

Order Preserving Semiflows Revisited

Carlos Rocha

CAMGSD - Instituto Superior Técnico

8th ISTIME Conference, September 5–9, 2022

In honor of Giorgio Fusco

To Giorgio Fusco

Linear scalar parabolic equations exhibit a natural discrete Liapunov functional (the zero crossing number):

The number of zeros of a solution is a nonincreasing function of time.

This is at the root of a most complete description of the geometric properties of nonlinear semiflows generated by semilinear scalar parabolic equations.

Natural questions are:

- (i) What are the linear flows possessing adequate discrete Liapunov functionals?
- (ii) Do such functionals determine a class of problems?

Linear scalar parabolic equations exhibit a natural discrete Liapunov functional (the zero crossing number):

The number of zeros of a solution is a nonincreasing function of time.

This is at the root of a most complete description of the geometric properties of nonlinear semiflows generated by semilinear scalar parabolic equations.

Natural questions are:

- (i) What are the linear flows possessing adequate discrete Liapunov functionals?
- (ii) Do such functionals determine a class of problems?

Linear scalar parabolic equations exhibit a natural discrete Liapunov functional (the zero crossing number):

The number of zeros of a solution is a nonincreasing function of time.

This is at the root of a most complete description of the geometric properties of nonlinear semiflows generated by semilinear scalar parabolic equations.

Natural questions are:

- (i) What are the linear flows possessing adequate discrete Liapunov functionals?
- (ii) Do such functionals determine a class of problems?

- The zero number in linear parabolic equations
- Semiflows with discrete Lyapunov functions
- Linear operators with the zero number property
- Order structures preserved by semigroups
- A class of order preserving semiflows

- · The zero number in linear parabolic equations
- Semiflows with discrete Lyapunov functions
- Linear operators with the zero number property
- Order structures preserved by semigroups
- A class of order preserving semiflows

- · The zero number in linear parabolic equations
- Semiflows with discrete Lyapunov functions
- · Linear operators with the zero number property
- Order structures preserved by semigroups
- A class of order preserving semiflows

- · The zero number in linear parabolic equations
- Semiflows with discrete Lyapunov functions
- Linear operators with the zero number property
- Order structures preserved by semigroups
- A class of order preserving semiflows

- · The zero number in linear parabolic equations
- Semiflows with discrete Lyapunov functions
- Linear operators with the zero number property
- Order structures preserved by semigroups
- A class of order preserving semiflows

For a positive, consider the linear problem

$$(P) u_t = a(x)u_{xx} + b(t,x)u_x + c(t,x)u, \ 0 < x < 1, \ u_x(0) = u_x(1) = 0,$$

and let

$$C_n^1([0,1]) = \{ \varphi \in C^1([0,1]) : \varphi'(0) = \varphi'(1) = 0 \} .$$

Then (P) defines an injective solution operator

 $S(t, t_0): C^1_n([0, 1]) \to C^1_n([0, 1]), t \ge t_0$.

If b = b(x), c = c(x), (P) generates a C_0 -semigroup $\{T(t) = S(t, 0)\}_{t \ge 0}$.

Define the zero number $z : C_n^1([0,1]) \setminus \{0\} \to \mathbb{N}_0 \cup \{\infty\}$:

 $z(\varphi) = #\{ \text{ strict sign changes of } \varphi \text{ in } [0, 1] \}$

 $z(S(t, t_0)\varphi)$ is a monotone nonincreasing function of $t > t_0$,

For a positive, consider the linear problem

$$(P) u_t = a(x)u_{xx} + b(t,x)u_x + c(t,x)u, \ 0 < x < 1, \ u_x(0) = u_x(1) = 0,$$

and let

$$C_n^1([0,1]) = \{ \varphi \in C^1([0,1]) : \varphi'(0) = \varphi'(1) = 0 \} .$$

Then (P) defines an injective solution operator

$$S(t, t_0): C_n^1([0, 1]) \to C_n^1([0, 1]), t \ge t_0$$
.

If b = b(x), c = c(x), (P) generates a C₀-semigroup $\{T(t) = S(t, 0)\}_{t \ge 0}$.

Define the zero number $z : C_n^1([0,1]) \setminus \{0\} \to \mathbb{N}_0 \cup \{\infty\}$:

 $z(\varphi) = #\{$ strict sign changes of φ in [0, 1] $\}$

 $z(S(t, t_0)\varphi)$ is a monotone nonincreasing function of $t > t_0$,

For a positive, consider the linear problem

$$(P) u_t = a(x)u_{xx} + b(t,x)u_x + c(t,x)u, \ 0 < x < 1, \ u_x(0) = u_x(1) = 0,$$

and let

$$C_n^1([0,1]) = \{ \varphi \in C^1([0,1]) : \varphi'(0) = \varphi'(1) = 0 \} .$$

Then (P) defines an injective solution operator

$$S(t, t_0): C^1_n([0, 1]) \to C^1_n([0, 1]), t \ge t_0$$
.

If b = b(x), c = c(x), (P) generates a C_0 -semigroup $\{T(t) = S(t, 0)\}_{t \ge 0}$.

Define the zero number $z : C_n^1([0,1]) \setminus \{0\} \to \mathbb{N}_0 \cup \{\infty\}$:

 $z(\varphi) = #\{ \text{ strict sign changes of } \varphi \text{ in } [0, 1] \}$

 $z(S(t, t_0)\varphi)$ is a monotone nonincreasing function of $t > t_0$,

For a positive, consider the linear problem

$$(P) u_t = a(x)u_{xx} + b(t,x)u_x + c(t,x)u, \ 0 < x < 1, \ u_x(0) = u_x(1) = 0,$$

and let

$$C_n^1([0,1]) = \{ \varphi \in C^1([0,1]) : \varphi'(0) = \varphi'(1) = 0 \} .$$

Then (P) defines an injective solution operator

$$S(t, t_0): C^1_n([0, 1]) \to C^1_n([0, 1]), t \ge t_0$$
.

If b = b(x), c = c(x), (P) generates a C_0 -semigroup $\{T(t) = S(t, 0)\}_{t \ge 0}$.

Define the zero number $z : C_n^1([0,1]) \setminus \{0\} \to \mathbb{N}_0 \cup \{\infty\}$:

 $z(\varphi) = #\{ \text{ strict sign changes of } \varphi \text{ in } [0, 1] \}$

 $z(S(t, t_0)\varphi)$ is a monotone nonincreasing function of $t > t_0$,

Let $\mathcal{N} \subset C_n^1([0, 1])$ denote the dense subset of functions with all zeros nondegenerate (i.e. $\varphi(x) = 0 \Rightarrow \varphi'(x) \neq 0$).

Theorem [Angenent '1988]

For $\psi \in C_n^1([0, 1]), \psi \neq 0$,

(i) the set $\Theta = \{t \in (t_0, +\infty) : S(t, t_0) \psi \notin \mathcal{N}\}$ is finite;

(ii) for $t \in \Theta$ there exists an ε_0 such that for $0 < \varepsilon < \varepsilon_0$,

$$z(S(t+\varepsilon,t_0)\psi) < z(S(t-\varepsilon,t_0)\psi).$$

Semilinear reaction-diffusion equations

$$u_t = u_{xx} + f(x, u, u_x), \ 0 < x < 1, \ u_x(0) = u_x(1) = 0,$$

with $f \in C^2([0,1] \times \mathbb{R}^2, \mathbb{R})$, define semiflows in $X = H^1(0,1)$. The zero number *z* provides a discrete Lyapunov function for the difference of any two solutions u_1, u_2

 $z(u_1(t,\cdot) - u_2(t,\cdot))$ is nonincreasing for t > 0.

A different example is provided by differential delay equations

$$\dot{x}(t) = h(x(t), x(t-1))$$

with $h \in C^2(\mathbb{R}^2, \mathbb{R})$ and monotone feedback conditions $h_v(u, v) \leq 0$, defining semiflows in $X = C^0[-1, 0]$.

Semilinear reaction-diffusion equations

$$u_t = u_{xx} + f(x, u, u_x), \ 0 < x < 1, \ u_x(0) = u_x(1) = 0,$$

with $f \in C^2([0,1] \times \mathbb{R}^2, \mathbb{R})$, define semiflows in $X = H^1(0,1)$. The zero number *z* provides a discrete Lyapunov function for the difference of any two solutions u_1, u_2

 $z(u_1(t, \cdot) - u_2(t, \cdot))$ is nonincreasing for t > 0.

A different example is provided by differential delay equations

$$\dot{x}(t) = h(x(t), x(t-1))$$

with $h \in C^2(\mathbb{R}^2, \mathbb{R})$ and monotone feedback conditions $h_v(u, v) \leq 0$, defining semiflows in $X = C^0[-1, 0]$.

For the (\pm) feedback conditions, let

$$V^+(arphi) = 2\lfloor rac{Z(arphi)+1}{2}
floor \ , \quad V^-(arphi) = 2\lfloor rac{Z(arphi)}{2}
floor + 1 \ ,$$

notice that
$$V^+(\varphi)$$
 is even and $V^-(\varphi)$ is odd.

Then, in each feedback case, V^{\pm} provides a discrete Lyapunov function for the difference of any two solutions $x_t^j(\theta) = x^j(t+\theta), \theta \in [-1,0], j = 1, 2,$

 $V^{\pm}(x_t^1 - x_t^2)$ is nonincreasing for t > 0.

[Myschkis, Mallet-Paret, Sell, ...]

For the (\pm) feedback conditions, let

$$V^+(arphi) = 2\lfloor rac{Z(arphi)+1}{2}
floor \ , \quad V^-(arphi) = 2\lfloor rac{Z(arphi)}{2}
floor + 1 \ ,$$

notice that $V^+(\varphi)$ is even and $V^-(\varphi)$ is odd.

Then, in each feedback case, V^{\pm} provides a discrete Lyapunov function for the difference of any two solutions $x_t^j(\theta) = x^j(t+\theta), \theta \in [-1,0], j = 1, 2,$

 $V^{\pm}(x_t^1-x_t^2)$ is nonincreasing for t>0 .

[Myschkis, Mallet-Paret, Sell, ...]

Theorem

Let *A* be the infinitesimal generator of a C_0 -semigroup of bounded linear operators $\{T(t)\}_{t\geq 0}$, $T(t) : C_n^1([0, 1]) \to C_n^1([0, 1])$, such that

- (i) the set $\Theta = \{t \in (t_0, +\infty) : T(t)\psi \notin \mathcal{N}\}$ is finite;
- (ii) $z(T(t_1)\varphi) \ge z(T(t_2)\varphi)$ for all $0 < t_1 \le t_2$.

If $D(A) = C^3([0, 1]) \cap C^1_n([0, 1])$, then there exist $\alpha, \beta, \gamma \in C^1(0, 1)$, with α nonnegative, such that for all $\varphi \in D(A)$ we have

 $(A\varphi)(x) = \alpha(x)\varphi_{xx}(x) + \beta(x)\varphi_x(x) + \gamma(x)\varphi(x), \ 0 < x < 1.$

Sketch of the proof

Step 1: Use the Taylor expansion

Introduce families of functions $a^{\xi}, b^{\xi}, c^{\xi} : \xi \in [0, 1] \mapsto D(A)$ such that

$$egin{aligned} &a^{\xi}(\xi)=a^{\xi}_{x}(\xi)=b^{\xi}(\xi)=0\ ,\ \xi\in[0,1]\ a^{\xi}_{xx}(\xi)=c^{\xi}(\xi)=1\ ,\ \xi\in[0,1]\ b^{\xi}_{x}(\xi)=1\ ,\ \xi\in(0,1)\ a^{\xi}_{x}(x)(x-\xi)>0\ ,\ x\in(0,1)\setminus\{\xi\} \end{aligned}$$

Given $\varphi \in D(A)$ we can uniquely decompose φ in the form

$$\varphi = \varphi(x)c^{x} + \varphi_{x}(x)b^{x} + \varphi_{xx}(x)a^{x} + \psi^{x,\varphi}$$

where $\psi^{x,\varphi} \in D(A)$ satisfies $\psi^{x,\varphi}(x) = \psi^{x,\varphi}_x(x) = \psi^{x,\varphi}_{xx}(x) = 0.$

Then, if $(A\psi^{x,\varphi})(x) = 0$, we obtain

$$(A\varphi)(x) = \alpha(x)\varphi_{xx}(x) + \beta(x)\varphi_{x}(x) + \gamma(x)\varphi(x)$$

where

$$\alpha(x) = (Aa^{x})(x), \ \beta(x) = (Ab^{x})(x), \ \gamma(x) = (Ac^{x})(x).$$

Sketch of the proof

Step 1: Use the Taylor expansion

Introduce families of functions $a^{\xi}, b^{\xi}, c^{\xi} : \xi \in [0, 1] \mapsto D(A)$ such that

$$egin{aligned} &a^{\xi}(\xi)=a^{\xi}_{x}(\xi)=b^{\xi}(\xi)=0\;,\;\xi\in[0,1]\ &a^{\xi}_{xx}(\xi)=c^{\xi}(\xi)=1\;,\;\xi\in[0,1]\ &b^{\xi}_{x}(\xi)=1\;,\;\xi\in(0,1)\ &a^{\xi}_{x}(x)(x-\xi)>0\;,\;x\in(0,1)\setminus\{\xi\} \end{aligned}$$

Given $\varphi \in D(A)$ we can uniquely decompose φ in the form

$$\varphi = \varphi(x)c^{x} + \varphi_{x}(x)b^{x} + \varphi_{xx}(x)a^{x} + \psi^{x,\varphi}$$

where $\psi^{x,\varphi} \in D(A)$ satisfies $\psi^{x,\varphi}(x) = \psi^{x,\varphi}_x(x) = \psi^{x,\varphi}_{xx}(x) = 0.$

Then, if $(A\psi^{x,\varphi})(x) = 0$, we obtain

$$(A\varphi)(x) = \alpha(x)\varphi_{xx}(x) + \beta(x)\varphi_{x}(x) + \gamma(x)\varphi(x)$$

where

$$\alpha(x) = (Aa^{x})(x), \ \beta(x) = (Ab^{x})(x), \ \gamma(x) = (Ac^{x})(x).$$

Sketch of the proof

Step 1: Use the Taylor expansion

Introduce families of functions $a^{\xi}, b^{\xi}, c^{\xi} : \xi \in [0, 1] \mapsto D(A)$ such that

$$egin{aligned} &a^{\xi}(\xi)=a^{\xi}_{x}(\xi)=b^{\xi}(\xi)=0\;,\;\xi\in[0,1]\ &a^{\xi}_{xx}(\xi)=c^{\xi}(\xi)=1\;,\;\xi\in[0,1]\ &b^{\xi}_{x}(\xi)=1\;,\;\xi\in(0,1)\ &a^{\xi}_{x}(x)(x-\xi)>0\;,\;x\in(0,1)\setminus\{\xi\} \end{aligned}$$

Given $\varphi \in D(A)$ we can uniquely decompose φ in the form

$$\varphi = \varphi(x)c^{x} + \varphi_{x}(x)b^{x} + \varphi_{xx}(x)a^{x} + \psi^{x,\varphi}$$

where $\psi^{x,\varphi} \in D(A)$ satisfies $\psi^{x,\varphi}(x) = \psi^{x,\varphi}_x(x) = \psi^{x,\varphi}_{xx}(x) = 0.$

Then, if $(A\psi^{x,\varphi})(x) = 0$, we obtain

$$(A\varphi)(x) = \alpha(x)\varphi_{xx}(x) + \beta(x)\varphi_{x}(x) + \gamma(x)\varphi(x)$$

where

$$\alpha(x) = (Aa^{x})(x), \ \beta(x) = (Ab^{x})(x), \ \gamma(x) = (Ac^{x})(x).$$

Let $\varphi^{\xi,\lambda} = a^{\xi} + \lambda \psi^{\xi}$. Notice that a^{ξ} has a degenerate zero at $x = \xi$.

At a degenerate zero $x \neq \xi$ of $\varphi^{\xi,\lambda}$ we have

$$\begin{cases} \varphi^{\xi,\lambda}(x) = a^{\xi}(x) + \lambda \psi^{\xi}(x) = 0, \\ \varphi^{\xi,\lambda}_{\chi}(x) = a^{\xi}_{\chi}(x) + \lambda \psi^{\xi}_{\chi}(x) = 0. \end{cases}$$

Then

$$\Psi(x) = \frac{\psi^{\xi}(x)}{a^{\xi}(x)} = \frac{1}{\lambda} \quad , \quad \Psi_{x}(x) = \frac{\psi^{\xi}_{x}(x)a^{\xi}(x) - \psi^{\xi}(x)a^{\xi}_{x}(x)}{(a^{\xi}(x))^{2}} = 0 \; ,$$

Let $\varphi^{\xi,\lambda} = a^{\xi} + \lambda \psi^{\xi}$. Notice that a^{ξ} has a degenerate zero at $x = \xi$.

At a degenerate zero $x \neq \xi$ of $\varphi^{\xi,\lambda}$ we have

$$\begin{cases} \varphi^{\xi,\lambda}(x) = a^{\xi}(x) + \lambda \psi^{\xi}(x) = 0, \\ \varphi^{\xi,\lambda}_{x}(x) = a^{\xi}_{x}(x) + \lambda \psi^{\xi}_{x}(x) = 0. \end{cases}$$

Then

$$\Psi(x) = \frac{\psi^{\xi}(x)}{a^{\xi}(x)} = \frac{1}{\lambda} \quad , \quad \Psi_x(x) = \frac{\psi^{\xi}_x(x)a^{\xi}(x) - \psi^{\xi}(x)a^{\xi}_x(x)}{(a^{\xi}(x))^2} = 0 \; ,$$

Let $\varphi^{\xi,\lambda} = a^{\xi} + \lambda \psi^{\xi}$. Notice that a^{ξ} has a degenerate zero at $x = \xi$.

At a degenerate zero $x \neq \xi$ of $\varphi^{\xi,\lambda}$ we have

$$\begin{cases} \varphi^{\xi,\lambda}(x) = a^{\xi}(x) + \lambda \psi^{\xi}(x) = 0, \\ \varphi^{\xi,\lambda}_{x}(x) = a^{\xi}_{x}(x) + \lambda \psi^{\xi}_{x}(x) = 0. \end{cases}$$

Then

$$\Psi(x) = \frac{\psi^{\xi}(x)}{a^{\xi}(x)} = \frac{1}{\lambda} \quad , \quad \Psi_{x}(x) = \frac{\psi^{\xi}_{x}(x)a^{\xi}(x) - \psi^{\xi}(x)a^{\xi}_{x}(x)}{(a^{\xi}(x))^{2}} = 0 \; ,$$

Let $\varphi^{\xi,\lambda} = a^{\xi} + \lambda \psi^{\xi}$. Notice that a^{ξ} has a degenerate zero at $x = \xi$.

At a degenerate zero $x \neq \xi$ of $\varphi^{\xi,\lambda}$ we have

$$\begin{cases} \varphi^{\xi,\lambda}(x) = a^{\xi}(x) + \lambda \psi^{\xi}(x) = 0, \\ \varphi^{\xi,\lambda}_{x}(x) = a^{\xi}_{x}(x) + \lambda \psi^{\xi}_{x}(x) = 0. \end{cases}$$

Then

$$\Psi(x) = \frac{\psi^{\xi}(x)}{a^{\xi}(x)} = \frac{1}{\lambda} \quad , \quad \Psi_{x}(x) = \frac{\psi^{\xi}_{x}(x)a^{\xi}(x) - \psi^{\xi}(x)a^{\xi}_{x}(x)}{(a^{\xi}(x))^{2}} = 0 \; ,$$

Again let
$$\varphi^{\xi,\lambda} = a^{\xi} + \lambda \psi^{\xi}$$
 with $\psi^{\xi} = \psi^{\xi,\varphi}$. For small $t > 0$ we have
 $(T(t)\varphi^{\xi,\lambda})(\xi) = (T(t)\varphi^{\xi,\lambda})(\xi) - \varphi^{\xi,\lambda}(\xi)$
 $= ((Aa^{\xi})(\xi) + \lambda (A\psi^{\xi})(\xi))t + (o(t))(\xi) + \lambda (o(t))(\xi).$

If $(A\psi^{\xi})(\xi) \neq 0$, there is $\lambda_0 \in \mathbb{R}$ (suficiently large) such that:

$$\left(T(t)\varphi^{\xi,\lambda_0}\right)(\xi) < 0 , \ 0 < t \leq t_0;$$

Moreover, φ^{ξ,λ_0} has exactly one degenerate zero in $[\xi - \delta, \xi + \delta]$ and a finite number of nondegenerate zeros in $[0, 1] \setminus (\xi - \delta, \xi + \delta)$.

Then, there is $\phi \in D(A)$ (close to φ^{ξ,λ_0}) such that we obtain the contradiction $z(T(t_0)\phi) > z(\phi) \ .$

Again let $\varphi^{\xi,\lambda} = a^{\xi} + \lambda \psi^{\xi}$ with $\psi^{\xi} = \psi^{\xi,\varphi}$. For small t > 0 we have $(T(t)\varphi^{\xi,\lambda})(\xi) = (T(t)\varphi^{\xi,\lambda})(\xi) - \varphi^{\xi,\lambda}(\xi)$ $= ((Aa^{\xi})(\xi) + \lambda (A\psi^{\xi})(\xi))t + (o(t))(\xi) + \lambda (o(t))(\xi).$

If $(A\psi^{\xi})(\xi) \neq 0$, there is $\lambda_0 \in \mathbb{R}$ (suficiently large) such that:

$$\left(T(t)\varphi^{\xi,\lambda_0}\right)(\xi) < 0 , \ 0 < t \leq t_0;$$

Moreover, φ^{ξ,λ_0} has exactly one degenerate zero in $[\xi - \delta, \xi + \delta]$ and a finite number of nondegenerate zeros in $[0, 1] \setminus (\xi - \delta, \xi + \delta)$.

Then, there is $\phi \in D(A)$ (close to φ^{ξ,λ_0}) such that we obtain the contradiction $z(T(t_0)\phi) > z(\phi)$.

Again let $\varphi^{\xi,\lambda} = a^{\xi} + \lambda \psi^{\xi}$ with $\psi^{\xi} = \psi^{\xi,\varphi}$. For small t > 0 we have $(T(t)\varphi^{\xi,\lambda})(\xi) = (T(t)\varphi^{\xi,\lambda})(\xi) - \varphi^{\xi,\lambda}(\xi)$ $= ((Aa^{\xi})(\xi) + \lambda (A\psi^{\xi})(\xi))t + (o(t))(\xi) + \lambda (o(t))(\xi).$

If $(A\psi^{\xi})(\xi) \neq 0$, there is $\lambda_0 \in \mathbb{R}$ (suficiently large) such that:

$$\left(T(t)\varphi^{\xi,\lambda_0}\right)(\xi) < 0 , \ 0 < t \leq t_0;$$

Moreover, φ^{ξ,λ_0} has exactly one degenerate zero in $[\xi - \delta, \xi + \delta]$ and a finite number of nondegenerate zeros in $[0, 1] \setminus (\xi - \delta, \xi + \delta)$.

Then, there is $\phi \in D(A)$ (close to φ^{ξ,λ_0}) such that we obtain the contradiction $z(T(t_0)\phi) > z(\phi)$.

Again let $\varphi^{\xi,\lambda} = a^{\xi} + \lambda \psi^{\xi}$ with $\psi^{\xi} = \psi^{\xi,\varphi}$. For small t > 0 we have $(T(t)\varphi^{\xi,\lambda})(\xi) = (T(t)\varphi^{\xi,\lambda})(\xi) - \varphi^{\xi,\lambda}(\xi)$ $= ((Aa^{\xi})(\xi) + \lambda (A\psi^{\xi})(\xi))t + (o(t))(\xi) + \lambda (o(t))(\xi).$

If $(A\psi^{\xi})(\xi) \neq 0$, there is $\lambda_0 \in \mathbb{R}$ (suficiently large) such that:

$$\left(T(t)\varphi^{\xi,\lambda_0}\right)(\xi) < 0 , \ 0 < t \leq t_0;$$

Moreover, φ^{ξ,λ_0} has exactly one degenerate zero in $[\xi - \delta, \xi + \delta]$ and a finite number of nondegenerate zeros in $[0, 1] \setminus (\xi - \delta, \xi + \delta)$.

Then, there is $\phi \in D(A)$ (close to φ^{ξ,λ_0}) such that we obtain the contradiction

 $z(T(t_0)\phi)>z(\phi).$

The discrete Liapunov functional *z* endows *X* with an order structure preserved by the semigroup T(t) [Fusco+Lunel '1997]:

▷ *z* defines on *X* an *order structure* (\mathcal{N} , ~, <) if:

a) z defines in ${\cal N}$ an equivalence relation \sim

for $\varphi, \psi \in \mathcal{N}$ $\varphi \sim \psi$ iff $z(\varphi) = z(\psi)$

(b) z defines in \mathcal{N}/\sim a total order <

for $[\varphi], [\psi] \in \mathcal{N}/\sim$ $[\varphi] < [\psi]$ iff $z(\varphi) = z(\psi)$

T(*t*) preserves the order structure (*N*, ~, <) if:
(a) *z*(*T*(*t*)φ) is defined for all *t* ∈ Φ = ℝ₊ \ { discrete set }
(b) *z*(*T*(*t'*)φ) ≤ *z*(*T*(*t*)φ) for all *t*, *t'* ∈ Φ, *t'* > *t*(c) (*N*/~) is complete [φ]₁ ← [φ]₂ ← [φ]₃ ← ...

The discrete Liapunov functional *z* endows *X* with an order structure preserved by the semigroup T(t) [Fusco+Lunel '1997]:

▷ z defines on X an order structure $(\mathcal{N}, \sim, <)$ if:

(a) z defines in ${\cal N}$ an equivalence relation \sim

for $\varphi, \psi \in \mathcal{N}$ $\varphi \sim \psi$ iff $z(\varphi) = z(\psi)$

(b) z defines in \mathcal{N}/\sim a total order <

 $\text{for } [\varphi], [\psi] \in \mathcal{N}/\sim \qquad [\varphi] < [\psi] \text{ iff } z(\varphi) = z(\psi)$

T(*t*) preserves the order structure (*N*, ~, <) if:
(a) *z*(*T*(*t*)φ) is defined for all *t* ∈ Φ = ℝ₊ \ { discrete set }
(b) *z*(*T*(*t'*)φ) ≤ *z*(*T*(*t*)φ) for all *t*, *t'* ∈ Φ, *t'* > *t*(c) (*N*/~) is complete [φ]₁ ← [φ]₂ ← [φ]₃ ← ...

The discrete Liapunov functional *z* endows *X* with an order structure preserved by the semigroup T(t) [Fusco+Lunel '1997]:

▷ z defines on X an order structure $(\mathcal{N}, \sim, <)$ if:

(a) z defines in ${\cal N}$ an equivalence relation \sim

for $\varphi, \psi \in \mathcal{N}$ $\varphi \sim \psi$ iff $z(\varphi) = z(\psi)$

(b) z defines in \mathcal{N}/\sim a total order <

 $\text{for } [\varphi], [\psi] \in \mathcal{N}/\sim \qquad [\varphi] < [\psi] \text{ iff } z(\varphi) = z(\psi)$

T(*t*) preserves the order structure (*N*, ~, <) if:
(a) *z*(*T*(*t*)φ) is defined for all *t* ∈ Φ = ℝ₊ \ { discrete set }
(b) *z*(*T*(*t'*)φ) ≤ *z*(*T*(*t*)φ) for all *t*, *t'* ∈ Φ, *t'* > *t*(c) (*N*/~) is complete [φ]₁ ← [φ]₂ ← [φ]₃ ← ...

Do different order structures determine other classes of linear operators A?

For instance, the semigroup T(t) with periodic boundary conditions in fact preserves the order structure defined by $V^+ : \mathcal{N} \to \{0, 2, 4, ...\}$.

Therefore, it is natural to consider nonseparated linear boundary conditions

$$C^1_{bc}([0,1]) = \{ arphi \in C^1([0,1]) : B_0(arphi) = B_1(arphi) = 0 \}$$

where $B_0, B_1 : C^1([0, 1]) \to \mathbb{R}$ are the boundary operators

$$\begin{cases} B_0(\varphi) = \varphi'(0) + \delta_{00}\varphi(0) + \delta_{01}\varphi(1) \\ B_1(\varphi) = \varphi'(1) + \delta_{10}\varphi(0) + \delta_{11}\varphi(1) \end{cases}$$

[Coddington+Levinson]

Do different order structures determine other classes of linear operators A?

For instance, the semigroup T(t) with periodic boundary conditions in fact preserves the order structure defined by $V^+ : \mathcal{N} \to \{0, 2, 4, ...\}$.

Therefore, it is natural to consider nonseparated linear boundary conditions

$$C^{1}_{bc}([0,1]) = \{ \varphi \in C^{1}([0,1]) : B_{0}(\varphi) = B_{1}(\varphi) = 0 \}$$

where $B_0, B_1 : C^1([0, 1]) \to \mathbb{R}$ are the boundary operators

$$\begin{cases} B_0(\varphi) = \varphi'(0) + \delta_{00}\varphi(0) + \delta_{01}\varphi(1) \\ B_1(\varphi) = \varphi'(1) + \delta_{10}\varphi(0) + \delta_{11}\varphi(1) \end{cases}$$

[Coddington+Levinson]

Do different order structures determine other classes of linear operators A?

For instance, the semigroup T(t) with periodic boundary conditions in fact preserves the order structure defined by $V^+ : \mathcal{N} \to \{0, 2, 4, ...\}$.

Therefore, it is natural to consider nonseparated linear boundary conditions

$$C^1_{bc}([0,1]) = \{ \varphi \in C^1([0,1]) : B_0(\varphi) = B_1(\varphi) = 0 \}$$

where $B_0, B_1 : C^1([0, 1]) \to \mathbb{R}$ are the boundary operators

$$\left\{ egin{array}{l} B_0(arphi)=arphi'(0)+\delta_{00}arphi(0)+\delta_{01}arphi(1)\ B_1(arphi)=arphi'(1)+\delta_{10}arphi(0)+\delta_{11}arphi(1) \end{array}
ight.$$

[Coddington+Levinson]

Theorem

Let *A* be the infinitesimal generator of a C_0 -semigroup of bounded linear operators $\{T(t)\}_{t\geq 0}, T(t) : C^1_{bc}([0,1]) \rightarrow C^1_{bc}([0,1])$ that preserves the order structure $(\mathcal{N}, \sim, <)$ defined by $V^-(V^+)$. If $D(A) = C^3([0,1]) \cap C^1_{bc}([0,1])$, then there exist $\alpha, \beta, \gamma \in C^1(0,1)$, with α nonnegative, such that for all $\varphi \in D(A)$ we have

$$(A\varphi)(x) = \alpha(x)\varphi_{xx}(x) + \beta(x)\varphi_x(x) + \gamma(x)\varphi(x), \ 0 < x < 1.$$

Furthermore, the cross-boundary constants satisfy

$$\delta_{01} \le 0$$
 , $\delta_{10} \ge 0$ ($\delta_{01} \ge 0$, $\delta_{10} \le 0$).

The cross-boundary conditions essentially prevent zeros to occur on the boundary when $z(\varphi)$ is even, since in this case the cross-boundary values of φ' and φ have the wrong sign:

 $\varphi'(0) = -\delta_{01}\varphi(1)$ if $\varphi(0) = 0$ and $\varphi'(1) = -\delta_{10}\varphi(0)$ if $\varphi(1) = 0$.

Theorem

Let *A* be the infinitesimal generator of a C_0 -semigroup of bounded linear operators $\{T(t)\}_{t\geq 0}$, $T(t) : C_{bc}^1([0,1]) \to C_{bc}^1([0,1])$ that preserves the order structure $(\mathcal{N}, \sim, <)$ defined by $V^-(V^+)$. If $D(A) = C^3([0,1]) \cap C_{bc}^1([0,1])$, then there exist $\alpha, \beta, \gamma \in C^1(0,1)$, with α nonnegative, such that for all $\varphi \in D(A)$ we have

$$(A\varphi)(x) = \alpha(x)\varphi_{xx}(x) + \beta(x)\varphi_x(x) + \gamma(x)\varphi(x), \ 0 < x < 1.$$

Furthermore, the cross-boundary constants satisfy

$$\delta_{01} \le 0$$
 , $\delta_{10} \ge 0$ $(\delta_{01} \ge 0$, $\delta_{10} \le 0)$.

The cross-boundary conditions essentially prevent zeros to occur on the boundary when $z(\varphi)$ is even, since in this case the cross-boundary values of φ' and φ have the wrong sign:

$$\varphi'(0) = -\delta_{01}\varphi(1) \text{ if } \varphi(0) = 0 \quad \text{ and } \quad \varphi'(1) = -\delta_{10}\varphi(0) \text{ if } \varphi(1) = 0.$$

The cross-boundary conditions play the role of negative feedback conditions.

As a highly degenerate illustration consider $\alpha = \gamma = 0$, $\beta = 1$. Then we have

$$u_t = u_x , \quad 0 < x < 1 ,$$

and the solutions $u(x, t) = \phi(t + x)$ correspond to left translations along [0, 1].

Take the boundary operator B_1 with $\delta_{11} = 0$ and $\delta_{10} = \delta > 0$. This implies

$$u_x(1)=-\delta u(0) ,$$

and we otain the negative feedback differential delay equation

$$\dot{u}(t)=-\delta u(t-1) \ .$$

The cross-boundary conditions play the role of negative feedback conditions.

As a highly degenerate illustration consider $\alpha = \gamma = 0$, $\beta = 1$. Then we have

$$u_t = u_x , \quad 0 < x < 1 ,$$

and the solutions $u(x, t) = \phi(t + x)$ correspond to left translations along [0, 1].

Take the boundary operator B_1 with $\delta_{11} = 0$ and $\delta_{10} = \delta > 0$. This implies

 $u_x(1)=-\delta u(0) ,$

and we otain the negative feedback differential delay equation

 $\dot{u}(t)=-\delta u(t-1) \ .$

The cross-boundary conditions play the role of negative feedback conditions.

As a highly degenerate illustration consider $\alpha = \gamma = 0$, $\beta = 1$. Then we have

$$u_t = u_x , \quad 0 < x < 1 ,$$

and the solutions $u(x, t) = \phi(t + x)$ correspond to left translations along [0, 1].

Take the boundary operator B_1 with $\delta_{11} = 0$ and $\delta_{10} = \delta > 0$. This implies

$$u_x(1)=-\delta u(0)\;,$$

and we otain the negative feedback differential delay equation

$$\dot{u}(t)=-\delta u(t-1) \ .$$

Thank you

