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Introduction

Linear scalar parabolic equations exhibit a natural discrete Liapunov
functional (the zero crossing number):

The number of zeros of a solution is a nonincreasing function of time.

This is at the root of a most complete description of the geometric properties
of nonlinear semiflows generated by semilinear scalar parabolic equations.

Natural questions are:

(i) What are the linear flows possessing adequate discrete Liapunov
functionals?

(i) Do such functionals determine a class of problems?
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Linear scalar parabolic equations

For a positive, consider the linear problem

(P)  ur=a(x)ux + b(t, x)ux + c(t, x)u, 0 < x <1, ux(0) = ux(1) =0,

Ca([0,1]) = {p € C'([0,1]) : ¢'(0) = (1) = O} .

Then (P) defines an injective solution operator
S(t,to) : Ca([0,1]) = CA([0,1]),t > to .
If b= b(x),c = c(x), (P) generates a Co-semigroup {T(t) = S(t,0)}i>0.

Define the zero number z : C}([0, 1]) \ {0} — Np U {c0}:

z(p) = #{ strict sign changes of ¢ in [0, 1]}
z(S(t, %)) is a monotone nonincreasing function of ¢ > t,

[Sturm, Niquel, Matano, Henry, Angenent, ...]



Let N/ C C}([0, 1]) denote the dense subset of functions with all zeros
nondegenerate (i.e. ¢(x) =0 = ¢'(x) # 0).

Theorem [Angenent '1988]
For ¢ € C([0,1]), ¢ # 0,
(i) the set © = {t € (t, +0) : S(t, 1) & N} is finite;

(i) for t € © there exists an ¢ such that for 0 < ¢ < &,

2(S(t+ ¢, b)) < 2(S(t — &, b)) .



Discrete Lyapunov functions

Semilinear reaction-diffusion equations
Ut = Uy + F(X, U, Ux), 0 < x <1, Uux(0) = ux(1) =0,

with f € C?(]0, 1] x R?, R), define semiflows in X = H'(0,1). The zero
number z provides a discrete Lyapunov function for the difference of any two
solutions uy, e

z(us(t,-) — ux(t,-)) is nonincreasing for t > 0 .



Discrete Lyapunov functions

Semilinear reaction-diffusion equations
Ut = Uy + F(X, U, Ux), 0 < x <1, Uux(0) = ux(1) =0,

with f € C?(]0, 1] x R?, R), define semiflows in X = H'(0,1). The zero
number z provides a discrete Lyapunov function for the difference of any two
solutions uy, e

z(us(t,-) — ux(t,-)) is nonincreasing for t > 0 .

A different example is provided by differential delay equations
x(t) = h(x(t), x(t = 1))

with h € C?(R?, R) and monotone feedback conditions h, (u, v) < 0, defining
semiflows in X = C°[—1,0].
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For the (+) feedback conditions, let

Vi) =2 ZE T vy =22

notice that V* () is even and V= () is odd.
Then, in each feedback case, V* provides a discrete Lyapunov function for
the difference of any two solutions x/(8) = x/(t + 6),0 € [-1,0],j = 1,2,
VE(x{ — x?) is nonincreasing for t > 0 .

[Myschkis, Mallet-Paret, Sell, ...]



Generators of semiflows with zero number decay

Theorem

Let A be the infinitesimal generator of a Cy-semigroup of bounded linear
operators {T(t)}r=0, T(t) : Ch([0,1]) — C1([0, 1]), such that

(i) theset® = {t € (f,+oo) : T(t)y & N} is finite;

(i) z(T(t)p) > z(T()p) forall 0 < t < b.
If D(A) = C3([0,1]) N CA([0, 1]), then there exist v, B,y € C'(0, 1), with
nonnegative, such that for all ¢ € D(A) we have

(Ap) (x) = a(X)px(X) + B(X)px(X) + v(X)p(x), 0 < x < 1.
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Introduce families of functions &%, b%,c® : ¢ € [0,1] — D(A) such that

a*(¢) = a () =b°(§) =0, £ €[0,1]
a)g(x(g) = Cg(E) =1,¢¢ [07 1]

bi(¢) =1, £€(0,1)

aG&(x)(x =€) >0, xe(0,1)\{&
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Sketch of the proof

Step 1: Use the Taylor expansion

Introduce families of functions &%, b%,c® : ¢ € [0,1] — D(A) such that

a*(¢) = a () =b°(§) =0, £ €[0,1]
a)g(x(g) = C&(g) =1,¢¢ [07 1]

bi(¢) =1, £€(0,1)

aG&(x)(x =€) >0, xe(0,1)\{&

Given ¢ € D(A) we can uniquely decompose ¢ in the form
© = p(X)C* + Ex(X)b* + px(X)a + ¥
where ¢ € D(A) satisfies  ¢*?(x) = ¥y ?(x) = ¥ (x) = 0.
Then, if (Ay*¥)(x) =0, we obtain
(Ap)(x) = a(X)pxx(X) + B(X)px(X) + 7(X)e(x)
where

a(x) = (Ad) (x), B(x) = (AbY) (x), v(x) = (Ac") (x) .
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Step 2: Use 4¢ = 4> to perturb all degenerate zeros x # ¢

Let ¢%* =a®+ A%, Notice that a° has a degenerate zero at x = £.

At a degenerate zero x # £ of o5 we have

{@“(X) = a(x)+ M (x)
WSMNX) = &)+ ME(x) = 0.

Il
o

€ 1 £(x)at (x) — vf (x)as
oo = L0 1y wiloa ((X;,,)g(xﬁﬁz(x)a G

a(x) X’
and x # ¢ is a degenerate zero of ¢ if and only if A~' is a critical value of
W :[0,1]\ {¢} — R. By Sard the set of A € R such that ¢** : [0,1]\ {¢} = R
has a degenerate zero has Lebesgue measure zero.
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Step 3: Show that (Ay*¥) (x) =0

Again let o5 = a° + A with ¢ = 5. For small t > 0 we have
(T(0)**) (€) = (T(1)e*) () — ¥=7(€)
= ((Aa") (&) + A (Av) (8)) t+ (o(1))(&) + A(a(D))(8)-
If (Ap®) (€) # 0, there is X € R (suficiently large) such that:

(Te™) @ <0, 0<t<t;

Moreover, ¢**0 has exactly one degenerate zero in [¢ — §, £ + 6] and a finite
number of nondegenerate zeros in [0, 1] \ (£ — 4, & + 9).

Then, there is ¢ € D(A) (close to x**°) such that we obtain the contradiction

2(T(t)p) > 2(¢) -
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Order structures preserved by semigroups

The discrete Liapunov functional z endows X with an order structure
preserved by the semigroup T(t) [Fusco+Lunel '1997]:

>z defines on X an order structure (N, ~, <) if:
(a) z defines in N an equivalence relation ~

foro,p e N o ~iff z(p) = z(v)

(b) z defines in N’/ ~ a total order <
for [pl, [W] e N/~ [ < [W]iff 2(¢) = 2(¥)

> T(t) preserves the order structure (N, ~, <) if:
(a) z(T(t)y) is defined for all t € ® = R \ { discrete set }
(b) z(T(t)p) < z(T(t)p) forall t,t’ € &, ' >t
(c) (V/ ~) is complete [p]1 < [¢]2 < [¥]s + ...
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A class of order preserving semiflows

Do different order structures determine other classes of linear operators A?

For instance, the semigroup T(t) with periodic boundary conditions in fact
preserves the order structure defined by V* : A/ — {0,2,4,...}.

Therefore, it is natural to consider nonseparated linear boundary conditions

Coo([0,1]) = { € C'([0,1]) : Bo() = Bi() = 0}

where By, By : C'([0,1]) — R are the boundary operators

{ Bo() = ¢'(0) + doo(0) + do10(1)
Bi(p) = ¢'(1) + d109(0) + 110(1)

[Coddington+Levinson]



Theorem

Let A be the infinitesimal generator of a Cp-semigroup of bounded linear
operators { T(t)}r0, T(t) : Cie([0,1]) — Cls([0, 1]) that preserves the order
structure (N, ~, <) defined by vV~ (V).

If D(A) = C3([0,1]) N CL.([0, 1]), then there exist o, 8,7 € C'(0, 1), with «
nonnegative, such that for all ¢ € D(A) we have

(Ap) (x) = a(X)pxx(X) + B(X)ex(X) + 1(X)e(x), 0 < x < 1.
Furthermore, the cross-boundary constants satisfy

001 <0 , d10>0 (b0t >0 , 010<0).
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Let A be the infinitesimal generator of a Cp-semigroup of bounded linear
operators { T(t)}r0, T(t) : Cie([0,1]) — Cls([0, 1]) that preserves the order
structure (N, ~, <) defined by vV~ (V).

If D(A) = C3([0,1]) N CL.([0, 1]), then there exist o, 8,7 € C'(0, 1), with «
nonnegative, such that for all ¢ € D(A) we have

(Ap) (x) = a(X)pxx(X) + B(X)ex(X) + 1(X)e(x), 0 < x < 1.
Furthermore, the cross-boundary constants satisfy

001 <0 , d10>0 (b0t >0 , 010<0).

The cross-boundary conditions essentially prevent zeros to occur on the
boundary when z(y) is even, since in this case the cross-boundary values of
¢' and ¢ have the wrong sign:

©'(0) = —dorp(1) if (0) =0 and  ¢'(1) = —d10(0) if (1) = 0.
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A degenerate illustration

The cross-boundary conditions play the role of negative feedback conditions.

As a highly degenerate illustration consider « = v = 0, 5 = 1. Then we have
u=u, 0<x<1,

and the solutions u(x, t) = ¢(t+ x) correspond to left translations along [0, 1].

Take the boundary operator By with 11 = 0 and §19 = 6 > 0. This implies
ux(1) = —6u(0) ,
and we otain the negative feedback differential delay equation

u(t) = —su(t —1).
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