}$:

- $J_{i k}$ are continuous and bounded: $J_{i k}(u)=\frac{1}{1+\frac{I_{i k}(u)}{u}}$ with $\frac{I_{k}(u)}{u} \in\left[\alpha_{i k}, \eta_{i k}\right] \Longrightarrow$

$$
\left(1+\eta_{i k}\right)^{-1} \leq J_{i k}(u) \leq\left(1+\alpha_{i k}\right)^{-1}, \quad u \geq 0
$$

- $\Gamma_{i}: X^{+}(\mathbb{R}) \rightarrow(0, \infty)$ are continuous and bounded: $0<\underline{\Gamma_{i}} \leq \Gamma_{i}\left(x_{i}\right) \leq \overline{\Gamma_{i}}$ where $\underline{\Gamma_{i}}:=\left(\Pi_{k=1}^{p}\left(1+\alpha_{i k}\right)^{-1} e^{D_{i}(\omega)}-1\right)^{-1}, \overline{\Gamma_{i}}:=\left(\Pi_{k=1}^{p}\left(1+\eta_{i k}\right)^{-1} \overline{e^{D_{i}}}(\omega)-1\right)^{-1}$
- $\tilde{B}_{i}\left(s, t ; x_{i}\right)$ are bounded: ${ }^{1} 0<\underline{B_{i}} \leq \tilde{B}_{i}\left(s, t ; x_{i}\right) \leq \overline{B_{i}}$
- $\tilde{B}_{i}\left(s+\omega, t+\omega ; x_{i}\right)=\tilde{B}_{i}\left(s, t ; x_{i}\right)$ for $t \leq s \leq t+\omega$ and $\varphi \in X^{+}(\mathbb{R})$
${ }^{1}$ Recall that there is a finite number of impulses on each interval of length $\leq \omega$. NOTE THAT, with linear impulses $I_{i k}(u)=\eta_{i k} u$,

$$
J_{i k} \equiv\left(1+\eta_{i k}\right)^{-1}(\text { constants }) \text { and } B_{i}(t ; x) \equiv B_{i}(t)=\prod_{k: t_{k} \in[0, t)}\left(1+\eta_{i k}\right)^{-1}
$$

Construction of an operator on a new cone:

- a new cone
$K=K(\sigma):=\left\{x \in X^{+}: x_{i}(t) \geq \sigma_{i}\left\|x_{i}\right\|, t \in[0, \omega], i=1, \ldots, n\right\}$, with $\sigma \in(0,1)^{n}$
- an operator $\Phi=\left(\Phi_{1}, \ldots, \Phi_{n}\right): X^{+} \rightarrow X^{+}$,
$\left(\Phi_{i} x\right)(t)=\Gamma_{i}\left(x_{i}\right) \int_{t}^{t+\omega} \tilde{B}_{i}\left(s, t ; x_{i}\right) e^{\int_{t}^{s} d_{i}(r) d r}\left(\sum_{j \neq i} a_{i j}(s) x_{j}(s)+g_{i}\left(s, x_{i s}\right)\right) d s$
for $x=\left(x_{1}, \ldots, x_{n}\right) \in X^{+}, t \geq 0$

Construction of an operator on a new cone:

- a new cone
$K=K(\sigma):=\left\{x \in X^{+}: x_{i}(t) \geq \sigma_{i}\left\|x_{i}\right\|, t \in[0, \omega], i=1, \ldots, n\right\}$, with $\sigma \in(0,1)^{n}$
- an operator $\Phi=\left(\Phi_{1}, \ldots, \Phi_{n}\right): X^{+} \rightarrow X^{+}$,
$\left(\Phi_{i} x\right)(t)=\Gamma_{i}\left(x_{i}\right) \int_{t}^{t+\omega} \tilde{B}_{i}\left(s, t ; x_{i}\right) e^{\int_{t}^{s} d_{i}(r) d r}\left(\sum_{j \neq i} a_{i j}(s) x_{j}(s)+g_{i}\left(s, x_{i s}\right)\right) d s$
for $x=\left(x_{1}, \ldots, x_{n}\right) \in X^{+}, t \geq 0$
LEMMA 1. Assume $(\mathrm{H} 1)-(\mathrm{H} 4)$, take $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ with
$0<\sigma_{i} \leq \underline{B_{i}}{\overline{B_{i}}}^{-1} e^{-D_{i}(\omega)}$ for $i=1, \ldots, n$, and $K=K(\sigma)$. THEN:
(i) $\Phi(K) \subset K$.
(ii) If $x \in K \backslash\{0\}, x$ is a fixed point of Φ iff x is a positive ω-periodic solution of (1).
(iii) If in addition (H5) holds, Φ is completely continuous on $K \backslash\{0\}$

Remark:

- If $x(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)$ is a solution of (1), the function $y(t)=\left(y_{1}(t), \ldots, y_{n}(t)\right)$, where $y_{i}(t)=B_{i}\left(t ; x_{i}\right) x_{i}(t), \quad i=1, \ldots, n$, is continuous, because

$$
J_{i k}\left(x_{i}\left(t_{k}\right)\right)=\frac{x_{i}\left(t_{k}\right)}{x_{i}\left(t_{k}^{+}\right)}
$$

- Rather than using sums of the impulses, the key idea is to account for the impulses in a multiplicative mode by means of the products of the functions $J_{i k}(u)$: in this way, $B_{i}\left(t ; x_{i}\right)=\prod_{k: t_{k} \in[0, t)} J_{i k}\left(x_{i}\left(t_{k}\right)\right)$ are used to "glue" the pieces of the solution's graph at impulse times t_{k}, so that it becomes continuous.

Remark:

- If $x(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)$ is a solution of (1), the function $y(t)=\left(y_{1}(t), \ldots, y_{n}(t)\right)$, where $y_{i}(t)=B_{i}\left(t ; x_{i}\right) x_{i}(t), \quad i=1, \ldots, n$, is continuous, because

$$
J_{i k}\left(x_{i}\left(t_{k}\right)\right)=\frac{x_{i}\left(t_{k}\right)}{x_{i}\left(t_{k}^{+}\right)}
$$

- Rather than using sums of the impulses, the key idea is to account for the impulses in a multiplicative mode by means of the products of the functions $J_{i k}(u)$: in this way, $B_{i}\left(t ; x_{i}\right)=\prod_{k: t_{k} \in[0, t)} J_{i k}\left(x_{i}\left(t_{k}\right)\right)$ are used to "glue" the pieces of the solution's graph at impulse times t_{k}, so that it becomes continuous.
- Instead of Φ, the following operator has been considered for scalar IDDEs:

$$
(\Psi y)(t)=\left(e^{D(\omega)}-1\right)^{-1}\left[\int_{t}^{t+\omega} g\left(s, y_{s}\right) e^{\int_{t}^{s} d(u) d u} d s+\sum_{k: t_{k} \in[t, t+\omega)} I_{k}\left(y\left(t_{k}\right)\right) e^{\int_{t}^{t_{k}} d(u) d u}\right]
$$

(the impulses multiplied by the Green function $G(t, s)=\frac{e^{\int_{t}^{s} d(u) d u}}{e^{D(\omega)}-1}$ are summed up to time t).

Krasnoselskii Theorem:

Let X be a Banach space, K a cone in $X r, R \in \mathbb{R}^{+}$with $r \neq R$ and $A_{r_{0}, R_{0}}:=\left\{x \in K: r_{0} \leq\|x\| \leq R_{0}\right\}$, where $r_{0}=\min \{r, R\}, R_{0}=\max \{r, R\}$.
Let $T: A_{r_{0}, R_{0}} \longrightarrow K$ be a completely continuous operator such that
(i) $T x \neq \lambda x$ for all $x \in K$ with $\|x\|=R$ and $\lambda>1$;
(ii) There exists $\psi \in K \backslash\{0\}$ such that $x \neq T x+\lambda \psi$ for all $x \in K$ with $\|x\|=r$ and all $\lambda>0$.

Then T has a fixed point $x \in A_{r_{0}, R_{0}}$ which moreover satisfies $r_{0}<\|x\|<R_{0}$.

Let X be a Banach space, K a cone in $X r, R \in \mathbb{R}^{+}$with $r \neq R$ and
$A_{r_{0}, R_{0}}:=\left\{x \in K: r_{0} \leq\|x\| \leq R_{0}\right\}$, where $r_{0}=\min \{r, R\}, R_{0}=\max \{r, R\}$.
Let $T: A_{r_{0}, R_{0}} \longrightarrow K$ be a completely continuous operator such that
(i) $T x \neq \lambda x$ for all $x \in K$ with $\|x\|=R$ and $\lambda>1$;
(ii) There exists $\psi \in K \backslash\{0\}$ such that $x \neq T x+\lambda \psi$ for all $x \in K$ with $\|x\|=r$ and all $\lambda>0$.

Then T has a fixed point $x \in A_{r_{0}, R_{0}}$ which moreover satisfies $r_{0}<\|x\|<R_{0}$.

Next: Under some additional conditions,
one shows that $\exists 0<r<R$ such that Φ satisfies (i),(ii) ${ }^{2}$
\Longrightarrow there is an ω-periodic solution $x^{*}>0$ in a conical sector $A_{r_{0}, R_{0}}$ of K

[^0]
3. Main results

(H6) There are constants r_{0}, R_{0} with $0<r_{0}<R_{0}$ and functions $b_{1 i}, b_{2 i} \in C_{\omega}^{+}(\mathbb{R})$ with $\int_{0}^{\omega} b_{q i}(t) d t>0(q=1,2)$, such that for $i=1, \ldots, n, x \in K$ and $t \in[0, \omega]$ it holds:

$$
\begin{array}{ll}
g_{i}\left(t, x_{i t}\right) \geq b_{1 i}(t) u & \text { if } 0<u \leq x_{i} \leq r_{0} \\
g_{i}\left(t, x_{i t}\right) \leq b_{2 i}(t) u & \text { if } R_{0} \leq x_{i} \leq u
\end{array}
$$

3. Main results

(H6) There are constants r_{0}, R_{0} with $0<r_{0}<R_{0}$ and functions $b_{1 i}, b_{2 i} \in C_{\omega}^{+}(\mathbb{R})$ with $\int_{0}^{\omega} b_{q i}(t) d t>0(q=1,2)$, such that for $i=1, \ldots, n, x \in K$ and $t \in[0, \omega]$ it holds:

$$
\begin{array}{ll}
g_{i}\left(t, x_{i t}\right) \geq b_{1 i}(t) u & \text { if } 0<u \leq x_{i} \leq r_{0} \\
g_{i}\left(t, x_{i t}\right) \leq b_{2 i}(t) u & \text { if } R_{0} \leq x_{i} \leq u
\end{array}
$$

Theorem 1. Assume (H1)-(H6) and that, for $b_{1 i}, b_{2 i}$ as in (H6),
$c_{i}^{0}:=\underline{\Gamma_{i}} \underline{B_{i}} \min _{t \in[0, \omega]} \int_{t}^{t+\omega} e^{\int_{t}^{s} d_{i}(r) d r}\left(\sum_{j \neq i} a_{i j}(s)+b_{1 i}(s)\right) d s \geq 1$,
$C_{i}^{\infty}:=\overline{\Gamma_{i}} \overline{B_{i}} \max _{t \in[0, \omega]} \int_{t}^{t+\omega} e^{\int_{t}^{s} d_{i}(r) d r}\left(\sum_{j \neq i} a_{i j}(s)+b_{2 i}(s)\right) d s \leq 1, i=1, \ldots, n$.
THEN there exists (at least) one positive ω-periodic solution $x^{*}(t)$ of (1) (Moreover, $x^{*}(t) \in K$, for $\sigma_{i}=B_{i}{\overline{B_{i}}}^{-1} e^{-D_{i}(\omega)}(1 \leq i \leq n)$ as in LEMMA 1.)

Proof:

(i) $\Phi x \neq \lambda x$ for all $x \in K$ with $\|x\|=R$ and $\lambda>1$:
\star Fix r_{0}, R_{0} as in (H6), let $R \geq R_{0}\left(\min _{1 \leq i \leq n} \sigma_{i}\right)^{-1}$ and $x \in K$ with $\|x\|=R$. Choose i such that $\|x\|=\left\|x_{i}\right\|=R$.
$\star x_{i}(t) \leq R$ and $x_{i}(t) \geq \sigma_{i}\left\|x_{i}\right\|=\sigma_{i} R \geq R_{0}$ for $t \in[0, \omega]$, thus, from the 2nd inequality in (H6),

$$
g_{i}\left(t, x_{i t}\right) \leq b_{2 i}(t) R
$$

Using the properties in Lemma 1 and $C_{i}^{\infty} \leq 1$, we have

$$
\left.\left\|\Phi_{i} x\right\| \leq R \overline{\Gamma_{i}} \overline{B_{i}} \max _{t \in[0, \omega]} \int_{t}^{t+\omega} e^{\int_{t}^{s} d_{i}(r) d r}\left[\sum_{j \neq i} a_{i j}(s)+b_{2 i}(s)\right)\right] d s=R C_{i}^{\infty} \leq R
$$

In particular, we conclude that $\Phi x \neq \lambda x$ for all $\lambda>1$ and $x \in K$ with $\|x\|=R$.

Proof:

(i) $\Phi x \neq \lambda x$ for all $x \in K$ with $\|x\|=R$ and $\lambda>1$:
\star Fix r_{0}, R_{0} as in (H6), let $R \geq R_{0}\left(\min _{1 \leq i \leq n} \sigma_{i}\right)^{-1}$ and $x \in K$ with $\|x\|=R$.
Choose i such that $\|x\|=\left\|x_{i}\right\|=R$.
$\star x_{i}(t) \leq R$ and $x_{i}(t) \geq \sigma_{i}\left\|x_{i}\right\|=\sigma_{i} R \geq R_{0}$ for $t \in[0, \omega]$, thus, from the 2nd inequality in (H6),

$$
g_{i}\left(t, x_{i t}\right) \leq b_{2 i}(t) R
$$

Using the properties in Lemma 1 and $C_{i}^{\infty} \leq 1$, we have

$$
\left.\left\|\Phi_{i} x\right\| \leq R \overline{\Gamma_{i}} \overline{B_{i}} \max _{t \in[0, \omega]} \int_{t}^{t+\omega} e^{\int_{t}^{s} d_{i}(r) d r}\left[\sum_{j \neq i} a_{i j}(s)+b_{2 i}(s)\right)\right] d s=R C_{i}^{\infty} \leq R
$$

In particular, we conclude that $\Phi x \neq \lambda x$ for all $\lambda>1$ and $x \in K$ with $\|x\|=R$.
(ii) $\exists \psi \in K \backslash\{0\}$ such that $x \neq \Phi x+\lambda \psi$ for all $x \in K$ with $\|x\|=r$ and all $\lambda>0$: \star Take $r \leq \min _{1 \leq i \leq n} \sigma_{i} r_{0}, \psi \equiv \mathbf{1}:=(1, \ldots, 1)$ and consider any $\lambda>0$. For $x \in K$ with $\|x\|=r$, we claim that $x \neq \Phi x+\lambda \psi$.
\star Suppose otherwise that there are $\lambda>0, x \in K$ with $\|x\|=r$ and $x=\Phi x+\lambda \mathbf{1}$.
\star Let $\mu:=\min _{t \in[0, \omega]} \min _{1 \leq i \leq n} x_{i}(t)$. We have $0<\lambda \leq \mu \leq x_{i}(t) \leq r \leq r_{0}$, thus the 1st inequality in (H6) implies

$$
g_{i}\left(t, x_{i t}\right) \geq b_{1 i}(t) \mu,
$$

which, together with the constraint $c_{i}^{0} \geq 1$, yields

$$
\left(\Phi_{i} x\right)(t) \geq \mu \underline{\Gamma_{i}} \underline{B_{i}} \min _{t \in[0, \omega]} \int_{t}^{t+\omega} e^{\int_{t}^{s} d_{i}(r) d r}\left[\sum_{j \neq i} a_{i j}(s)+b_{1 i}(s)\right] d s=\mu c_{i}^{0} \geq \mu
$$

\star Next, choose $t^{*} \in[0, \omega]$ and $i^{*} \in\{1, \ldots, n\}$ such that $x_{i^{*}}\left(t^{*}\right)<\mu+\lambda$.
From $x=\Phi x+\lambda \mathbf{1}$,

$$
\mu>x_{i^{*}}\left(t^{*}\right)-\lambda=\left(\Phi_{i^{*}} x\right)\left(t^{*}\right) \geq \mu
$$

a contradiction.

\star Let $\mu:=\min _{t \in[0, \omega]} \min _{1 \leq i \leq n} x_{i}(t)$. We have $0<\lambda \leq \mu \leq x_{i}(t) \leq r \leq r_{0}$, thus the 1st inequality in (H6) implies

$$
g_{i}\left(t, x_{i t}\right) \geq b_{1 i}(t) \mu,
$$

which, together with the constraint $c_{i}^{0} \geq 1$, yields

$$
\left(\Phi_{i} x\right)(t) \geq \mu \underline{\Gamma_{i}} \underline{B_{i}} \min _{t \in[0, \omega]} \int_{t}^{t+\omega} e^{\int_{t}^{s} d_{i}(r) d r}\left[\sum_{j \neq i} a_{i j}(s)+b_{1 i}(s)\right] d s=\mu c_{i}^{0} \geq \mu
$$

\star Next, choose $t^{*} \in[0, \omega]$ and $i^{*} \in\{1, \ldots, n\}$ such that $x_{i^{*}}\left(t^{*}\right)<\mu+\lambda$.
From $x=\Phi x+\lambda \mathbf{1}$,

$$
\mu>x_{i^{*}}\left(t^{*}\right)-\lambda=\left(\Phi_{i^{*}} x\right)\left(t^{*}\right) \geq \mu
$$

a contradiction.

(i),(ii) are proven, thus Krasnoselskii Theorem gives the existence of a fixed point x^{*} for Φ in $K_{r, R}=\{x \in K: r \leq\|x\| \leq R\}$, i.e., a positive ω-periodic solution of (1).

Theorem $\mathbf{1}^{+}$. Assume (H1)-(H6) and that there is $v=\left(v_{1}, \ldots, v_{n}\right)>0$ such that, for $b_{1 i}, b_{2 i}$ as in (H6),

$$
\begin{gathered}
c_{i}^{0}(v):=\underline{\Gamma_{i}} \underline{B_{i}} \min _{t \in[0, \omega]} \int_{t}^{t+\omega} e^{\int_{t}^{s} d_{i}(r) d r}\left(\sum_{j \neq i} v_{i}^{-1} v_{j} a_{i j}(s)+b_{1 i}(s)\right) d s \geq 1 \\
C_{i}^{\infty}(v):=\overline{\Gamma_{i}} \overline{B_{i}} \max _{t \in[0, \omega]} \int_{t}^{t+\omega} e^{\int_{t}^{s} d_{i}(r) d r}\left(\sum_{j \neq i} v_{i}^{-1} v_{j} a_{i j}(s)+b_{2 i}(s)\right) d s \leq 1 \\
i=1, \ldots, n
\end{gathered}
$$

THEN there exists (at least) one positive ω-periodic solution $x^{*}(t)$ of (1).
"superlinear case":
Theorem 2. Assume (H 1$)-(\mathrm{H} 5)$ and
(H6*) There are constants r_{0}, R_{0} with $0<r_{0}<R_{0}$ and functions $b_{1 i}, b_{2 i} \in C_{\omega}^{+}(\mathbb{R})$ with $\int_{0}^{\omega} b_{q i}(t) d t>0(q=1,2)$, such that for $i=1, \ldots, n, x \in K$ and $t \in[0, \omega]$ it holds:

$$
\begin{array}{ll}
g_{i}\left(t, x_{i t}\right) \leq b_{1 i}(t) u & \text { if } 0<x_{i} \leq u \leq r_{0}, \\
g_{i}\left(t, x_{i t}\right) \geq b_{2 i}(t) u & \text { if } x_{i} \geq u \geq R_{0} .
\end{array}
$$

If there is a vector $v=\left(v_{1}, \ldots, v_{n}\right)>0$ such that for $i=1, \ldots, n$

$$
\begin{aligned}
& C_{i}^{0}(v):=\overline{\Gamma_{i}} \overline{B_{i}} \max _{t \in[0, \omega]} \int_{t}^{t+\omega} e^{\int_{t}^{s} d_{i}(r) d r}\left(\sum_{j \neq i} v_{i}^{-1} v_{j} a_{i j}(s)+b_{1 i}(s)\right) d s \leq 1, \\
& c_{i}^{\infty}(v):=\underline{\Gamma_{i}} \underline{B_{i}} \min _{t \in[0, \omega]} \int_{t}^{t+\omega} e^{\int_{t}^{s} d_{i}(r) d r}\left(\sum_{j \neq i} v_{i}^{-1} v_{j} a_{i j}(s)+b_{2 i}(s)\right) d s \geq 1 .
\end{aligned}
$$

THEN there exists (at least) one positive ω-periodic solution $x^{*}(t)$ of (1).

Further criteria:

- For (1), define the $n \times n$ matrices of functions in $C_{\omega}^{+}(\mathbb{R})$ given by

$$
\begin{equation*}
D(t)=\operatorname{diag}\left(d_{1}(t), \ldots, d_{n}(t)\right), \quad A(t)=\left[a_{i j}(t)\right], \tag{3}
\end{equation*}
$$

(with $a_{i i}(t):=0 \forall i$)

- Assume (H1)-(H6).
- For $b_{1 i}(t), b_{2 i}(t)$ as in (H6), define

$$
B_{1}(t)=\operatorname{diag}\left(b_{11}(t), \ldots, b_{1 n}(t)\right), \quad B_{2}(t)=\operatorname{diag}\left(b_{21}(t), \ldots, b_{2 n}(t)\right)
$$

A pointwise comparison criterion:

Corollary 1. Existence of a positive ω-periodic solution of (1) IF

- $\exists v>0$:

$$
\begin{equation*}
M_{2}\left[B_{2}(t)+A(t)\right] v \leq D(t) v \leq M_{1}\left[B_{1}(t)+A(t)\right] v, t \in[0, \omega] \tag{H7}
\end{equation*}
$$

i.e., $\quad m_{2 i}\left(\sum_{j \neq i} v_{j} a_{i j}(t)+v_{i} b_{2 i}(t)\right) \leq v_{i} d_{i}(t) \leq m_{1 i}\left(\sum_{j \neq i} v_{j} a_{i j}(t)+v_{i} b_{1 i}(t)\right), \forall i, t \in[0, \omega]$

$$
\text { where } \quad M_{1}=\operatorname{diag}\left(m_{11}, \ldots, m_{1 n}\right), M_{2}=\operatorname{diag}\left(m_{21}, \ldots, m_{2 n}\right) \text {, }
$$

$$
\begin{equation*}
m_{1 i}:=\underline{\Gamma_{i}} \underline{B_{i}}\left(e^{D_{i}(\omega)}-1\right), m_{2 i}:=\overline{\Gamma_{i}} \overline{B_{i}}\left(e^{D_{i}(\omega)}-1\right), i=1, \ldots, n ; \tag{4}
\end{equation*}
$$

Proof. From (H7),

$$
\begin{aligned}
& \sum_{j \neq i} v_{j} a_{i j}(s)+v_{i} b_{1 i}(s) \geq m_{1 i}^{-1} v_{i} d_{i}(s), \quad \sum_{j \neq i} v_{j} a_{i j}(s)+v_{i} b_{2 i}(s) \leq m_{2 i}^{-1} v_{i} d_{i}(s) \Longrightarrow \\
& c_{i}^{0}(v) \geq m_{1 i}^{-1} \underline{\Gamma_{i}} \frac{B_{i}}{} \min _{t \in[0, \omega]} \int_{t}^{t+\omega} e^{\int_{t}^{s} d_{i}(r) d r} d_{i}(s) d s=m_{1 i}^{-1} \underline{\Gamma_{i}} \underline{B_{i}}\left(e^{D_{i}(\omega)}-1\right)=1 \\
& C_{i}^{\infty}(v) \leq m_{2 i}^{-1} \overline{\Gamma_{i}} \overline{B_{i}} \max _{t \in[0, \omega]} \int_{t}^{t+\omega} e^{\int_{t}^{s} d_{i}(r) d r} d_{i}(s) d s=m_{2 i}^{-1} \overline{\Gamma_{i}} \overline{B_{i}}\left(e^{D_{i}(\omega)}-1\right)=1
\end{aligned}
$$

An average comparison criterion:

Corollary 2. Existence of a positive ω-periodic solution of (1) IF

- $\exists v>0$:

$$
\begin{equation*}
\int_{0}^{\omega} N_{2}\left[B_{2}(t)+A(t)\right] v d t \leq v \leq \int_{0}^{\omega} N_{1}\left[B_{1}(t)+A(t)\right] v d t \tag{H8}
\end{equation*}
$$

i.e., $n_{2 i} \int_{0}^{\omega}\left(\sum_{j \neq i} v_{j} a_{i j}(s)+v_{i} b_{1 i}(s)\right) d s \leq v_{i} \leq n_{1 i} \int_{0}^{\omega}\left(\sum_{j \neq i} v_{j} a_{i j}(s)+v_{i} b_{2 i}(s)\right) d s \forall i$
for

$$
\begin{align*}
& N_{1}=\operatorname{diag}\left(n_{11}, \ldots, n_{1 n}\right), N_{2}=\left(n_{21}, \ldots, n_{2 n}\right) \text {, } \\
& n_{1 i}:=\underline{\Gamma_{i}} \underline{B_{i}}, n_{2 i}:=\overline{\Gamma_{i}} \overline{B_{i}} e^{D_{i}(\omega)}, i=1, \ldots, n . \tag{5}
\end{align*}
$$

(Proof. Trivial)
Recall:
$\underline{\Gamma_{i}}:=\left(\prod_{k=1}^{p}\left(1+\alpha_{i k}\right)^{-1} e^{D_{i}(\omega)}-1\right)^{-1}, \overline{\Gamma_{i}}:=\left(\prod_{k=1}^{p}\left(1+\eta_{i k}\right)^{-1} e^{D_{i}(\omega)}-1\right)^{-1}$

DDEs without impulses

$$
\begin{equation*}
x_{i}^{\prime}(t)=-d_{i}(t) x_{i}(t)+\sum_{j \neq i} a_{i j}(t) x_{j}(t)+g_{i}\left(t, x_{i t}\right), \quad i=1, \ldots, n \tag{6}
\end{equation*}
$$

$\star \Gamma_{i}(u) \equiv\left(e^{D_{i}(\omega)}-1\right)^{-1}$ and $B_{i}(t, u) \equiv 1$
$\star M_{1}=M_{2}=I$ and
$N_{1}=\operatorname{diag}\left(e^{D_{1}(\omega)}-1, \ldots, e^{D_{n}(\omega)}-1\right)^{-1}, N_{2}=\operatorname{diag}\left(1-e^{-D_{1}(\omega)}, \ldots, 1-e^{-D_{n}(\omega)}\right)^{-1}$

DDEs without impulses

$$
\begin{equation*}
x_{i}^{\prime}(t)=-d_{i}(t) x_{i}(t)+\sum_{j \neq i} a_{i j}(t) x_{j}(t)+g_{i}\left(t, x_{i t}\right), \quad i=1, \ldots, n \tag{6}
\end{equation*}
$$

$\star \Gamma_{i}(u) \equiv\left(e^{D_{i}(\omega)}-1\right)^{-1}$ and $B_{i}(t, u) \equiv 1$
$\star M_{1}=M_{2}=I$ and
$N_{1}=\operatorname{diag}\left(e^{D_{1}(\omega)}-1, \ldots, e^{D_{n}(\omega)}-1\right)^{-1}, N_{2}=\operatorname{diag}\left(1-e^{-D_{1}(\omega)}, \ldots, 1-e^{-D_{n}(\omega)}\right)^{-1}$
Corollaries 1'\&2'. Assume (H4)-(H6). For the matrices in $D(t), A(t), B_{1}(t), B_{2}(t)$ as above, suppose that for some $v>0$:
(a) either $B_{2}(t) v \leq[D(t)-A(t)] v \leq B_{1}(t) v$ for $t \in[0, \omega]$;
(b) or $\left\{\begin{array}{l}\int_{0}^{\omega}\left[B_{2}(t)+A(t)\right] v d t \leq \operatorname{diag}\left(1-e^{-D_{1}(\omega)}, \ldots, 1-e^{-D_{n}(\omega)}\right) v \\ \int_{0}^{\omega}\left[B_{1}(t)+A(t)\right] v d t \geq \operatorname{diag}\left(e^{D_{1}(\omega)}-1, \ldots, e^{D_{n}(\omega)}-1\right) v .\end{array}\right.$

Then, there exists a positive ω-periodic solution of (6).

4. Applications

Example 1. A periodic Nicholson system with distributed delays:

$$
\begin{align*}
x_{i}^{\prime}(t) & =-d_{i}(t) x_{i}(t)+\sum_{j \neq i} a_{i j}(t) x_{j}(t) \\
& +\underbrace{\sum_{l=1}^{m} \beta_{i l}(t) \int_{t-\tau_{i l}(t)}^{t} \gamma_{i l}(s) x_{i}(s) e^{-c_{i l}(s) x_{i}(s)} d s, i=1, \ldots, n}_{g_{i}\left(t, x_{i t}\right)}, \tag{N}
\end{align*}
$$

4. Applications

Example 1. A periodic Nicholson system with distributed delays:

$$
\begin{align*}
x_{i}^{\prime}(t) & =-d_{i}(t) x_{i}(t)+\sum_{j \neq i} a_{i j}(t) x_{j}(t) \\
& +\underbrace{\sum_{l=1}^{m} \beta_{i l}(t) \int_{t-\tau_{i l}(t)}^{t} \gamma_{i l}(s) x_{i}(s) e^{-c_{i l}(s) x_{i}(s)} d s}_{g_{i}\left(t, x_{i t}\right)}, i=1, \ldots, n \tag{N}
\end{align*}
$$

Biological interpretation:
One or multiple species, n classes or patches, with migration of the populations among classes
$x_{i}(t)$ - density of the species on class i
$a_{i j}(t)(j \neq i)$ - migration coefficient from class j to class $i \quad$ (w.l.g. $\left.a_{i i} \equiv 0\right)$
$d_{i}(t)$ - coefficient of instantaneous loss for class i : death rate on class i plus the emigration rates of the population that leaves class i :
$d_{i}(t)=m_{i}(t)+\sum_{j \neq i} a_{j i}(t),\left(m_{i}>0\right)$
birth function on class i (Nicholson-type): $\sum_{k=1}^{m} \beta_{i k}(t) \int_{t-\tau_{i l}(t)}^{t} \gamma_{i l}(s) h_{i k}\left(x_{i}(s)\right) d s$

$$
h_{i k}(u)=x e^{-c_{i k}(t) u}
$$

Ricker nonlinearities $h(u)=u e^{-c u}(c>0)$:

$h(0)=0, h^{\prime}(0)=1, h(u) / u \rightarrow 0$ as $t \rightarrow \infty$

$$
h_{i k}(u)=x e^{-c_{i k}(t) u}
$$

Ricker nonlinearities $h(u)=u e^{-c u}(c>0)$:

$$
h(0)=0, h^{\prime}(0)=1, h(u) / u \rightarrow 0 \text { as } t \rightarrow \infty
$$

- The nonlinearities are bounded $\Longrightarrow B_{2}(t)$ can be taken arbitrarily small
- With

$$
b_{i}(t):=\sum_{l=1}^{m} \beta_{i l}(t) \int_{t-\tau_{i l}(t)}^{t} \gamma_{i l}(s) d s, \quad t \geq 0, \quad i=1, \ldots, n
$$

and $B(t)=\operatorname{diag}\left(b_{1}(t), \ldots, b_{n}(t)\right)$, (H6) holds with

$$
B_{1}(t)=(1-\varepsilon) B(t), B_{2}(t)=\varepsilon I \quad(\forall \varepsilon>0)
$$

Proposition 1. ${ }^{3}$

IF (with $\mathbf{v}=(\mathbf{1}, \ldots, \mathbf{1})$):
(i) either $\sum_{j \neq i} a_{i j}(t) \leq \not \equiv d_{i}(t) \leq \neq \sum_{j \neq i} a_{i j}(t)+b_{i}(t), \forall t \in[0, \omega]$
(ii) or $e^{D_{i}(\omega)} \int_{0}^{\omega} \sum_{j \neq i} a_{i j}(t) d t \leq\left(e^{D_{i}(\omega)}-1\right) \leq \int_{0}^{\omega}\left(\sum_{j \neq i} a_{i j}(t)+b_{i}(t)\right) d t$

THEN system (N) has a positive ω-periodic solution.

[^1]Impulsive version of (N) :

$$
\left\{\begin{align*}
x_{i}^{\prime}(t)= & -d_{i}(t) x_{i}(t)+\sum_{j \neq i} a_{i j}(t) x_{j}(t) \tag{IN}\\
& +\sum_{l=1}^{m} \beta_{i l}(t) \int_{t-\tau_{i l}(t)}^{t} \gamma_{i l}(s) x_{i}(s) e^{-c_{i l}(s) x_{i}(s)} d s, t \neq t_{k} \\
x_{i}\left(t_{k}^{+}\right) & -x_{i}\left(t_{k}\right)=I_{i k}\left(x_{i}\left(t_{k}\right)\right), \quad k \in \mathbb{Z}, \quad i=1, \ldots, n
\end{align*}\right.
$$

where $0 \leq t_{1}<t_{2}<\cdots<t_{p}<\omega, t_{k+p}=t_{k}+\omega, \forall k$ (p impulses on $[0, \omega]$).
Take e.g. $I_{i k}(u)=I(u):=\sin u, u \geq 0, \forall k$.

Impulsive version of (N) :

$$
\left\{\begin{align*}
x_{i}^{\prime}(t)= & -d_{i}(t) x_{i}(t)+\sum_{j \neq i} a_{i j}(t) x_{j}(t) \tag{IN}\\
& +\sum_{l=1}^{m} \beta_{i l}(t) \int_{t-\tau_{i l}(t)}^{t} \gamma_{i l}(s) x_{i}(s) e^{-c_{i l}(s) x_{i}(s)} d s, t \neq t_{k} \\
x_{i}\left(t_{k}^{+}\right) & -x_{i}\left(t_{k}\right)=I_{i k}\left(x_{i}\left(t_{k}\right)\right), \quad k \in \mathbb{Z}, \quad i=1, \ldots, n
\end{align*}\right.
$$

where $0 \leq t_{1}<t_{2}<\cdots<t_{p}<\omega, t_{k+p}=t_{k}+\omega, \forall k(p$ impulses on $[0, \omega])$.
Take e.g. $I_{i k}(u)=I(u):=\sin u, u \geq 0, \forall k$.
Then:
$\star-\frac{1}{\pi} \leq \frac{I_{i k}(u)}{u} \leq 1, u>0$, thus (H2) holds with $\alpha_{i k}=-\frac{1}{\pi}, \eta_{i k}=1$
$\star(\mathrm{H} 3)$ is satisfied if $2^{p}<e^{\int_{0}^{\omega} d_{i}(t) d t} \forall i$
With the above notations: $J_{i k}(u)=\left(1+\frac{\sin u}{u}\right)^{-1}, \exists J_{i k}(0)=\lim _{u \rightarrow 0^{+}} J(u)=\frac{1}{2}, \overline{B_{i}}=$ $1, \underline{B_{i}}=2^{-p}, \overline{\Gamma_{i}}=\left(\left(e^{D_{i}(\omega)} 2^{-p}-1\right)^{-1}, \underline{\Gamma_{i}}=\left(e^{D_{i}(\omega)}-1\right)^{-1}\right.$

Plugging these constants to evaluate $M_{q}(t), N_{q}(t)(q=1,2)$ in (4), (5), from Cor 1 \& 2 (with $v=\overrightarrow{1}$):

Proposition 2. IF

(a) either

$$
\frac{e^{D_{i}(\omega)}-1}{2^{-p} e^{D_{i}(\omega)}-1} \sum_{j \neq i} a_{i j}(t) \leq_{\not \equiv} d_{i}(t) \leq_{\not \equiv} 2^{-p}\left(\sum_{j \neq i} a_{i j}(t)+b_{i}(t)\right), \forall t \in[0, \omega], \forall i
$$

(b) or

$$
\frac{\left(e^{D_{i}(\omega)}-1\right)^{2}}{2^{-p} e^{D_{i}(\omega)}-1} \int_{0}^{\omega} \sum_{j \neq i} a_{i j}(t) d t \leq\left(e^{D_{i}(\omega)}-1\right) \leq \int_{0}^{\omega}\left(\sum_{j \neq i} a_{i j}(t)+b_{i}(t)\right) d t, \forall i
$$

THEN ($I N$) admits at least one positive ω-periodic solution.

Example 2. A simple autonomous planar Nicholson system

$$
\left\{\begin{array}{l}
x_{1}^{\prime}(t)=-d_{1} x_{1}(t)+a_{1} x_{2}(t)+\beta_{1} x_{1}\left(t-\tau_{1}\right) e^{-c_{1} x_{1}\left(t-\tau_{1}\right)} \\
x_{2}^{\prime}(t)=-d_{2} x_{2}(t)+a_{2} x_{1}(t)+\beta_{2} x_{2}\left(t-\tau_{2}\right) e^{-c_{2} x_{2}\left(t-\tau_{2}\right)} \quad\left(d_{i}, a_{i}, \beta_{i}, c_{i}, \tau_{i}>0\right)
\end{array}\right.
$$

Example 2. A simple autonomous planar Nicholson system

$$
\left\{\begin{array}{l}
x_{1}^{\prime}(t)=-d_{1} x_{1}(t)+a_{1} x_{2}(t)+\beta_{1} x_{1}\left(t-\tau_{1}\right) e^{-c_{1} x_{1}\left(t-\tau_{1}\right)} \\
x_{2}^{\prime}(t)=-d_{2} x_{2}(t)+a_{2} x_{1}(t)+\beta_{2} x_{2}\left(t-\tau_{2}\right) e^{-c_{2} x_{2}\left(t-\tau_{2}\right)}
\end{array} \quad\left(d_{i}, a_{i}, \beta_{i}, c_{i}, \tau_{i}>0\right)\right.
$$

- community matrix: $M=\left[\begin{array}{cc}\beta_{1}-d_{1} & a_{1} \\ a_{2} & \beta_{2}-d_{2}\end{array}\right]$.
- $s(M) \leq 0 \Longleftrightarrow 0$ is GAS (globally asymptotically stable) (in the set of all non-negative solutions), where $s(M)=\max \{\operatorname{Re} \lambda: \lambda \in \sigma(M)\}$.
(e.g. with $d_{i}=2, a_{i}=\beta_{i}=1, i=1,2, \sigma(M)=\{0,-2\} \Longrightarrow 0$ is GAS)

Example 2. A simple autonomous planar Nicholson system

$$
\left\{\begin{array}{l}
x_{1}^{\prime}(t)=-d_{1} x_{1}(t)+a_{1} x_{2}(t)+\beta_{1} x_{1}\left(t-\tau_{1}\right) e^{-c_{1} x_{1}\left(t-\tau_{1}\right)} \\
x_{2}^{\prime}(t)=-d_{2} x_{2}(t)+a_{2} x_{1}(t)+\beta_{2} x_{2}\left(t-\tau_{2}\right) e^{-c_{2} x_{2}\left(t-\tau_{2}\right)} \quad\left(d_{i}, a_{i}, \beta_{i}, c_{i}, \tau_{i}>0\right)
\end{array}\right.
$$

- community matrix: $M=\left[\begin{array}{cc}\beta_{1}-d_{1} & a_{1} \\ a_{2} & \beta_{2}-d_{2}\end{array}\right]$.
- $s(M) \leq 0 \Longleftrightarrow 0$ is GAS (globally asymptotically stable) (in the set of all non-negative solutions), where $s(M)=\max \{\operatorname{Re} \lambda: \lambda \in \sigma(M)\}$.
(e.g. with $d_{i}=2, a_{i}=\beta_{i}=1, i=1,2, \sigma(M)=\{0,-2\} \Longrightarrow 0$ is GAS)

Remark. This contradicts the assertion in Zhang, Huang \& Wei, Adv. Diff. Equ.(2015), of existence of a positive (ω-periodic) solution for the above system with ω-periodic coefficients (rather than autonomous).

- Fix any $\omega>0$ and add e.g. a single linear, constant, positive impulse on each component and on each interval of length ω :

$$
\begin{equation*}
\Delta x_{i}\left(t_{k}\right)=\eta_{i} x_{i}\left(t_{k}\right), \quad i=1,2, k \in \mathbb{Z} \tag{7}
\end{equation*}
$$

- With $v=(1,1)$ in Corol. 1: this destroys the GAS of the trivial solution if

$$
0<\eta_{i}<\frac{e^{2 \omega}-1}{e^{2 \omega}+1}, \quad i=1,2 \Longrightarrow \exists \text { a positive } \omega \text {-periodic solution ! }
$$

Final Comments:

- There is only a couple of previous works proving the existence of positive periodic solutions for systems of differential equations with delays and impulses
(Moreover, as a particular case our work shows that same claims in Zang et al., Adv Dif Eqs 2015, are not correct!)
- Our approach also applies to impulsive systems (1) with infinite delay
- For the scalar case: very few papers have "average" criteria, relating the averages of the coefficients over $[0, \omega]$

Future:

- For $n>1$, how to eliminate/weaken hypothesis (H4)(ii), and still derive the existence of an ω-periodic solution with all components positive?
- For $n>1$, how to eliminate/weaken hypothesis (H4)(ii), and still derive the existence of an ω-periodic solution with all components positive?
- Once the existence of a positive periodic solution $x^{*}(t)$ is established: provide sufficient conditions for its global attractivity!
(This depends strongly on the particular $g_{i}\left(t, x_{i t}\right)$ and on the impulses!)
- For $n>1$, how to eliminate/weaken hypothesis (H4)(ii), and still derive the existence of an ω-periodic solution with all components positive?
- Once the existence of a positive periodic solution $x^{*}(t)$ is established: provide sufficient conditions for its global attractivity!
(This depends strongly on the particular $g_{i}\left(t, x_{i t}\right)$ and on the impulses!)
- Apply the present technique to treat other families of impulsive systems of DDEs, such as Lotka-Volterra models, Nicholson systems with "nonlinear mortality terms", etc.
- For $n>1$, how to eliminate/weaken hypothesis (H4)(ii), and still derive the existence of an ω-periodic solution with all components positive?
- Once the existence of a positive periodic solution $x^{*}(t)$ is established: provide sufficient conditions for its global attractivity!
(This depends strongly on the particular $g_{i}\left(t, x_{i t}\right)$ and on the impulses!)
- Apply the present technique to treat other families of impulsive systems of DDEs, such as Lotka-Volterra models, Nicholson systems with "nonlinear mortality terms", etc.
- Treat the case of almost periodic systems of DDEs with impulses.
(For non-impulsive equations and systems: the usual operators whose fixed points we are looking for are not compact, therefore other techniques have been used, by imposing conditions that allow the use of Lyapunov functionals, Banach contraction principle, monotone operators...)

THANK YOU!

[^0]: ${ }^{2}$ Combination of both the compressive ($r>R$) and expansive ($r<R$) forms can lead to the existence of more than one positive period solution to (1).

[^1]: ${ }^{3}$ with no impulses: $m_{1 i}=m_{2 i}=1, n_{1 i}=\left(e^{D_{i}(\omega)}-1\right)^{-1}, n_{2 i}=e^{D_{i}(\omega)}\left(e^{D_{i}(\omega)}-1\right)^{-1}$

