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Introduction

Linear scalar parabolic equations exhibit a natural discrete Liapunov
functional (the zero crossing number):

The number of zeros of a solution is a nonincreasing function of time.

This is at the root of a most complete description of the geometric properties
of nonlinear semiflows generated by semilinear scalar parabolic equations.

Natural questions are:

(i) What are the linear flows possessing adequate discrete Liapunov
functionals?

(ii) Do such functionals determine a class of problems?
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Linear scalar parabolic equations

For a positive, consider the linear problem

(P) ut = a(x)uxx + b(t , x)ux + c(t , x)u, 0 < x < 1, ux (0) = ux (1) = 0 ,

and let
C1

n ([0, 1]) = {ϕ ∈ C1([0, 1]) : ϕ′(0) = ϕ′(1) = 0} .

Then (P) defines an injective solution operator

S(t , t0) : C1
n ([0, 1])→ C1

n ([0, 1]), t ≥ t0 .

If b = b(x), c = c(x), (P) generates a C0-semigroup {T (t) = S(t , 0)}t≥0.

Define the zero number z : C1
n ([0, 1]) \ {0} → N0 ∪ {∞}:

z(ϕ) = #{ strict sign changes of ϕ in [0, 1]}

z(S(t , t0)ϕ) is a monotone nonincreasing function of t > t0,

[Sturm, Niquel, Matano, Henry, Angenent, . . . ]
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Let N ⊂ C1
n ([0, 1]) denote the dense subset of functions with all zeros

nondegenerate (i.e. ϕ(x) = 0⇒ ϕ′(x) 6= 0).

Theorem [Angenent ’1988]

For ψ ∈ C1
n ([0, 1]), ψ 6= 0,

(i) the set Θ = {t ∈ (t0,+∞) : S(t , t0)ψ 6∈ N} is finite;

(ii) for t ∈ Θ there exists an ε0 such that for 0 < ε < ε0,

z(S(t + ε, t0)ψ) < z(S(t − ε, t0)ψ) .



Discrete Lyapunov functions

Semilinear reaction-diffusion equations

ut = uxx + f (x , u, ux ), 0 < x < 1, ux (0) = ux (1) = 0 ,

with f ∈ C2([0, 1]× R2,R), define semiflows in X = H1(0, 1). The zero
number z provides a discrete Lyapunov function for the difference of any two
solutions u1, u2

z(u1(t , ·)− u2(t , ·)) is nonincreasing for t > 0 .

A different example is provided by differential delay equations

ẋ(t) = h(x(t), x(t − 1))

with h ∈ C2(R2,R) and monotone feedback conditions hv (u, v) ≶ 0, defining
semiflows in X = C0[−1, 0].
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For the (±) feedback conditions, let

V+(ϕ) = 2bz(ϕ) + 1
2

c , V−(ϕ) = 2bz(ϕ)

2
c+ 1 ,

notice that V+(ϕ) is even and V−(ϕ) is odd.

Then, in each feedback case, V± provides a discrete Lyapunov function for
the difference of any two solutions x j

t (θ) = x j (t + θ), θ ∈ [−1, 0], j = 1, 2,

V±(x1
t − x2

t ) is nonincreasing for t > 0 .

[Myschkis, Mallet-Paret, Sell, . . . ]
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Generators of semiflows with zero number decay

Theorem

Let A be the infinitesimal generator of a C0-semigroup of bounded linear
operators {T (t)}t≥0, T (t) : C1

n ([0, 1])→ C1
n ([0, 1]), such that

(i) the set Θ = {t ∈ (t0,+∞) : T (t)ψ 6∈ N} is finite;

(ii) z(T (t1)ϕ) ≥ z(T (t2)ϕ) for all 0 < t1 ≤ t2.

If D(A) = C3([0, 1]) ∩ C1
n ([0, 1]), then there exist α, β, γ ∈ C1(0, 1), with α

nonnegative, such that for all ϕ ∈ D(A) we have

(Aϕ) (x) = α(x)ϕxx (x) + β(x)ϕx (x) + γ(x)ϕ(x), 0 < x < 1.



Sketch of the proof

Step 1: Use the Taylor expansion

Introduce families of functions aξ, bξ, cξ : ξ ∈ [0, 1] 7→ D(A) such that

aξ(ξ) = aξx (ξ) = bξ(ξ) = 0 , ξ ∈ [0, 1]

aξxx (ξ) = cξ(ξ) = 1 , ξ ∈ [0, 1]

bξx (ξ) = 1 , ξ ∈ (0, 1)

aξx (x)(x − ξ) > 0 , x ∈ (0, 1) \ {ξ}

Given ϕ ∈ D(A) we can uniquely decompose ϕ in the form

ϕ = ϕ(x)cx + ϕx (x)bx + ϕxx (x)ax + ψx,ϕ

where ψx,ϕ ∈ D(A) satisfies ψx,ϕ(x) = ψx,ϕ
x (x) = ψx,ϕ

xx (x) = 0.

Then, if (Aψx,ϕ) (x) = 0, we obtain

(Aϕ)(x) = α(x)ϕxx (x) + β(x)ϕx (x) + γ(x)ϕ(x)

where

α(x) =
(
Aax) (x) , β(x) =

(
Abx) (x) , γ(x) =

(
Acx) (x) .
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Step 2: Use ψξ = ψξ,ϕ to perturb all degenerate zeros x 6= ξ

Let ϕξ,λ = aξ + λψξ. Notice that aξ has a degenerate zero at x = ξ.

At a degenerate zero x 6= ξ of ϕξ,λ we have{
ϕξ,λ(x) = aξ(x) + λψξ(x) = 0 ,
ϕξ,λx (x) = aξx (x) + λψξx (x) = 0 .

Then

Ψ(x) =
ψξ(x)

aξ(x)
=

1
λ

, Ψx (x) =
ψξx (x)aξ(x)− ψξ(x)aξx (x)

(aξ(x))2 = 0 ,

and x 6= ξ is a degenerate zero of ϕξ,λ if and only if λ−1 is a critical value of
Ψ : [0, 1] \ {ξ} → R. By Sard the set of λ ∈ R such that ϕξ,λ : [0, 1] \ {ξ} → R
has a degenerate zero has Lebesgue measure zero.
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Step 3: Show that (Aψx,ϕ) (x) = 0

Again let ϕξ,λ = aξ + λψξ with ψξ = ψξ,ϕ. For small t > 0 we have(
T (t)ϕξ,λ

)
(ξ) =

(
T (t)ϕξ,λ

)
(ξ)− ϕξ,λ(ξ)

=
((

Aaξ
)

(ξ) + λ
(
Aψξ

)
(ξ)

)
t + (o(t))(ξ) + λ(o(t))(ξ).

If
(
Aψξ

)
(ξ) 6= 0, there is λ0 ∈ R (suficiently large) such that:(

T (t)ϕξ,λ0
)

(ξ) < 0 , 0 < t ≤ t0;

Moreover, ϕξ,λ0 has exactly one degenerate zero in [ξ − δ, ξ + δ] and a finite
number of nondegenerate zeros in [0, 1] \ (ξ − δ, ξ + δ).

Then, there is φ ∈ D(A) (close to ϕξ,λ0 ) such that we obtain the contradiction

z(T (t0)φ) > z(φ) .



Step 3: Show that (Aψx,ϕ) (x) = 0

Again let ϕξ,λ = aξ + λψξ with ψξ = ψξ,ϕ. For small t > 0 we have(
T (t)ϕξ,λ

)
(ξ) =

(
T (t)ϕξ,λ

)
(ξ)− ϕξ,λ(ξ)

=
((

Aaξ
)

(ξ) + λ
(
Aψξ

)
(ξ)

)
t + (o(t))(ξ) + λ(o(t))(ξ).

If
(
Aψξ

)
(ξ) 6= 0, there is λ0 ∈ R (suficiently large) such that:(

T (t)ϕξ,λ0
)

(ξ) < 0 , 0 < t ≤ t0;

Moreover, ϕξ,λ0 has exactly one degenerate zero in [ξ − δ, ξ + δ] and a finite
number of nondegenerate zeros in [0, 1] \ (ξ − δ, ξ + δ).

Then, there is φ ∈ D(A) (close to ϕξ,λ0 ) such that we obtain the contradiction

z(T (t0)φ) > z(φ) .



Step 3: Show that (Aψx,ϕ) (x) = 0

Again let ϕξ,λ = aξ + λψξ with ψξ = ψξ,ϕ. For small t > 0 we have(
T (t)ϕξ,λ

)
(ξ) =

(
T (t)ϕξ,λ

)
(ξ)− ϕξ,λ(ξ)

=
((

Aaξ
)

(ξ) + λ
(
Aψξ

)
(ξ)

)
t + (o(t))(ξ) + λ(o(t))(ξ).

If
(
Aψξ

)
(ξ) 6= 0, there is λ0 ∈ R (suficiently large) such that:(

T (t)ϕξ,λ0
)

(ξ) < 0 , 0 < t ≤ t0;

Moreover, ϕξ,λ0 has exactly one degenerate zero in [ξ − δ, ξ + δ] and a finite
number of nondegenerate zeros in [0, 1] \ (ξ − δ, ξ + δ).

Then, there is φ ∈ D(A) (close to ϕξ,λ0 ) such that we obtain the contradiction

z(T (t0)φ) > z(φ) .



Step 3: Show that (Aψx,ϕ) (x) = 0

Again let ϕξ,λ = aξ + λψξ with ψξ = ψξ,ϕ. For small t > 0 we have(
T (t)ϕξ,λ

)
(ξ) =

(
T (t)ϕξ,λ

)
(ξ)− ϕξ,λ(ξ)

=
((

Aaξ
)

(ξ) + λ
(
Aψξ

)
(ξ)

)
t + (o(t))(ξ) + λ(o(t))(ξ).

If
(
Aψξ

)
(ξ) 6= 0, there is λ0 ∈ R (suficiently large) such that:(

T (t)ϕξ,λ0
)

(ξ) < 0 , 0 < t ≤ t0;

Moreover, ϕξ,λ0 has exactly one degenerate zero in [ξ − δ, ξ + δ] and a finite
number of nondegenerate zeros in [0, 1] \ (ξ − δ, ξ + δ).

Then, there is φ ∈ D(A) (close to ϕξ,λ0 ) such that we obtain the contradiction

z(T (t0)φ) > z(φ) .



Order structures preserved by semigroups

The discrete Liapunov functional z endows X with an order structure
preserved by the semigroup T (t) [Fusco+Lunel ’1997]:

. z defines on X an order structure (N ,∼, <) if:

(a) z defines in N an equivalence relation ∼

for ϕ,ψ ∈ N ϕ ∼ ψ iff z(ϕ) = z(ψ)

(b) z defines in N/ ∼ a total order <

for [ϕ], [ψ] ∈ N/ ∼ [ϕ] < [ψ] iff z(ϕ) = z(ψ)

. T (t) preserves the order structure (N ,∼, <) if:

(a) z(T (t)ϕ) is defined for all t ∈ Φ = R+ \ { discrete set }
(b) z(T (t ′)ϕ) ≤ z(T (t)ϕ) for all t , t ′ ∈ Φ, t ′ > t

(c) (N/ ∼) is complete [ϕ]1 ← [ϕ]2 ← [ϕ]3 ← . . .
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A class of order preserving semiflows

Do different order structures determine other classes of linear operators A?

For instance, the semigroup T (t) with periodic boundary conditions in fact
preserves the order structure defined by V+ : N → {0, 2, 4, . . . }.

Therefore, it is natural to consider nonseparated linear boundary conditions

C1
bc([0, 1]) = {ϕ ∈ C1([0, 1]) : B0(ϕ) = B1(ϕ) = 0}

where B0,B1 : C1([0, 1])→ R are the boundary operators{
B0(ϕ) = ϕ′(0) + δ00ϕ(0) + δ01ϕ(1)
B1(ϕ) = ϕ′(1) + δ10ϕ(0) + δ11ϕ(1)

[Coddington+Levinson]
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Theorem

Let A be the infinitesimal generator of a C0-semigroup of bounded linear
operators {T (t)}t≥0,T (t) : C1

bc([0, 1])→ C1
bc([0, 1]) that preserves the order

structure (N ,∼, <) defined by V−(V+).
If D(A) = C3([0, 1]) ∩ C1

bc([0, 1]), then there exist α, β, γ ∈ C1(0, 1), with α
nonnegative, such that for all ϕ ∈ D(A) we have

(Aϕ) (x) = α(x)ϕxx (x) + β(x)ϕx (x) + γ(x)ϕ(x), 0 < x < 1 .

Furthermore, the cross-boundary constants satisfy

δ01 ≤ 0 , δ10 ≥ 0 (δ01 ≥ 0 , δ10 ≤ 0) .

The cross-boundary conditions essentially prevent zeros to occur on the
boundary when z(ϕ) is even, since in this case the cross-boundary values of
ϕ′ and ϕ have the wrong sign:

ϕ′(0) = −δ01ϕ(1) if ϕ(0) = 0 and ϕ′(1) = −δ10ϕ(0) if ϕ(1) = 0.
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A degenerate illustration

The cross-boundary conditions play the role of negative feedback conditions.

As a highly degenerate illustration consider α = γ = 0, β = 1. Then we have

ut = ux , 0 < x < 1 ,

and the solutions u(x , t) = φ(t + x) correspond to left translations along [0, 1].

Take the boundary operator B1 with δ11 = 0 and δ10 = δ > 0. This implies

ux (1) = −δu(0) ,

and we otain the negative feedback differential delay equation

u̇(t) = −δu(t − 1) .
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