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Organization of the presentation and Main goals

Organization of the presentation and Main goals

Introduction

Propose a coupled local/nonlocal evolution problem in 1-d

Study existence and uniqueness of solutions, mass conservation and
asymptotic behaviour as t goes to infinity

Study the asymptotic behavior of the solution as t goes to infinity

Recover the local heat equation in the whole domain taking the limit
in the rescaled nonlocal kernel

Extend the results to higher dimensions
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Introduction

Introduction

A large amount of data are available to describe current epidemiological
events. We need to offer reliable models to be used in each event.
Example: Risk studies for COVID-19 pandemic
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Introduction

Introduction

Example: Impact of lock down strategies during COVID-19 pandemic
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Introduction

Introduction
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Introduction

Introduction

A classical example of a local linear diffusion equation is the heat equation,

ut(x , t) = uxx(x , t).

Properties

Existence, uniqueness and continuous dependence on the initial data;

Maximum and comparison principles;

If u0 is a nonnegative and nontrivial initial data, then u(x , t) > 0 for
every x ∈ RN and every t > 0.
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Nonlocal diffusion

Nonlocal diffusion equation

ut(x , t) =

∫
RN

J(x − y)(u(y , t)− u(x , t))dy ,

where J : RN → R is assumed nonnegative, continuous, radially symmetric,
with compact support and verifies∫

RN

J(r)dr = 1.

Properties (the same as for the heat equation, but there is no regularizing
effect)

Existence, uniqueness and continuous dependence on the initial data;

Maximum and comparison principles;

If u0 is a nonnegative and nontrivial initial data, then u(x , t) > 0 for
every x ∈ RN and every t > 0.
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Nonlocal diffusion

In this model, u(x , t) stands for the density of individuals in x at time t and
J(x − y) is the probability distribution of jumping from y to x . Then

(J ∗ u)(x , t) =
∫
RN

J(x − y)u(y , t)dy

is the rate at which the individuals are arriving to x from other places.

−u(x , t) = −
∫
RN

J(y − x)u(x , t)dy

is the rate at which they are leaving from x to other places.
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Nonlocal diffusion

Associated to the classical heat equation

ut(x , t) = △u(x , t) (1)

we have the following energy

E (u) =

∫
|▽u|2

2
,

in the sense that (1) is the gradient flow associated to E (u).
Similarly, associated to the nonlocal diffusion problem

ut(x , t) =

∫
RN

J(x − y)(u(y , t)− u(x , t))dy (2)

we have the following energy

E (u) =
1

4

∫
RN

∫
RN

J(x − y)(u(y)− u(x))2dydx ,

in the sense that (2) is the gradient flow associated to E (u).
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A local/nonlocal diffusion model in 1-d

We split the domain Ω = (−1, 1) in two subdomains Ωl = (−1, 0) and
Ωnl = (0, 1). We propose and evolution problem consisting of two parts: a
local part, composed of a heat equation with Neumann/Robin type boundary
conditions, for x ∈ (−1, 0), t > 0,

ut(x , t) =
∂2u

∂x2
(x , t),

ux(−1, t) = 0,

ux(0, t) = CJ,2

∫ 0

−1

∫ 1

0

J(x − y)(v(y , t)− u(0, t))dydx ,

u(x , 0) = u0(x).

(3)

For the nonlocal domain we have, for x ∈ (0, 1), t > 0,
vt(x , t) = CJ,1

∫ 1

0

J(x − y) (v(y , t)− v(x , t)) dy ,

−CJ,2

∫ 0

−1

J(x − y)(v(x , t)− u(0, t))dy ,

v(x , 0) = v0(x).

(4)
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A local/nonlocal diffusion model in 1-d

The complete problem can be summarized as we look for w defined by

w(x , t) =

{
u(x , t), if x ∈ (−1, 0)

v(x , t), if x ∈ (0, 1)
(5)

where (u, v) is a solution to (3)–(4).
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Some properties of the local/nonlocal model

The local/nonlocal problem is well posed in the sense that there is
existence and uniqueness of solutions.

There is an energy functional such that the evolution problem can be
viewed as the associated gradient flow,

(u, v)′(t) = −∂E [(u, v)(t)]

for

E (u, v) =
1

2

∫ 0

−1
|ux |2+

CJ,1

4

∫ 1

0

∫ 1

0
J(x − y)|v(y)− v(x)|2

+
CJ,2

2

∫ 0

−1

∫ 1

0
J(x − y)|v(y)− u(0)|2.

Solutions preserve the total mass of the initial condition.

Solutions converge exponentially fast to the mean value of the initial
condition.
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Existence, uniqueness and comparison principle Mild solution

Theorem (S.- Oliva - Rossi. Applicable Analysis 2021)

Given w0 ∈ L2(−1, 1), there exists a unique mild solution

w(t, ·) ∈ B :=
{
w ∈ L2(−1, 1) : u|Ωl

∈ H1(−1, 0), v ∈ L2(0, 1)
}

to the local/nonlocal problem, with (u, v) satisfying (3)–(4).

A comparison principle holds: if w0 ≥ z0 then the corresponding solutions
verify w ≥ z in (−1, 1)× R+.

Moreover, the total mass of the solution is preserved along the evolution,
that is, ∫ 1

−1
w(·, t) =

∫ 1

−1
w0.
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Existence, uniqueness and comparison principle Mild solution

Fixed point argument

Theorem

Given w0 ∈ L2([−1, 1]) (or given w0 ∈ C ([−1, 1])), there exists a unique
solution to problem (3)–(4), which has w0 as initial condition.

Idea of the proof:

Given u ∈ (−1, 0) we obtain the solution for v ;

Given v ∈ (0, 1) we obtain the solution for u;

Find a T > 0, such that we have a contraction;

Use a fixed point argument.
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Asymptotic decay

Asymptotic behavior

Let us take β1 as the first nonnegative eigenvalue

0 < β1 = inf
w :

∫ 1
−1

w=0

E (u, v)∫ 1

−1

(w(x))2dx

. (6)

Remark: Due to the lack of compactness of the nonlocal part, it is not clear that
the infimum defining β1 is attained.

Theorem

Given w0 ∈ L2(−1, 1), the solution of the problem, with initial condition w0

converges to its mean value as t → ∞ with an exponential rate,∥∥∥∥w(·, t)−
 

w0

∥∥∥∥
L2(−1,1)

≤ C
(
∥w0∥L2(−1,1)

)
e−β1t , t > 0, (7)

where β1 is given by (6) and C = (w0) > 0.
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Existence and uniqueness of a mild solution

Semigroup theory

BJu =



−uxx for x ∈ (−1, 0),

with ux(−1) = 0 and ux(0) = −CJ,2

∫ 0

−1

J(x − y)(u(y)− u(0))dy ,

−CJ,1

2

∫ 1

0

J(x − y)(u(y)− u(x))dy + CJ,2

∫ 0

−1

J(x − y)(u(x)− u(0))dy

for x ∈ (0, 1).

Let

D(BJ) :=
{
(u, v) : u ∈ H2(−1, 0), v ∈ L2(0, 1) with

∂u

∂x
(−1) = 0 and

∂u

∂x
(0) = −CJ,2

∫ 0

−1

J(x − y)(v(y)− u(0))dy
}

denote the domain of the operator, that is, we have that

BJ : D(BJ) → L2(−1, 1).
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Existence and uniqueness of a mild solution

According to Andreu et all (2010), we can define a mild solution in L2(−1, 1),
of the abstract Cauchy problem by:{

u′(t) = BJ(u(t)), t > 0

u(0) = u0.
(8)

Note that this operator is linear in a Banach space so the general theory of
existence also can be given by the Hille-Yosida Theorem.
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Existence and uniqueness of a mild solution

Existence of a mild solution

Theorem

Given and initial condition w0 ∈ L2(−1, 1), there exists an unique mild
solution w of the problem.

Idea of the proof:

BJ is completely accretive in L2(−1, 1);

BJ satisfies the range condition, L2(−1, 1) ⊂ R(I + BJ);

By the Crandall-Ligget’s Theorem and the linear semigroup theory
will give existence and uniqueness of a mild solution of the evolution
problem.
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Approximations

Rescaling the nonlocal kernel

Le J be the rescaled kernel

Jϵ(x) :=
CJ,1

ϵ3
J
(x
ϵ

)
,

where CJ,1 =
2

M(J) , CJ,2 = 1, and

M(J) :=

∫
R
J(z)|z |2dz < ∞.
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Approximations

The associated energy functional to the rescaled problem is given by

E ε(wε) :=
1

2

∫ 0

−1

(uεx )
2 +

CJ,1

4ε3

∫ 1

0

∫ 1

0

Jε(x − y) (vε(y)− vε(x))2 dydx (9)

+
CJ,2

2ε3

∫ 0

−1

∫ 1

0

Jε(x − y) (uε(0)− vε(x))2 dxdy ,

if w ε ∈ D(E ε) := H1(−1, 0) × L2(0, 1), and E ε(w ε) := ∞ if not. Analo-
gously, we define the limit energy functional as

E (w) :=
1

2

∫ 1

−1

|wx |2dx , (10)

if w ∈ D(E ) := H1(−1, 1), and E (w) := ∞ if not.
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Approximations

Given w0 ∈ L2(−1, 1), for each ε > 0, let w ε be the solution to the evolution
problem associated with the energy E ε, and w be the solution associated
to the functional E , considering the same initial condition.

Theorem

Under the above assumptions, the solutions to the rescaled problems, w ε,
converge in the following sense, to the solution of the heat equation, w .
For any finite T > 0 we have

lim
ε→0

(
max

t∈[0,T ]
∥ w ε(·, t)− w(·, t) ∥L2(−1,1)

)
= 0. (11)
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Approximations

Idea of the proof:

BJε ∈ L2(−1, 1);

A ∈ H2(−1, 1);

We show the convergence of the resolvents, that is,
limε→0 (I + BJε)

−1 ϕ = (I + A)−1 ϕ, for every ϕ ∈ L2(−1, 1);

By the Brezis-Pazy Theorem we get the convergence of the solutions,
that is w ε → w in the L2−norm.
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Extension for higher dimensions

Higher dimension extension

Take Ω, as a bounded smooth domain in RN and split it into two subdomains
Ωl and Ωnl ,

Ω = Ωl ∪ Ωnl .

Let us call Σ, the interface between Ωl and Ωnl inside Ω, that is,

Σ = Ωl ∩ Ωnl ∩ Ω.

We will assume that Ωl has a Lipschitz boundary. For any

w = (u, v) ∈ B :=
{
w ∈ L2(Ω) : u|Ωl

∈ H1(Ωl), v ∈ L2(Ωnl)
}

we define the energy

E (u, v) :=
1

2

∫
Ωl

|∇u|2dx +
CJ,1

4

∫
Ωnl

∫
Ωnl

J(x − y) (v(y)− v(x))2 dydx

+
CJ,2

2

∫
Ωnl

∫
Σ

G (x , z) (v(x)− u(z))2 dσ(z)dx .

(12)
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Extension for higher dimensions

.

Figure 1: The local part (Ωl) and the nonlocal part (Ωnl).
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Extension for higher dimensions

With this energy the associated evolution problems reads as,



∂u

∂t
(x , t) = ∆u(x , t),

∂u

∂η
(z, t) = 0, z ∈ ∂Ωl ∩ ∂Ω,

∂u

∂η
(z, t) = CJ,2

∫
Ωnl

G(x , z)(v(y , t)− u(z, t))dx , z ∈ Σ,

u(x , 0) = u0(x).

(13)

for x ∈ Ωl , t > 0, and


∂v

∂t
(x , t) = CJ,1

∫
Ωnl

J(x − y) (v(y , t)− v(x , t)) dy − CJ,2

∫
Σ
G(x , z)(v(x , t)− u(z, t))dσ(z),

v(x , 0) = v0(x),

(14)

for x ∈ Ωnl , t > 0.
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Extension for higher dimensions Results

High dimension: Main results

i. The problem (13)–(14) posses existence and uniqueness of the
solution;

ii. The total mass is preserved;

iii. Solutions converge to the mean value of the initial condition, as
t → ∞ with an exponential rate.

Remark: The approximation of the heat equation with Neumann boundary
conditions under rescales of the kernel is left open. We believe that the
result holds with extra assumptions on the coupling kernel G .

Sérgio Muniz Oliva A local/nonlocal diffusion model 33 / 33



Extension for higher dimensions Results

Thanks

Thank you!
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