Order Preserving Semiflows Revisited

Carlos Rocha

CAMGSD - Instituto Superior Técnico
$8^{\text {th }}$ ISTIME Conference, September 5-9, 2022
In honor of Giorgio Fusco

To Giorgio Fusco

Introduction

Linear scalar parabolic equations exhibit a natural discrete Liapunov functional (the zero crossing number):

The number of zeros of a solution is a nonincreasing function of time.

```
This is at the root of a most complete description of the geometric properties
of nonlinear semiflows generated by semilinear scalar parabolic equations.
Natural questions are:
    (i) What are the linear flows possessing adequate discrete Liapunov
    functionals?
    (ii) Do such functionals determine a class of problems?
```


Introduction

Linear scalar parabolic equations exhibit a natural discrete Liapunov functional (the zero crossing number):

The number of zeros of a solution is a nonincreasing function of time.
This is at the root of a most complete description of the geometric properties of nonlinear semiflows generated by semilinear scalar parabolic equations.

Natural questions are:
What are the linear flows possessing adequate discrete Liapunov functionals?

Do such functionals determine a class of problems?

Introduction

Linear scalar parabolic equations exhibit a natural discrete Liapunov functional (the zero crossing number):

The number of zeros of a solution is a nonincreasing function of time.

This is at the root of a most complete description of the geometric properties of nonlinear semiflows generated by semilinear scalar parabolic equations.

Natural questions are:
(i) What are the linear flows possessing adequate discrete Liapunov functionals?
(ii) Do such functionals determine a class of problems?

Outline

- The zero number in linear parabolic equations
- Semiflows with discrete Lyapunov functions
- Linear operators with the zero number property
- Order structures preserved by semigroups
- A class of order preserving semiflows

Outline

- The zero number in linear parabolic equations
- Semiflows with discrete Lyapunov functions
- Linear operators with the zero number property
- Order structures preserved by semigroups
- A class of order preserving semiflows

Outline

- The zero number in linear parabolic equations
- Semiflows with discrete Lyapunov functions
- Linear operators with the zero number property
- Order structures preserved by semigroups
- A class of order preserving semiflows

Outline

- The zero number in linear parabolic equations
- Semiflows with discrete Lyapunov functions
- Linear operators with the zero number property
- Order structures preserved by semigroups
- A class of order preserving semiflows

Outline

- The zero number in linear parabolic equations
- Semiflows with discrete Lyapunov functions
- Linear operators with the zero number property
- Order structures preserved by semigroups
- A class of order preserving semiflows

Linear scalar parabolic equations

For a positive, consider the linear problem

$$
\text { (P) } \quad u_{t}=a(x) u_{x x}+b(t, x) u_{x}+c(t, x) u, 0<x<1, u_{x}(0)=u_{x}(1)=0,
$$ and let

$$
C_{n}^{1}([0,1])=\left\{\varphi \in C^{1}([0,1]): \varphi^{\prime}(0)=\varphi^{\prime}(1)=0\right\} .
$$

Then (P) defines an injective solution operator

$S\left(t, t_{0}\right): C_{n}^{1}([0,1]) \rightarrow C_{n}^{1}([0,1]), t \geq t_{0}$
If $b=b(x), c=c(x),(P)$ generates a C_{0}-semigroup $\{T(t)=S(t, 0)\} t \geq 0$.
Define the zero number $z: C_{n}^{1}([0,1]) \backslash\{0\} \rightarrow \mathbb{N}_{0} \cup\{\infty\}$ $z(\varphi)=\#\{$ strict sign changes of φ in $[0,1]\}$
$z\left(S\left(t, t_{0}\right) \varphi\right)$ is a monotone nonincreasing function of $t>t_{0}$,

Linear scalar parabolic equations

For a positive, consider the linear problem

$$
\text { (P) } \quad u_{t}=a(x) u_{x x}+b(t, x) u_{x}+c(t, x) u, 0<x<1, u_{x}(0)=u_{x}(1)=0,
$$

and let

$$
C_{n}^{1}([0,1])=\left\{\varphi \in C^{1}([0,1]): \varphi^{\prime}(0)=\varphi^{\prime}(1)=0\right\} .
$$

Then (P) defines an injective solution operator

$$
S\left(t, t_{0}\right): C_{n}^{1}([0,1]) \rightarrow C_{n}^{1}([0,1]), t \geq t_{0} .
$$

If $b=b(x), c=c(x),(P)$ generates a C_{0}-semigroup $\{T(t)=S(t, 0)\}_{t \geq 0}$.
Define the zero number $z: C_{n}^{1}([0,1]) \backslash\{0\} \rightarrow \mathbb{N}_{0} \cup\{\infty\}$ $z(\varphi)=\#\{$ strict sign changes of φ in $[0,1]\}$
$z(S(t, t) \varphi)$ is a monotone nonincreasing function of $t>t_{0}$.

Linear scalar parabolic equations

For a positive, consider the linear problem

$$
\text { (P) } \quad u_{t}=a(x) u_{x x}+b(t, x) u_{x}+c(t, x) u, 0<x<1, u_{x}(0)=u_{x}(1)=0,
$$

and let

$$
C_{n}^{1}([0,1])=\left\{\varphi \in C^{1}([0,1]): \varphi^{\prime}(0)=\varphi^{\prime}(1)=0\right\} .
$$

Then (P) defines an injective solution operator

$$
S\left(t, t_{0}\right): C_{n}^{1}([0,1]) \rightarrow C_{n}^{1}([0,1]), t \geq t_{0} .
$$

If $b=b(x), c=c(x),(P)$ generates a C_{0}-semigroup $\{T(t)=S(t, 0)\}_{t \geq 0}$.
Define the zero number $z: C_{n}^{1}([0,1]) \backslash\{0\} \rightarrow \mathbb{N}_{0} \cup\{\infty\}$:

$$
z(\varphi)=\#\{\text { strict sign changes of } \varphi \text { in }[0,1]\}
$$

$z\left(S\left(t, t_{0}\right) \varphi\right)$ is a monotone nonincreasing function of $t>t_{0}$,

Linear scalar parabolic equations

For a positive, consider the linear problem

$$
\text { (P) } \quad u_{t}=a(x) u_{x x}+b(t, x) u_{x}+c(t, x) u, 0<x<1, u_{x}(0)=u_{x}(1)=0,
$$

and let

$$
C_{n}^{1}([0,1])=\left\{\varphi \in C^{1}([0,1]): \varphi^{\prime}(0)=\varphi^{\prime}(1)=0\right\} .
$$

Then (P) defines an injective solution operator

$$
S\left(t, t_{0}\right): C_{n}^{1}([0,1]) \rightarrow C_{n}^{1}([0,1]), t \geq t_{0} .
$$

If $b=b(x), c=c(x),(P)$ generates a C_{0}-semigroup $\{T(t)=S(t, 0)\}_{t \geq 0}$.
Define the zero number $z: C_{n}^{1}([0,1]) \backslash\{0\} \rightarrow \mathbb{N}_{0} \cup\{\infty\}$:

$$
z(\varphi)=\#\{\text { strict sign changes of } \varphi \text { in }[0,1]\}
$$

$z\left(S\left(t, t_{0}\right) \varphi\right)$ is a monotone nonincreasing function of $t>t_{0}$,
[Sturm, Niquel, Matano, Henry, Angenent, ...]

Let $\mathcal{N} \subset C_{n}^{1}([0,1])$ denote the dense subset of functions with all zeros nondegenerate (i.e. $\varphi(x)=0 \Rightarrow \varphi^{\prime}(x) \neq 0$).

Theorem [Angenent '1988]

For $\psi \in C_{n}^{1}([0,1]), \psi \neq 0$,
(i) the set $\Theta=\left\{t \in\left(t_{0},+\infty\right): S\left(t, t_{0}\right) \psi \notin \mathcal{N}\right\}$ is finite;
(ii) for $t \in \Theta$ there exists an ε_{0} such that for $0<\varepsilon<\varepsilon_{0}$,

$$
z\left(S\left(t+\varepsilon, t_{0}\right) \psi\right)<z\left(S\left(t-\varepsilon, t_{0}\right) \psi\right) .
$$

Discrete Lyapunov functions

Semilinear reaction-diffusion equations

$$
u_{t}=u_{x x}+f\left(x, u, u_{x}\right), 0<x<1, u_{x}(0)=u_{x}(1)=0
$$

with $f \in C^{2}\left([0,1] \times \mathbb{R}^{2}, \mathbb{R}\right)$, define semiflows in $X=H^{1}(0,1)$. The zero number z provides a discrete Lyapunov function for the difference of any two solutions u_{1}, u_{2}

$$
z\left(u_{1}(t, \cdot)-u_{2}(t, \cdot)\right) \text { is nonincreasing for } t>0 .
$$

A different example is provided by differential delay equations

$$
\dot{x}(t)=h(x(t), x(t-1))
$$

with $h \in C^{2}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ and monotone feedback conditions $h_{v}(u, v) \lessgtr 0$, defining semiflows in $X=C^{0}[-1,0]$.

Discrete Lyapunov functions

Semilinear reaction-diffusion equations

$$
u_{t}=u_{x x}+f\left(x, u, u_{x}\right), 0<x<1, u_{x}(0)=u_{x}(1)=0
$$

with $f \in C^{2}\left([0,1] \times \mathbb{R}^{2}, \mathbb{R}\right)$, define semiflows in $X=H^{1}(0,1)$. The zero number z provides a discrete Lyapunov function for the difference of any two solutions u_{1}, u_{2}

$$
z\left(u_{1}(t, \cdot)-u_{2}(t, \cdot)\right) \text { is nonincreasing for } t>0 .
$$

A different example is provided by differential delay equations

$$
\dot{x}(t)=h(x(t), x(t-1))
$$

with $h \in C^{2}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ and monotone feedback conditions $h_{v}(u, v) \lessgtr 0$, defining semiflows in $X=C^{0}[-1,0]$.

For the (\pm) feedback conditions, let

$$
V^{+}(\varphi)=2\left\lfloor\frac{z(\varphi)+1}{2}\right\rfloor \quad, \quad V^{-}(\varphi)=2\left\lfloor\frac{z(\varphi)}{2}\right\rfloor+1,
$$

notice that $V^{+}(\varphi)$ is even and $V^{-}(\varphi)$ is odd.

Then, in each feedback case, $V^{ \pm}$provides a discrete Lyapunov function for the difference of any two solutions $x_{t}^{j}(\theta)=x^{j}(t+\theta), \theta \in[-1,0], j=1,2$,

For the (\pm) feedback conditions, let

$$
V^{+}(\varphi)=2\left\lfloor\frac{z(\varphi)+1}{2}\right\rfloor \quad, \quad V^{-}(\varphi)=2\left\lfloor\frac{z(\varphi)}{2}\right\rfloor+1,
$$

notice that $V^{+}(\varphi)$ is even and $V^{-}(\varphi)$ is odd.

Then, in each feedback case, $V^{ \pm}$provides a discrete Lyapunov function for the difference of any two solutions $x_{t}^{j}(\theta)=x^{j}(t+\theta), \theta \in[-1,0], j=1,2$,

$$
V^{ \pm}\left(x_{t}^{1}-x_{t}^{2}\right) \text { is nonincreasing for } t>0 .
$$

[Myschkis, Mallet-Paret, Sell, ...]

Generators of semiflows with zero number decay

Theorem

Let A be the infinitesimal generator of a C_{0}-semigroup of bounded linear operators $\{T(t)\}_{t \geq 0}, T(t): C_{n}^{1}([0,1]) \rightarrow C_{n}^{1}([0,1])$, such that
(i) the set $\Theta=\left\{t \in\left(t_{0},+\infty\right): T(t) \psi \notin \mathcal{N}\right\}$ is finite;
(ii) $z\left(T\left(t_{1}\right) \varphi\right) \geq z\left(T\left(t_{2}\right) \varphi\right)$ for all $0<t_{1} \leq t_{2}$.

If $D(A)=C^{3}([0,1]) \cap C_{n}^{1}([0,1])$, then there exist $\alpha, \beta, \gamma \in C^{1}(0,1)$, with α nonnegative, such that for all $\varphi \in D(A)$ we have

$$
(\boldsymbol{A} \varphi)(x)=\alpha(x) \varphi_{x x}(x)+\beta(x) \varphi_{x}(x)+\gamma(x) \varphi(x), 0<x<1 .
$$

Sketch of the proof

Step 1: Use the Taylor expansion
Introduce families of functions $a^{\xi}, b^{\xi}, c^{\xi}: \xi \in[0,1] \mapsto D(A)$ such that

$$
\begin{aligned}
& a^{\xi}(\xi)=a_{x}^{\xi}(\xi)=b^{\xi}(\xi)=0, \xi \in[0,1] \\
& a_{x x}^{\xi}(\xi)=c^{\xi}(\xi)=1, \xi \in[0,1] \\
& b_{x}^{\xi}(\xi)=1, \xi \in(0,1) \\
& a_{x}^{\xi}(x)(x-\xi)>0, x \in(0,1) \backslash\{\xi\}
\end{aligned}
$$

Given $\varphi \in D(A)$ we can uniquely decompose φ in the form
where $\psi^{x, \varphi} \in D(A)$ satisfies $\quad \psi^{x, \varphi}(x)=\psi_{x}^{x, \varphi}(x)=\psi_{x x}^{x, \varphi}(x)=0$.
Then, if $\left(A \psi^{*} \varphi\right)(x)=0$, we obtain

$$
(A \varphi)(x)=\alpha(x) \varphi_{x x}(x)+\beta(x) \varphi_{x}(x)+\gamma(x) \varphi(x)
$$

where

Sketch of the proof

Step 1: Use the Taylor expansion
Introduce families of functions $a^{\xi}, b^{\xi}, c^{\xi}: \xi \in[0,1] \mapsto D(A)$ such that

$$
\begin{aligned}
& a^{\xi}(\xi)=a_{x}^{\xi}(\xi)=b^{\xi}(\xi)=0, \xi \in[0,1] \\
& a_{x x}^{\xi}(\xi)=c^{\xi}(\xi)=1, \xi \in[0,1] \\
& b_{x}^{\xi}(\xi)=1, \xi \in(0,1) \\
& a_{x}^{\xi}(x)(x-\xi)>0, x \in(0,1) \backslash\{\xi\}
\end{aligned}
$$

Given $\varphi \in D(A)$ we can uniquely decompose φ in the form

$$
\varphi=\varphi(x) c^{x}+\varphi_{x}(x) b^{x}+\varphi_{x x}(x) a^{x}+\psi^{x, \varphi}
$$

where $\psi^{x, \varphi} \in D(A)$ satisfies $\quad \psi^{x, \varphi}(x)=\psi_{x}^{x, \varphi}(x)=\psi_{x x}^{x, \varphi}(x)=0$.
Then, if $\left(A \psi^{x, \varphi}\right)(x)=0$, we obtain
$(A \varphi)(x)=\alpha(x) \varphi_{x x}(x)+\beta(x) \varphi_{x}(x)+\gamma(x) \varphi(x)$
where

Sketch of the proof

Step 1: Use the Taylor expansion
Introduce families of functions $a^{\xi}, b^{\xi}, c^{\xi}: \xi \in[0,1] \mapsto D(A)$ such that

$$
\begin{aligned}
& a^{\xi}(\xi)=a_{x}^{\xi}(\xi)=b^{\xi}(\xi)=0, \xi \in[0,1] \\
& a_{x x}^{\xi}(\xi)=c^{\xi}(\xi)=1, \xi \in[0,1] \\
& b_{x}^{\xi}(\xi)=1, \xi \in(0,1) \\
& a_{x}^{\xi}(x)(x-\xi)>0, x \in(0,1) \backslash\{\xi\}
\end{aligned}
$$

Given $\varphi \in D(A)$ we can uniquely decompose φ in the form

$$
\varphi=\varphi(x) c^{x}+\varphi_{x}(x) b^{x}+\varphi_{x x}(x) a^{x}+\psi^{x, \varphi}
$$

where $\psi^{x, \varphi} \in D(A)$ satisfies $\quad \psi^{x, \varphi}(x)=\psi_{x}^{x, \varphi}(x)=\psi_{x x}^{x, \varphi}(x)=0$.
Then, if $\left(A \psi^{x, \varphi}\right)(x)=0$, we obtain

$$
(\boldsymbol{A} \varphi)(x)=\alpha(x) \varphi_{x x}(x)+\beta(x) \varphi_{x}(x)+\gamma(x) \varphi(x)
$$

where

$$
\alpha(x)=\left(A a^{x}\right)(x), \beta(x)=\left(A b^{x}\right)(x), \gamma(x)=\left(A c^{x}\right)(x)
$$

Step 2: Use $\psi^{\xi}=\psi^{\xi, \varphi}$ to perturb all degenerate zeros $x \neq \xi$
Let $\varphi^{\xi, \lambda}=a^{\xi}+\lambda \psi^{\xi}$. Notice that a^{ξ} has a degenerate zero at $x=\xi$.

At a degenerate zero $x \neq \xi$ of $\varphi^{\xi, \lambda}$ we have

Then

and $x \neq \xi$ is a degenerate zero of $\varphi^{\xi, \lambda}$ if and only if λ^{-1} is a critical value of $\Psi:[0,1] \backslash\{\xi\} \rightarrow \mathbb{R}$. By Sard the set of $\lambda \in \mathbb{R}$ such that $\varphi^{\xi, \lambda}:[0,1] \backslash\{\xi\} \rightarrow \mathbb{R}$ has a degenerate zero has Lebesgue measure zero.

Step 2: Use $\psi^{\xi}=\psi^{\xi, \varphi}$ to perturb all degenerate zeros $x \neq \xi$
Let $\varphi^{\xi, \lambda}=a^{\xi}+\lambda \psi^{\xi}$. Notice that a^{ξ} has a degenerate zero at $x=\xi$.
At a degenerate zero $x \neq \xi$ of $\varphi^{\xi, \lambda}$ we have

$$
\left\{\begin{array}{l}
\varphi^{\xi, \lambda}(x)=a^{\xi}(x)+\lambda \psi^{\xi}(x)=0, \\
\varphi_{x}^{\xi, \lambda}(x)=a_{x}^{\xi}(x)+\lambda \psi_{x}^{\xi}(x)=0 .
\end{array}\right.
$$

Then

Step 2: Use $\psi^{\xi}=\psi^{\xi, \varphi}$ to perturb all degenerate zeros $x \neq \xi$
Let $\varphi^{\xi, \lambda}=a^{\xi}+\lambda \psi^{\xi}$. Notice that a^{ξ} has a degenerate zero at $x=\xi$.
At a degenerate zero $x \neq \xi$ of $\varphi^{\xi, \lambda}$ we have

$$
\left\{\begin{array}{l}
\varphi^{\xi, \lambda}(x)=a^{\xi}(x)+\lambda \psi^{\xi}(x)=0, \\
\varphi_{x}^{\xi, \lambda}(x)=a_{x}^{\xi}(x)+\lambda \psi_{x}^{\xi}(x)=0 .
\end{array}\right.
$$

Then

$$
\psi(x)=\frac{\psi^{\xi}(x)}{a^{\xi}(x)}=\frac{1}{\lambda} \quad, \quad \Psi_{x}(x)=\frac{\psi_{x}^{\xi}(x) a^{\xi}(x)-\psi^{\xi}(x) a_{x}^{\xi}(x)}{\left(a^{\xi}(x)\right)^{2}}=0,
$$

Step 2: Use $\psi^{\xi}=\psi^{\xi, \varphi}$ to perturb all degenerate zeros $x \neq \xi$
Let $\varphi^{\xi, \lambda}=a^{\xi}+\lambda \psi^{\xi}$. Notice that a^{ξ} has a degenerate zero at $x=\xi$.
At a degenerate zero $x \neq \xi$ of $\varphi^{\xi, \lambda}$ we have

Then

$$
\Psi(x)=\frac{\psi^{\xi}(x)}{a^{\xi}(x)}=\frac{1}{\lambda} \quad, \quad \Psi_{x}(x)=\frac{\psi_{x}^{\xi}(x) a^{\xi}(x)-\psi^{\xi}(x) a_{x}^{\xi}(x)}{\left(a^{\xi}(x)\right)^{2}}=0,
$$

and $x \neq \xi$ is a degenerate zero of $\varphi^{\xi, \lambda}$ if and only if λ^{-1} is a critical value of $\psi:[0,1] \backslash\{\xi\} \rightarrow \mathbb{R}$. By Sard the set of $\lambda \in \mathbb{R}$ such that $\varphi^{\xi, \lambda}:[0,1] \backslash\{\xi\} \rightarrow \mathbb{R}$ has a degenerate zero has Lebesgue measure zero.

Step 3: Show that $\left(A \psi^{x, \varphi}\right)(x)=0$
Again let $\varphi^{\xi, \lambda}=a^{\xi}+\lambda \psi^{\xi}$ with $\psi^{\xi}=\psi^{\xi, \varphi}$. For small $t>0$ we have

$$
\begin{aligned}
& \left(T(t) \varphi^{\xi, \lambda}\right)(\xi)=\left(T(t) \varphi^{\xi, \lambda}\right)(\xi)-\varphi^{\xi, \lambda}(\xi) \\
& =\left(\left(\boldsymbol{A} a^{\xi}\right)(\xi)+\lambda\left(\boldsymbol{A} \psi^{\xi}\right)(\xi)\right) t+(o(t))(\xi)+\lambda(o(t))(\xi) .
\end{aligned}
$$

If $\left(A \psi^{\xi}\right)(\xi) \neq 0$, there is $\lambda_{0} \in \mathbb{R}$ (suficiently large) such that:

Moreover, $\varphi^{\xi, \lambda_{0}}$ has exactly one degenerate zero in $[\xi-\delta, \xi+\delta]$ and a finite number of nondegenerate zeros in $[0,1] \backslash(\xi-\delta, \xi+\delta)$.

Then, there is $\phi \in D(A)$ (close to $\varphi^{\xi, \lambda_{0}}$) such that we obtain the contradiction

Step 3: Show that $\left(A \psi^{x, \varphi}\right)(x)=0$
Again let $\varphi^{\xi, \lambda}=a^{\xi}+\lambda \psi^{\xi}$ with $\psi^{\xi}=\psi^{\xi, \varphi}$. For small $t>0$ we have

$$
\begin{aligned}
& \left(T(t) \varphi^{\xi, \lambda}\right)(\xi)=\left(T(t) \varphi^{\xi, \lambda}\right)(\xi)-\varphi^{\xi, \lambda}(\xi) \\
& =\left(\left(\boldsymbol{A} a^{\xi}\right)(\xi)+\lambda\left(\boldsymbol{A} \psi^{\xi}\right)(\xi)\right) t+(o(t))(\xi)+\lambda(o(t))(\xi) .
\end{aligned}
$$

If $\left(\boldsymbol{A} \psi^{\xi}\right)(\xi) \neq 0$, there is $\lambda_{0} \in \mathbb{R}$ (suficiently large) such that:

$$
\left(T(t) \varphi^{\xi, \lambda_{0}}\right)(\xi)<0,0<t \leq t_{0}
$$

Moreover, $\varphi^{\xi, \lambda_{0}}$ has exactly one degenerate zero in $[\xi-\delta, \xi+\delta]$ and a finite number of nondegenerate zeros in $[0,1] \backslash(\xi-\delta, \xi+\delta)$.

Then, there is $\phi \in D^{\prime}(A)$ (ciose to $\left.\varphi^{\xi, \lambda_{0}}\right)$ such that we obtain the contradiction

Step 3: Show that $\left(A \psi^{x, \varphi}\right)(x)=0$
Again let $\varphi^{\xi, \lambda}=a^{\xi}+\lambda \psi^{\xi}$ with $\psi^{\xi}=\psi^{\xi, \varphi}$. For small $t>0$ we have

$$
\begin{aligned}
& \left(T(t) \varphi^{\xi, \lambda}\right)(\xi)=\left(T(t) \varphi^{\xi, \lambda}\right)(\xi)-\varphi^{\xi, \lambda}(\xi) \\
& =\left(\left(A a^{\xi}\right)(\xi)+\lambda\left(\boldsymbol{A} \psi^{\xi}\right)(\xi)\right) t+(o(t))(\xi)+\lambda(o(t))(\xi) .
\end{aligned}
$$

If $\left(\boldsymbol{A} \psi^{\xi}\right)(\xi) \neq 0$, there is $\lambda_{0} \in \mathbb{R}$ (suficiently large) such that:

$$
\left(T(t) \varphi^{\xi, \lambda_{0}}\right)(\xi)<0,0<t \leq t_{0} ;
$$

Moreover, $\varphi^{\xi, \lambda_{0}}$ has exactly one degenerate zero in $[\xi-\delta, \xi+\delta]$ and a finite number of nondegenerate zeros in $[0,1] \backslash(\xi-\delta, \xi+\delta)$.

Then, there is $\phi \in D(A)$ (close to $\varphi^{\xi, \lambda_{0}}$) such that we obtain the contradiction

Step 3: Show that $\left(A \psi^{x, \varphi}\right)(x)=0$
Again let $\varphi^{\xi, \lambda}=a^{\xi}+\lambda \psi^{\xi}$ with $\psi^{\xi}=\psi^{\xi, \varphi}$. For small $t>0$ we have

$$
\begin{aligned}
& \left(T(t) \varphi^{\xi, \lambda}\right)(\xi)=\left(T(t) \varphi^{\xi, \lambda}\right)(\xi)-\varphi^{\xi, \lambda}(\xi) \\
& =\left(\left(A a^{\xi}\right)(\xi)+\lambda\left(\boldsymbol{A} \psi^{\xi}\right)(\xi)\right) t+(o(t))(\xi)+\lambda(o(t))(\xi) .
\end{aligned}
$$

If $\left(\boldsymbol{A} \psi^{\xi}\right)(\xi) \neq 0$, there is $\lambda_{0} \in \mathbb{R}$ (suficiently large) such that:

$$
\left(T(t) \varphi^{\xi, \lambda_{0}}\right)(\xi)<0,0<t \leq t_{0} ;
$$

Moreover, $\varphi^{\xi, \lambda_{0}}$ has exactly one degenerate zero in $[\xi-\delta, \xi+\delta]$ and a finite number of nondegenerate zeros in $[0,1] \backslash(\xi-\delta, \xi+\delta)$.

Then, there is $\phi \in D(A)$ (close to $\varphi^{\xi, \lambda_{0}}$) such that we obtain the contradiction

$$
z\left(T\left(t_{0}\right) \phi\right)>z(\phi) .
$$

Order structures preserved by semigroups

The discrete Liapunov functional z endows X with an order structure preserved by the semigroup $T(t)$ [Fusco+Lunel '1997]:

```
z defines on X an order structure (\mathcal{N},~,<) if
(a) z defines in \mathcal{N}}\mathrm{ an equivalence relation }
                                    for }\varphi,\psi\in\mathcal{N}\quad\varphi~\psi\mathrm{ iff }z(\varphi)=z(\psi
(b) z defines in \mathcal{N}/~ a total order
    for [ [\varphi], [\psi] [ N/ ~ [\varphi]<[\psi] iff z(\varphi)=z(\psi)
T(t) preserves the order structure (\mathcal{N},~,<) if
(a) z(T(t)\varphi) is defined for all t\in\Phi=\mp@subsup{\mathbb{R}}{+}{}\{\mathrm{ discrete set }}
(b) z(T(t')\varphi)\leqz(T(t)\varphi) for all t, t'\in\Phi, t'>t
(c) (N/N}/~)\mathrm{ is complete
```


Order structures preserved by semigroups

The discrete Liapunov functional z endows X with an order structure preserved by the semigroup $T(t)$ [Fusco+Lunel '1997]:
$\triangleright \quad z$ defines on X an order structure $(\mathcal{N}, \sim,<)$ if:
(a) z defines in \mathcal{N} an equivalence relation \sim

$$
\text { for } \varphi, \psi \in \mathcal{N} \quad \varphi \sim \psi \text { iff } z(\varphi)=z(\psi)
$$

(b) z defines in \mathcal{N} / \sim a total order $<$

$$
\text { for }[\varphi],[\psi] \in \mathcal{N} / \sim \quad[\varphi]<[\psi] \text { iff } z(\varphi)=z(\psi)
$$

$T(t)$ preserves the order structure ($\mathcal{N}, \sim,<$) if:
(a) $z(T(t) \varphi)$ is defined for all $t \in \Phi=\mathbb{R}_{+} \backslash\{$ discrete set $\}$
(b) $z\left(T\left(t^{\prime}\right) \varphi\right) \leq z(T(t) \varphi)$ for all $t, t^{\prime} \in \Phi, t^{\prime}>t$
(c) (\mathcal{N} / \sim) is complete

Order structures preserved by semigroups

The discrete Liapunov functional z endows X with an order structure preserved by the semigroup $T(t)$ [Fusco+Lunel '1997]:
$\triangleright \quad z$ defines on X an order structure $(\mathcal{N}, \sim,<)$ if:
(a) z defines in \mathcal{N} an equivalence relation \sim

$$
\text { for } \varphi, \psi \in \mathcal{N} \quad \varphi \sim \psi \text { iff } z(\varphi)=z(\psi)
$$

(b) z defines in \mathcal{N} / \sim a total order $<$

$$
\text { for }[\varphi],[\psi] \in \mathcal{N} / \sim \quad[\varphi]<[\psi] \text { iff } z(\varphi)=z(\psi)
$$

$\triangleright \quad T(t)$ preserves the order structure $(\mathcal{N}, \sim,<)$ if:
(a) $z(T(t) \varphi)$ is defined for all $t \in \Phi=\mathbb{R}_{+} \backslash\{$ discrete set $\}$
(b) $z\left(T\left(t^{\prime}\right) \varphi\right) \leq z(T(t) \varphi)$ for all $t, t^{\prime} \in \Phi, t^{\prime}>t$
(c) (\mathcal{N} / \sim) is complete

$$
[\varphi]_{1} \leftarrow[\varphi]_{2} \leftarrow[\varphi]_{3} \leftarrow \ldots
$$

A class of order preserving semiflows

Do different order structures determine other classes of linear operators A?

For instance, the semigroup $T(t)$ with periodic boundary conditions in fact preserves the order structure defined by $V^{+}: \mathcal{N} \rightarrow\{0,2,4, \ldots\}$

Therefore, it is natural to consider nonseparated linear boundary conditions

$$
C_{b c}^{1}([0,1])=\left\{\varphi \in C^{1}([0,1]): B_{0}(\varphi)=B_{1}(\varphi)=0\right\}
$$

where $B_{0}, B_{1}: C^{1}([0,1]) \rightarrow \mathbb{R}$ are the boundary operators

$$
\left\{\begin{array}{l}
B_{0}(\varphi)=\varphi^{\prime}(0)+\delta_{00} \varphi^{\prime}(0)+\delta_{01} \varphi^{\prime}(1) \\
B_{1}(\varphi)=\varphi^{\prime}(1)+\delta_{10} \varphi(0)+\delta_{11} \varphi(1)
\end{array}\right.
$$

[Coddington+Levinson]

A class of order preserving semiflows

Do different order structures determine other classes of linear operators A?
For instance, the semigroup $T(t)$ with periodic boundary conditions in fact preserves the order structure defined by $V^{+}: \mathcal{N} \rightarrow\{0,2,4, \ldots\}$.

Therefore, it is natural to consider nonseparated linear boundary conditions

where $B_{0}, B_{1}: C^{1}([0,1]) \rightarrow \mathbb{R}$ are the boundary operators

[Coddington+Levinson]

A class of order preserving semiflows

Do different order structures determine other classes of linear operators A?
For instance, the semigroup $T(t)$ with periodic boundary conditions in fact preserves the order structure defined by $V^{+}: \mathcal{N} \rightarrow\{0,2,4, \ldots\}$.

Therefore, it is natural to consider nonseparated linear boundary conditions

$$
C_{b c}^{1}([0,1])=\left\{\varphi \in C^{1}([0,1]): B_{0}(\varphi)=B_{1}(\varphi)=0\right\}
$$

where $B_{0}, B_{1}: C^{1}([0,1]) \rightarrow \mathbb{R}$ are the boundary operators

$$
\left\{\begin{array}{l}
B_{0}(\varphi)=\varphi^{\prime}(0)+\delta_{00} \varphi(0)+\delta_{01} \varphi(1) \\
B_{1}(\varphi)=\varphi^{\prime}(1)+\delta_{10} \varphi(0)+\delta_{11} \varphi(1)
\end{array}\right.
$$

[Coddington+Levinson]

Theorem

Let A be the infinitesimal generator of a C_{0}-semigroup of bounded linear operators $\{T(t)\}_{t \geq 0}, T(t): C_{b c}^{1}([0,1]) \rightarrow C_{b c}^{1}([0,1])$ that preserves the order structure $(\mathcal{N}, \sim,<)$ defined by $V^{-}\left(V^{+}\right)$.
If $D(A)=C^{3}([0,1]) \cap C_{b c}^{1}([0,1])$, then there exist $\alpha, \beta, \gamma \in C^{1}(0,1)$, with α nonnegative, such that for all $\varphi \in D(A)$ we have

$$
(\boldsymbol{A} \varphi)(x)=\alpha(x) \varphi_{x x}(x)+\beta(x) \varphi_{x}(x)+\gamma(x) \varphi(x), 0<x<1 .
$$

Furthermore, the cross-boundary constants satisfy

$$
\delta_{01} \leq 0 \quad, \quad \delta_{10} \geq 0 \quad\left(\delta_{01} \geq 0 \quad, \quad \delta_{10} \leq 0\right) .
$$

The cross-boundary conditions essentially prevent zeros to occur on the boundary when $z(\varphi)$ is even, since in this case the cross-boundary values of φ^{\prime} and φ have the wrong sign: $\varphi^{\prime}(0)=-\delta_{01} \varphi(1)$ if $\varphi(0)=0 \quad$ and $\quad \varphi^{\prime}(1)=-\delta_{10} \varphi(0)$ if $\varphi(1)=0$.

Theorem

Let A be the infinitesimal generator of a C_{0}-semigroup of bounded linear operators $\{T(t)\}_{t \geq 0}, T(t): C_{b c}^{1}([0,1]) \rightarrow C_{b c}^{1}([0,1])$ that preserves the order structure $(\mathcal{N}, \sim,<)$ defined by $V^{-}\left(V^{+}\right)$.
If $D(A)=C^{3}([0,1]) \cap C_{b c}^{1}([0,1])$, then there exist $\alpha, \beta, \gamma \in C^{1}(0,1)$, with α nonnegative, such that for all $\varphi \in D(A)$ we have

$$
(\boldsymbol{A} \varphi)(x)=\alpha(x) \varphi_{x x}(x)+\beta(x) \varphi_{x}(x)+\gamma(x) \varphi(x), 0<x<1 .
$$

Furthermore, the cross-boundary constants satisfy

$$
\delta_{01} \leq 0 \quad, \quad \delta_{10} \geq 0 \quad\left(\delta_{01} \geq 0 \quad, \quad \delta_{10} \leq 0\right) .
$$

The cross-boundary conditions essentially prevent zeros to occur on the boundary when $z(\varphi)$ is even, since in this case the cross-boundary values of φ^{\prime} and φ have the wrong sign:

$$
\varphi^{\prime}(0)=-\delta_{01} \varphi(1) \text { if } \varphi(0)=0 \quad \text { and } \quad \varphi^{\prime}(1)=-\delta_{10} \varphi(0) \text { if } \varphi(1)=0 .
$$

A degenerate illustration

The cross-boundary conditions play the role of negative feedback conditions.
As a highly degenerate illustration consider $\alpha=\gamma=0, \beta=1$. Then we have $u_{t}=u_{x}, \quad 0<x<1$
and the solutions $u(x, t)=\phi(t+x)$ correspond to left translations along $[0,1]$
Take the boundary operator B_{1} with $\delta_{11}=0$ and $\delta_{10}=\delta>0$. This implies

$$
u_{x}(1)=-\delta u(0)
$$

and we otain the negative feedback differential delay equation

$$
\dot{u}(t)=-\delta u(t-1)
$$

A degenerate illustration

The cross-boundary conditions play the role of negative feedback conditions.
As a highly degenerate illustration consider $\alpha=\gamma=0, \beta=1$. Then we have

$$
u_{t}=u_{x}, \quad 0<x<1,
$$

and the solutions $u(x, t)=\phi(t+x)$ correspond to left translations along $[0,1]$.
Take the boundary operator B_{1} with $\delta_{11}=0$ and $\delta_{10}=\delta>0$. This implies $u_{x}(1)=-\delta u(0)$
and we otain the negative feedhack differential delay equation
\square

A degenerate illustration

The cross-boundary conditions play the role of negative feedback conditions.
As a highly degenerate illustration consider $\alpha=\gamma=0, \beta=1$. Then we have

$$
u_{t}=u_{x}, \quad 0<x<1,
$$

and the solutions $u(x, t)=\phi(t+x)$ correspond to left translations along $[0,1]$.
Take the boundary operator B_{1} with $\delta_{11}=0$ and $\delta_{10}=\delta>0$. This implies

$$
u_{x}(1)=-\delta u(0),
$$

and we otain the negative feedback differential delay equation

$$
\dot{u}(t)=-\delta u(t-1) .
$$

Thank you

