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Structured deformations
First order ( Del Piero, Owen )

The model sets a basis to address problems in non-classical
deformations of continua (for instance, study of equilibrium
configurations of crystals with defects) where an analysis at
macroscopic and microscopic levels is required, dividing the study
of deformations in two parts: the part arising from smooth changes
and the part due to slips and separations (disarrangements) at
smaller length scales.
I

StD pair(g ,G )

with fn
L∞−→ g , ∇fn

L∞−→G , and with fn injective.

I g accounts for the macroscopic change in geometry.

M := ∇g − G

is attained through slips and separations (disarrangements)
that take place at a smaller length scale.



Structured deformations

More precisely:

1. Simple deformations are pairs (K , g) where K ⊂ Ω consists of
a finite union of Lipschitz sets of Hausdorff dimension N − 1
and gbΩ\K is a one-to-one differentiable function.

2. A triple (K , g ,G ) is a limit of simple deformations if
K ⊂ Ω, g ∈ L∞(Ω;RN) and G ∈ L∞(Ω;RN×N) and there
exists a sequence of simple deformations (Kn, fn) such that

K := ∪∞p=1 ∩∞n=p Kn, fn
L∞−→ g , ∇fn

L∞−→G .

3. A triple (K , g ,G ) is a structured deformation if (K , g) is a
simple deformation, G : Ω\K → RN×N is continuous and
there exists m > 0 such that, for all
x ∈ Ω\K , m < detG (x) ≤ det∇g(x).

4. Approximation Theorem: there exists fn injective and

piecewise smooth such that fn
L∞−→ g , ∇fn

L∞
⇀ G ,

K = ∪∞n=1 ∩∞p=n Kp.



Example Deck of cards

N = 2, Ω = (0, 1)2,

g(x1, x2) = (x1 + x2, x2), (simple shear) G =

[
1 0
0 1

]

fn(x) = (x1 +
k

n
, x2),

k

n
≤ x2 <

k + 1

n
, k = 0, . . . n − 1

fn
L∞−→ g , ∇fn

L∞−→G , Dfn ⇀∇g =

[
1 1
0 1

]
M =

[
0 1
0 0

]
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Structured Deformations (Choksi & Fonseca) by means of
BV-SBV spaces

I A function u ∈ L1(Ω;Rd) (d ≥ 1) is of bounded variation, i.e.
u ∈ BV (Ω;Rd), if Djui ∈M(Ω), i = 1, . . . d , j = 1, . . .N.

Du = ∇uLNbΩ + ([u]⊗ ν(u))HN−1bS(u) + Dcu.

[u] = u+ − u−, S(u) is countably N − 1 rectifiable

I
SBV (Ω;Rd) = {u ∈ BV (Ω;Rd) : Dcu = 0}



BV-SBV spaces

I Theorem (Alberti) Let F ∈ L1(Ω;Rd×N), then there exists
f ∈ SBV (Ω;Rd) such that: ∇f = F LN a.e.inΩ and

|Ds f |(Ω) ≤ C ||F ||L1(Ω;Rd×N), |f |L1(Ω;Rd ) ≤ C ||F ||L1(Ω;Rd×N).

I Given G ∈ L1(Ω;Rd×N) and g ∈ SBV (Ω;Rd), there exists
h ∈ SBV (Ω;Rd) such that ∇h = G −∇g .
Let hn be a piecewise constant approximation of h in L1 norm.

I Define un := g + h − hn. Then un → g in L1 and ∇un = G .



Structured Deformations: an important remark about SBV

Assume for simplicity that g ∈W 1,1, i.e. there are no macroscopic
”cracks”. If un → g , then Dun ⇀ Dg ≡ ∇g in the sense of
distributions and therefore if ∇un

∗
⇀ G , we have that

Dsun ⇀ M = ∇g − G in the sense of distributions. Hence, the
difference between macroscopic and microscopic ”bulk densities” is
achieved by a limit of singular measures.

By Ambrosio’s Compactness Theorem in SBV, we have that
∇g = G LN a.e. unless HN−1(S(un))→ +∞, i.e. unless there is a
diffusion of cracks whose amplitude is tending to zero.
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Integral representation (SBV framework)

The energy associated with the structured deformation (g ,G ) can
be defined as the most economical way to build up the pair using
approximations in SBV :

IL(g ,G ) = inf
un∈SBV (Ω;Rd )

{
lim inf
n→∞

EL(un), un
L1

−→ g , ∇un
Lp
⇀G

}
(1)

for (g ,G ) ∈ SBV (Ω;Rd)× Lp(Ω;Rd×N), p ≥ 1, with

EL(v) =

∫
Ω
W (x ,∇v) dx +

∫
Sv

ψ(x , [v ], νv ) dHN−1, (2)

v ∈ SBV (Ω;Rd)



Integral representation result in CF

I Under appropriate assumptions (among which linear growth of
ψ), IL(g ,G ) admits an integral representation of the form:

IL(g ,G ) =

∫
Ω
Hp(x ,∇g ,G ) dx +

∫
S(g)

hp(x , [g ], ν(g)] dHN−1,

with H and h defined through appropriate cell formulae.

I The relaxed bulk energy density H depends both on W and ψ.



Integral representation result in CF

We start by introducing the assumptions on the bulk and
interfacial energy densities W and ψ. Let p > 1 and let
W : Ω× Rd×N → [0,+∞) and ψ : Ω× Rd × SN−1 → [0,+∞) be
continuous functions satisfying the following conditions

(W 1)p there exists C > 0 such that, for all x ∈ Ω and A,B ∈ Rd×N ,

|W (x ,A)−W (x ,B)| ≤ C |A− B|
(
1 + |A|p−1 + |B|p−1

)
;

(W 2) there exists a continuous function ωW : [0,+∞)→ [0,+∞)
with ωW (s)→ 0 as s → 0+ such that, for every x , x0 ∈ Ω and
A ∈ Rd×N ,

|W (x ,A)−W (x0,A)| ≤ ωW (|x − x0|)(1 + |A|p);



Integral representation result in CF

(ψ1) there exist c ,C > 0 such that, for all x ∈ Ω, λ ∈ d , and
ν ∈ SN−1,

c |λ| ≤ ψ(x , λ, ν) ≤ C |λ|;

(ψ2) (positive 1-homogeneity) for all x ∈ Ω, λ ∈ d , ν ∈ SN−1, and
t > 0

ψ(x , tλ, ν) = tψ(x , λ, ν);

(ψ3) (sub-additivity) for all x ∈ Ω, λ1, λ2 ∈ d , and ν ∈ SN−1,

ψ(x , λ1 + λ2, ν) ≤ ψ(x , λ1, ν) + ψ(x , λ2, ν);

(ψ4) there exists a continuous function ωψ : [0,+∞)→ [0,+∞)
with ωψ(s)→ 0 as s → 0+ such that, for every x , x0 ∈ Ω,
λ ∈ d , and ν ∈ SN−1,

|ψ(x , λ, ν)− ψ(x0, λ, ν)| ≤ ωψ(|x − x0|)|λ|.



Integral representation result in CF
We introduce the classes of competitors for the cell formulae for
the relaxed bulk and surface energy densities. For A,B ∈ Rd×N let

Cbulkp (A,B) =

{
u ∈ SBV (Q;Rd) : u|∂Q(x) = Ax ,∫

Q
∇u dx = B, |∇u| ∈ Lp(Q)

} (3)

and for λ ∈ Rd and ν ∈ SN−1 let

Csurface
p (λ, ν) =

{
u ∈ SBV (Qν ;Rd) : u|∂Qν (x) = uλ,ν(x)

∇u(x) = 0 for LN -a.e. x ∈ Qν
}

where the function uλ,ν is defined by

uλ,ν(x) =

{
λ if x · ν ≥ 0,

0 if x · ν < 0,



Integral representation result in CF

Let p > 1 and let W : Ω× Rd×N → [0,+∞) and
ψ : Ω× Rd × SN−1 → [0,+∞) be continuous functions satisfying
hypotheses (W 1)p, (W 2), (ψ1), (ψ2), (ψ3), and (ψ4); let
(g ,G ) ∈ StD(Ω). Then there exist
Hp : Ω× Rd×N × Rd×N → [0,+∞) and
hp : Ω× Rd × SN−1 → [0,+∞) such that

IL(g ,G )=

∫
Ω
Hp(x ,∇g(x),G (x))dx

+

∫
Ω∩Sg

hp(x , [g ](x), νg (x)) dHN−1
(4)



Integral representation result in CF

Furthermore, for all x0 ∈ Ω and A,B ∈ Rd×N ,

Hp(x0,A,B) =inf

{∫
Q
W (x0,∇u(x)) dx

+

∫
Q∩Su

ψ(x0, [u](x), νu(x)) dHN−1 : u ∈ Cbulk
p (A,B)

}
and for all x0 ∈ Ω, λ ∈ Rd , and ν ∈ SN−1,

hp(x0, λ, ν) = inf

{∫
Qν∩Su
ψ(x0, [u](x), νu(x)) dHN−1 : u ∈ Csurface

p (λ, ν)

}



Motivation of our work

The theory of structured deformation in the SBV setting developed
by Chocksi & Fonseca only takes into account the linear
dependance on jumps along the approximating sequences. Del
Piero &Owen proposed a 1-D model toward capturing the
non-linear dependence on the jumps. The idea was to modify the
initial energy as follows: for each r ∈ (0, 1) let

F r (u) =

∫ 1

0
W (u′(x)) dx +

∑
z∈Su

ψ([u](z))

+

∫ 1

0
Ψ

( ∑
z∈Su∩(x−r ,x+r)

[u](z)

2r

)
dx ,

and then undergo a relaxation process in the context of structured
deformations followed by taking the limit as r → 0+.



Framework

The present approach to relaxation of non-local energies rests on
two limiting processes:

1. Start from a submacroscopical level where we have a weighted
average of disarrangements within neighborhoods of fixed size
r > 0 and pass to the macrolevel, permitting disarrangements
to diffuse through such a neighborhood. This limiting process
determines a structured deformation as well as the non-local
dependence of the energy density of such a structured
deformation.

2. Pass to the limit as r → 0, to obtain purely local bulk and
interfacial energy densities for the structured deformation
identified in the first step.
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Framework

1. Previous research on relaxation of energies for continuous
bodies relies on one or the other, but not on both processes
described above. For instance, the approach of CF relies on
the first process, while the second process is used for instance
in peridynamics.

2. Peridynamics is a new Continuum Mechanics formulation
where the governing equations are integro-differential
equations that do not contain spatial derivatives. This is an
important new tool to address problems with discontinuities
such as cracks.
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Framework

1. It is important to point out that the first limiting process, in
the context of structured deformations, gives rise to relaxed
energy densities that exclude a periodic dependence of the
relaxed energy on the disarrangement tensor, which are used
to predict yielding ( passage from elastic to plastic behavior)
and hysterisis ( dependence of the state of a system on its
history).

2. We consider an explicit dependence on x in both the CF
scheme and the bulk part of the relaxed non-local energy Ψ
motivated by some explicit applications to crystal plasticity.
This is important in order to account for frame-indifference.
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Averaging processes

Let Ω ⊂ RN a bounded connected open set with Lipschitz
boundary ∂Ω and u ∈ SBV (Ω;Rd). For a continuous function
Ψ: Ω× Rd×N → [0,+∞) and fixed r > 0 we define the non-local
contribution by

Eαr (u) :=

∫
Ωr

Ψ
(
x , (Dsu ∗ αr )(x)

)
dx , (5)

where Ωr := {x ∈ Ω : dist(x ; ∂Ω) > r}.



Averaging processes

In (??)

αr :=
1

rN
α
(x
r

)
,

where
α ∈ C∞c (B1)

with ∫
B1

α(x) dx = 1, α ≥ 0, α(−x) = α(x)

The symbol ∗ denotes the convolution operation.
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Averaging processes

Given (g ,G ) ∈ StD(Ω;Rd), let {un} ⊂ SBV (Ω;Rd) such that

(a) un → g in L1, ∇un ⇀ G in Lp (
∗
⇀ in L1),

(b) Dsun
∗
⇀ (∇g − G )LN + Dsg in M+(Ω),

We will denote by Ad(g ,G ) the class of sequences satisfying (a)
and (b).
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Averaging processes - the limit in n

We take the limit as n→∞ of Eαr (un), obtaining

I rNL(g ,G ) := lim
n→∞

Eαr (un)

= lim
n→∞

∫
Ωr

Ψ
(
x , (Dsun ∗ αr )(x)

)
dx

=

∫
Ωr

Ψ
(
x ,
(
(∇g − G )LN + Dsg) ∗ αr

))
dx

(6)



Averaging processes

We consider now an extension of (g ,G ) to (g̃ , G̃ ) ∈ RN ×Rd×N in
the following sense:

(e1) (g̃ , G̃ )bΩ= (g ,G ),

(e2) |Dg̃ |(RN) ≤ C ||g ||BV (Ω;Rd ),

(e3) |Dg̃ |(∂Ω) = 0.



Averaging processes

For such (g̃ , G̃ ), we extend I rNL(g ,G ) to Ω by defining:

Ĩ rNL(g̃ , G̃ ) :=

∫
Ωr

Ψ
(
x , ((∇g − G )LN + Dsg) ∗ αr

)
dx

+

∫
Ω\Ωr

Ψ
(
x , ((∇g̃ − G̃ )LN + Ds g̃) ∗ αr

)
dx

(7)

In any case, independently of the extension considered, we can
show that the difference between I rNL(g ,G ) and Ĩ rNL(g̃ , G̃ ) goes to
zero as r → 0+.
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zero as r → 0+.



The limit as r → 0+

We work with Ĩ rNL(g̃ , G̃ ) where Ψ can be of two types:

E) Ψ ∈ C (Ω× Rd×N) and Ψ∞(x , ξ) := lim x ′→x
ξ′→ξ
t→+∞

Ψ(x ′,tξ′)
t exists

in Ω× Rd×N

L) Ψ ∈ C (Ω×Rd×N), Lipschitz continuous in the second variable

with Ψ∞ defined as Ψ∞(x , ξ) := lim sup x ′→x
ξ′→ξ
t→+∞

Ψ(x ′,tξ′)
t

The proof relies in Reshetnyak continuity (upper semicontinuity)
theorems.
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We work with Ĩ rNL(g̃ , G̃ ) where Ψ can be of two types:

E) Ψ ∈ C (Ω× Rd×N) and Ψ∞(x , ξ) := lim x ′→x
ξ′→ξ
t→+∞

Ψ(x ′,tξ′)
t exists

in Ω× Rd×N

L) Ψ ∈ C (Ω×Rd×N), Lipschitz continuous in the second variable

with Ψ∞ defined as Ψ∞(x , ξ) := lim sup x ′→x
ξ′→ξ
t→+∞

Ψ(x ′,tξ′)
t

The proof relies in Reshetnyak continuity (upper semicontinuity)
theorems.



The limit as r → 0+

We have that, for any (g ,G ) ∈ StD(Ω;Rd),

INL(g ,G ) := lim
r→0+

Ĩαr
NL(g ,G ) =

∫
Ω

Ψ
(
x , (∇g − G )(x)

)
dx

+

∫
Ω∩S(g)

Ψ∞
(
x ,

dDsg

d |Dsg |
(x)
)
d |Dsg |



Coupling

I I (g ,G ) = IL(g ,G ) + INL(g ,G ) where

IL(g ,G )=

∫
Ω
H(x ,∇g(x),G (x)) dx+

∫
S(g)∩Ω

h(x , [g ](x), ν(g)(x))dHN−1

and

INL(g ,G ) =

∫
Ω

Ψ
(
x , (∇g − G )(x)

)
dx

+

∫
Ω∩S(g)

Ψ∞
(
x ,

dDsg

d |Dsg |
(x)
)
d |Dsg |

I The proof is a consequence of the fact that recovery
sequences for IL(g ,G ) belong to Ad(g ,G ).
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Example from crystal plasticity

I Crystallographic slip: The discontinuity in deformation arises
only across a limited family of slip planes.

I For a single crystal in the reference configuration Ω the data
required for the analysis of crystallographic slip consists of
pairs of orthogonal unit vectors (sa,ma) for a = 1, · · · ,A,
with A the number of potentially active slip systems.

I The unit vector sa provides the direction of slip, while the unit
vector ma is a normal to the slip plane for the ath slip-system
(sa,ma).



Crystallographic structured deformation

Crystallographic structured deformation



Slip-neutral two level shears

Crystallographic slip is physically activated within very thin bands,
(slip-bands) with thickness typically of the order 102 atomic units,
while the separation of active slip-bands is typically of order 104

atomic units. Following [CDPFO1999], for each a = 1, · · · ,A,
there is a number pa > 0 such that a two-level shear (ga

µ,xo ,G
a
ν ) for

which the shear due to slip µ− γ satisfies

µ− γ = mpa with m ∈ Z (8)

and gives rise to submacroscopic slips equal to an integer number
of atomic units in the direction of slip sa.



Special properties for Ψ, under crystallografic slip

I Let xo ∈ Ω, a ∈ A, µ = mpa with m ∈ Z, and a
crystallographic structured deformation (g ,G ) be given. The
lattice on which (g ,G ) acts, when following the completely
neutral two-level shear (ga

µ,xo , I ), differs from that on which
(g ,G ) acts, when not following (ga

µ,xo , I ), only by the
undetectable translations of the lattice between active
slip-planes for system a.

I Consequently, the submacroscopic kinematical states of the
crystal lattice attained by means of the two purely
submacroscopic structured deformations (i ,K(g ,G)�(ga

µ,xo ,I )
)

and (i ,K(g ,G)) are indistinguishable.



Special properties for Ψ, under crystallografic splip

I This leads to the conclusion that, the non-local relaxed bulk
density, in the context of crystal plasticity, can have periodicity
properties, provided that it is restricted to each member of a
family of two-dimensional affine subspaces of R3x3, with
(vector) period depending on the corresponding subspace.

I The periodicity stems from the fact that special families of
two-level shears associated with the slip systems of the crystal
are geometrically undetectable.



Prediction of yielding and hysterisis

I An additive decomposition for the relaxed bulk energy density
of the form

H(G ) + Ψ(M)

is used to predict yielding and hysterisis [CDPFO1999], [Del
Piero 2018])

I It was shown ([Larsen2000]) that such a decomposition
doesn’t always hold in the CF setting.

I Our double limiting process points in that direction. For each
crystallographic structured deformation, departing from Ψ
satisfying the periodicity properties compatible with
completely neutral crystallographic slips and from the CF
scheme with p > 1 growth on W and with ψ = 0 we attain
such a decomposition.



Thank you for your attention!


