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Organization of the presentation and Main goals

Organization of the presentation and Main goals

@ Introduction

@ Propose a coupled local/nonlocal evolution problem in 1-d

@ Study existence and uniqueness of solutions, mass conservation and
asymptotic behaviour as t goes to infinity

@ Study the asymptotic behavior of the solution as t goes to infinity

@ Recover the local heat equation in the whole domain taking the limit
in the rescaled nonlocal kernel

@ Extend the results to higher dimensions
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Introduction

Introduction

A large amount of data are available to describe current epidemiological
events. We need to offer reliable models to be used in each event.
Example: Risk studies for COVID-19 pandemic

PLOS ONE

.

Modellnf future spread of infections via mobile geolocation
data and population dynamics. An application to COVID-19
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Introduction

A large amount of data are available to describe current epidemiological
events. We need to offer reliable models to be used in each event.
Example: Risk studies for COVID-19 pandemic

PLOS ONE

.

Modeling future spread of infections via mobile geolocation
data and population dynamics. An application to COVID-19
in Brazil
Do

Table 1. Descriptive statistics of the daily number of recordings in March 2019 and 2020 for cach state on the weekends and weekdays.

RJ 2019 Weekday 1,053,615 259,721 528,805 790,609 1,140,444 1,180,351 1,465,666
Weekend 938,472 163,672 679,678 811,883 962,988 1,026,558 1,201,777

2020 Weekday 870,920 445,958 214,521 509,431 870,189 1,196,752 1,682,386

Weekend 624,417 425,258 179,309 238,466 442,211 1,023,705 1,332,701

sp 2019 Weekday 3,708,276 850,839 2,221,510 2,790,522 3.927.577 4,169,805 5,011,449
Weekend 3,256,169 563,222 2,456,231 2,756,478 3,550,141 3,569,211 4,172,801

2020 Weekday 4,353,782 1,652,625 1,661,284 2,816,090 4,465,741 5,545,852 7,384,012

‘Weekend 3,561,949 1,495,902 1,681,135 2,118,311 3,964,115 4,999,465 5,527,734

SD = Standard Deviation.

https://do
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Introduction

A large amount of data are available to describe current epidemiological
events. We need to offer reliable models to be used in each event.
Example: Risk studies for COVID-19 pandemic

PLOS ONE

Modeling future spread of infections via mobile geolocation
data anI population dynamics. An application to COVID-19
in Brazil
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Fig 3. Typical distribution of the location of app usage in one day for the states of a0 Paulo (left) and Rio de Janciro (right) considering a resolution of 0.01
degree on each geographical coordinate. This data refers to March 1%, 2020 and the color represents the number of recordings, first or subsequent, in each location

https://doi.org/10.1371/journal.pone.0236732.003
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Introduction

A large amount of data are available to describe current epidemiological
events. We need to offer reliable models to be used in each event.
Example: Risk studies for COVID-19 pandemic

PLOS ONE

.

Modeling future spread of infections via mobile geolocation

data and population dynamics. An application to COVID-19
in Brazil

a0 = oo (M) + om0 - o or]

J# J#i
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Introduction

A large amount of data are available to describe current epidemiological
events. We need to offer reliable models to be used in each event.
Example: Risk studies for COVID-19 pandemic

PLOS ONE

. Fig 14. Rank of infection and number of confirmed COVID19 cases for Sdo Paulo
state.
Modeling future spread of infections via mobile geolocation The points refer to ranks estimated for different values of s, the triangles refer to the
datﬂ and population dynamics. An application to COVID-19 official number of confirmed COVID19 cases registered on the 1t of May 2020 for each
Brazil city in the state of Sdo Paulo. The line is a smooth approximation of the confirmed cases
er (triangles). The colors refer to the risk evaluated by k-means clustering of the ranks
attributed by the simulated models.
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Example: Impact of lock down strategies during COVID-19 pandemic
Patterns @ CelPress

A snapshot of a pandemic:
The interplay between social isolation
and COVID-19 dynamics in Brazil

Gk Forora Dgoarcondes, Marra? s, Sargobt e Ciial Peac s0d Pt Pect

Figure 5. Dispersion between the mean relative isolation index of 1 week ago and the 7-day moving average of incidence for 32 cities during
the upward phase.
Colors refer to the stage. The line is a LOESS . The value of S is the skewness coefficient of the normalized LOESS curve.
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7-day avarage of nowcasted incidence

Mean relative isolation index of one week ago
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Introduction

Example: Impact of lock down strategies during COVID-19 pandemic

Patterns @ CelPress

A snapshot of a pandemic:
The interplay between social isolation
and COVID-19 dynamics in Brazil

ClduiP o, Diogo Marcondes Marana . Mol S . O, il M.Poixoo, and Podo'. Peix

Figure 8. Box plots of HDI, incidence on the peak, median isolation on each stage, length of each stage, and length of the upward phase for
the cities that employed isolation as a remedy (negative skewness coefficient of the smooth curve) and cities that employed it as prevention
(positive skewness)

p values refer to the Wicoxon test comparing the two groups of cities.
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@ Kraemer MUG, Yang CH,Gutierrez B, et al. The effect of human
mobility and control measures on the COVID-19 epidemic in China.
medRxiv, 2020.

o Tatem AJ, Rogers DJ, Hay SI. Global transport networks and
infectious disease spread. Adv Parasitol. 2006;62:293-343.

@ Benedict MQ, Levine RS, Hawley WA, et al. Spread of the tiger:
global risk of invasion by the mosquito Aedes albopictus. Vector
Borne Zoonotic Dis. 2007;7(1):76-85.

o Eritja R, Palmer JR, RoizD, et al.Direct evidence of adult Aedes
albopictus dispersal by car. Sci Rep. 2017;7(1):1-15.

o HawleyWA, Reiter P, Copeland RS, et al. Aedes albopictus in North
America: probable introduction in used tires from northern Asia.
Science. 1987;236(4805):1114-1116.
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@ Several evolution problems with nonlonal effects

o F. Andreu-Vaillo, J J. Toledo-Melero, J. M. Mazon and J. D.
Rossi. Nonlocal diffusion problems. Number 165. American
Mathematical Soc., 2010.

e A. Garriz, F. Quirés and J. D. Rossi. Coupling local and nonlocal
evolution equations. Calculus of Variations and Partial Differential
Equations. 59(4), art. 112, (2020).

o Chasseigne, E.; Chaves, M.; Rossi, J. D. Asymptotic behavior for
nonlocal diffusion equations. J. Math. Pures Appl. (9) 86 (2006),
no.3, 271-291.

@ This work: Bruna C. dos Santos, Sergio M. Oliva and Julio D. Rossi
(2021) A local/nonlocal diffusion model, Applicable Analysis, DOI:
10.1080,/00036811.2021.1884227
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Introduction

Introduction

A classical example of a local linear diffusion equation is the heat equation,

ue(x, t) = ux(x, t).

Properties
@ Existence, uniqueness and continuous dependence on the initial data;
@ Maximum and comparison principles;

o If up is a nonnegative and nontrivial initial data, then u(x, t) > 0 for
every x € RN and every t > 0.
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Nonlocal diffusion

Nonlocal diffusion equation
ue(x, £) = /R J(x = y)(uly, £) — u(x, £))dy.

where J : RN — R is assumed nonnegative, continuous, radially symmetric,
with compact support and verifies

J(r)dr = 1.
RN

Properties (the same as for the heat equation, but there is no regularizing
effect)

@ Existence, uniqueness and continuous dependence on the initial data;
@ Maximum and comparison principles;

e If up is a nonnegative and nontrivial initial data, then u(x,t) > 0 for
every x € RN and every t > 0.
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Nonlocal diffusion

In this model, u(x, t) stands for the density of individuals in x at time t and
J(x — y) is the probability distribution of jumping from y to x. Then

(e u)xt) = [ I y)uly. ey
is the rate at which the individuals are arriving to x from other places.

—u(x,t)=— J(y — x)u(x, t)dy
RN

is the rate at which they are leaving from x to other places.
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Associated to the classical heat equation
uf(X7 t) = AU(X7 t) (1)

we have the following energy

E(u) = / |v2u\27

in the sense that (1) is the gradient flow associated to E(u).
Similarly, associated to the nonlocal diffusion problem

. 6) = [ = y)(uty, ) = ulx. )y )
we have the following energy
Ew =g [ [ Jc=)uly) — utx) P

in the sense that (2) is the gradient flow associated to E(u).
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A local/nonlocal diffusion model in 1-d

We split the domain Q = (—1,1) in two subdomains Q; = (—1,0) and
Q= (0,1). We propose and evolution problem consisting of two parts: a
local part, composed of a heat equation with Neumann/Robin type boundary
conditions, for x € (—1,0), t > 0,

ur(x, t) = g 2(X t),

u(—1,t) = )
u(0,t) = C 2/ / (x — y, t) — u(0, t))dydx,
u(x,0) = wuo(x

For the nonlocal domain we have, for x € (0,1), t > 0,

w(xt) = Cra /0 J(x — y) (v(y.£) - v(x 1)) dy.

—Ca /_ = (vl 1) = 0. 1)y (4)
v(x,0) = w(x).
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A local/nonlocal diffusion model in 1-d

The complete problem can be summarized as we look for w defined by

W(X,t)_{u(x,t), if xe(-1,0)

v(x,t), if xe€(0,1) )

where (u, v) is a solution to (3)—(4).
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Some properties of the local/nonlocal model

@ The local/nonlocal problem is well posed in the sense that there is
existence and uniqueness of solutions.

@ There is an energy functional such that the evolution problem can be
viewed as the associated gradient flow,

(1) (£) = ~0E [(u v)(1)]
for
1 0 ) CJ71 1 1 )
B =5 [ P+ [ [ o= p)ivty) = vio)
0 1
+ 2 [ [ =)o) - v

@ Solutions preserve the total mass of the initial condition.

@ Solutions converge exponentially fast to the mean value of the initial
condition.
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Existence, uniqueness and comparison principle Mild solution

Theorem (S.- Oliva - Rossi. Applicable Analysis 2021)
Given wg € L?(—1,1), there exists a unique mild solution
w(t,-) € B:={w e *(—1,1) : ulg,€ H'(~1,0),v € L*(0,1)}

to the local/nonlocal problem, with (u, v) satisfying (3)—(4).

A comparison principle holds: if wg > zy then the corresponding solutions
verify w > z in (=1,1) x R;.

Moreover, the total mass of the solution is preserved along the evolution,

that is,
1 1
/ W(-,t):/ wp.
-1 -1
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Existence, uniqueness and comparison principle Mild solution

Fixed point argument

Theorem

Given wy € L?([—1,1]) (or given wy € C([—1,1])), there exists a unique
solution to problem (3)—(4), which has wy as initial condition.

Idea of the proof:

Given u € (—1,0) we obtain the solution for v;
@ Given v € (0,1) we obtain the solution for u;

@ Find a T > 0, such that we have a contraction;
(]

Use a fixed point argument.
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Asymptotic behavior

Let us take 51 as the first nonnegative eigenvalue

0< B = filnf olﬂ#'
w:fZ, w= 2d
JRCEORE

Remark: Due to the lack of compactness of the nonlocal part, it is not clear that
the infimum defining B; is attained.

(6)

Theorem

Given wy € L2(—1, 1), the solution of the problem, with initial condition wg
converges to its mean value as t — oo with an exponential rate,

- f

where (1 is given by (6) and C = (wp) > 0.

< C(Iwollizrn)) e, t>0, (7)
12(-1,1)
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Semigroup theory

— Uy for x e (-1,0),

0
with ty(—1) = 0 and uy(0) = —cu/ J(x — y)(uly) — u(0))dy,
—1
G [ °
2 0
for x€(0,1).

BJU =
J(x = y)(uly) — u(x))dy + Cr. / J(x = y)(u(x) — u(0))dy

-1

Let
2 2 L Ou
D(By) := {(u, v):u e H*(—1,0),v € L7(0,1) with a—(fl) =0 and
X

520 ==Cia [ Jx=y)(vl) - w0y}

denote the domain of the operator, that is, we have that
B, : D(B)) — L*(—1,1).
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Existence and uniqueness of a mild solution

According to Andreu et all (2010), we can define a mild solution in L?(—1, 1),
of the abstract Cauchy problem by:

{ U (t) = By(u(t)), t>0

u(0) = wp. ®

Note that this operator is linear in a Banach space so the general theory of
existence also can be given by the Hille-Yosida Theorem.
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Existence of a mild solution

Theorem

Given and initial condition wy € L2(—1,1), there exists an unique mild
solution w of the problem.

Idea of the proof:
o By is completely accretive in L?(—1,1);
e By satisfies the range condition, L2(—1,1) C R(/ + By);

@ By the Crandall-Ligget's Theorem and the linear semigroup theory
will give existence and uniqueness of a mild solution of the evolution
problem.
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Approximations

Rescaling the nonlocal kernel

Le J be the rescaled kernel

F(x) = Sy (f) ,

€3 €

where (1 = ﬁ Cyjp=1, and

M(J) = /RJ(Z)\Z\zdz < 0.
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Approximations

The associated energy functional to the rescaled problem is given by

Ef(wE):%/ 6+ C“//fo— v (y) = ()P dydx (9)

4¢3
CJ 2 / / J(x — y) (u5(0) — v¥(x))? dxdy
tos ’

if w& € D(E®) := H*(—1,0) x L?(0,1), and E*(w?) := oo if not. Analo-
gously, we define the limit energy functional as

1 1
— 5/1|WX|2dx7 (10)

if w € D(E) := H}(—1,1), and E(w) := oo if not.
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Approximations

Given wgy € L2(—1,1), for each ¢ > 0, let w® be the solution to the evolution
problem associated with the energy E€, and w be the solution associated
to the functional E, considering the same initial condition.

Theorem

Under the above assumptions, the solutions to the rescaled problems, w*®,
converge in the following sense, to the solution of the heat equation, w.
For any finite T > 0 we have

e—0 \ te[0,T]

lim ( max || w®(-, t) — w(:, t) HL2(1’1)> =0. (11)

v
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Approximations

Idea of the proof:
o By € L?(—1,1);
o Ac H?*(—1,1);
@ We show the convergence of the resolvents, that is,
im0 (1 + Bye) L= (1 + A1 ¢, for every ¢ € 12(—1,1);
@ By the Brezis-Pazy Theorem we get the convergence of the solutions,
that is w® — w in the L?>—norm.
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Higher dimension extension

Take Q, as a bounded smooth domain in RV and split it into two subdomains
Q/ and Qn/,

Q=Q,UQ,.
Let us call X, the interface between Q; and €, inside €2, that is,
Y=0Q,nQ,Nna.
We will assume that €2; has a Lipschitz boundary. For any
w=(u,v) € B:={we [3Q): ulg,e H(Q),v € L2(Qm)}
we define the energy

E(u,v) ::i [ [vuras +—/ / (x — y) (v(y) — v(x))? dydx
C“/ /GX 2) (v(x) — u(2))? do(z)dx.
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Extension for higher dimensions

Q[ in

Figure 1: The local part (€,) and the nonlocal part ().
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Extension for higher dimensions

With this energy the associated evolution problems reads as,

%(x7 t) = Au(x, t),

07

677](2’ t) = Cj,z/Q
u(x,0) = up(x).

nl

for x € Q;, t >0, and

ov
ot

v(x,0) = vp(x),

for x € Q,, t > 0.

Sérgio Muniz Oliva

G(x,z)(v(y,t) — u(z, t))dx,

z € 0 N oK,

(13)
zex,

(x,t) = CJ,1/Q Jx=y) (vly; 1) = v(x, ) dy — C2 /X G(x,2)(v(x, t) — u(z,t))da(2),

(14)
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Extension for higher dimensions Results

High dimension: Main results

i. The problem (13)—(14) posses existence and uniqueness of the
solution;

ii. The total mass is preserved,;

iii. Solutions converge to the mean value of the initial condition, as
t — oo with an exponential rate.

Remark: The approximation of the heat equation with Neumann boundary

conditions under rescales of the kernel is left open. We believe that the
result holds with extra assumptions on the coupling kernel G.
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Results
Thanks

Thank you!
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Extension for higher dimensions Results
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