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Background

• Given a n × n symmetric matrix A, the p-th eigenvalue λp is
computed as

λp = min
{p-plane P⊂Rn}

max
v∈P−{0}

〈v ,A(v)〉
|v |2

.

• From the variational property one finds u ∈ Rn with A(u) = λpu.



Background

• Given a closed manifold (M,g), consider the Hilbert space

W 1,2(M) =
{

all functions f with
∫

M(f 2 + |∇f |2) <∞
}
.

The Laplacian ∆ is a symmetric operator and the quadratic form
becomes 〈−∆f , f 〉 =

∫
M |∇f |2.

• Like before the p-th eigenvalue is given by

λp(M) = inf
{(p+1)-plane P⊂W 1,2}

sup
f∈P−{0}

∫
M |∇f |2∫

M f 2 .

Using the variational property one obtains a smooth function f such
that ∆f = −λpf .



Background
Eigenvalues for the Laplacian appear in many natural contexts in
Mathematical Physics. Lorentz in 1910 gave a lecture in Gottingen in
which he asked

“It is here that there arises the mathematical problem to prove that the
number of sufficiently high overtones which lie between ν an ν + dν is
independent of the shape of the enclosure and is simply proportional
to its volume. For many shapes for which calculations can be carried
out, this theorem has been verified.”

Weyl Law, 1911: The asymptotic behavior of {λp}p∈N depends only on
the volume of M:

lim
p→∞

λp(M)p−
2

n+1 = a(n)vol(M)−
2

n+1 ,

where a(n) = 4π2vol(B)−
2

n+1 and B is the unit ball in Rn+1.

Minakshisundaram-Pleijel, 1949: The Weyl Law also holds for
compact Riemannian manifolds (M,g).



Another point of view

• On W 1,2(M), identify a function f with all its constant multiples and
denote the space of all such equivalence classes [f ] by P.

• The space P is homeomorphic to RP∞ and a (p + 1)–plane in
W 1,2(M) becomes a p-projective space RPp in P.

• The Raleigh quotient R([f ]) =
∫

M |∇f |2∫
M f 2 is well defined on P because it

is scale invariant.

•We have λp(M) = inf{p–projective space Q⊂P} sup[f ]∈Q R([f ]).



Another point of view

λp(M) = inf{p–projective space Q⊂P} sup[f ]∈Q R([f ]).

Advantage: Linear structure is gone! One only needs
• A space Z that is (weakly) homeomorphic to RP∞.
• A functional F : Z → [0,∞];

The cohomology ring of Z is generated by λ ∈ H1(Z;Z2) and we
replace RPp ⊂ RP∞ by sets Q ⊂ Z such that λp doesn’t vanish on Q.

The p-th (nonlinear) eigenvalue is defined as

λp = inf
{Q⊂Z that detect λp}

sup
x∈Q

F (x).



Volume Spectrum

(Mn+1,g) closed compact Riemannian n-manifold, 2 ≤ n ≤ 6.

• The space will be Zn(M;Z2) = “{all compact hypersurfaces in M}”
= {integral mod 2 cycles}.

• The functional will be the volume functional vol : Zn(M;Z2)→ [0,∞].

• Using the fact that a nontrivial element in πk (Zn(M;Z2), {0}) gives
rise to a nontrivial element in Hn+k (M;Z2), Almgren in the 60’s showed
that Zn(M;Z2) is weakly homotopic to RP∞.

• The p-width is given by

ωp(M) := inf
{Q⊂Zn(M;Z2) that detect λp}

sup
T∈Q

vol(T ).

The sequence {ωp(M)}p∈N is called the volume spectrum of (M,g).



Volume Spectrum

Theorem (Gromov, 80’s, Guth, ’07) There is C = C(M,g) so that for all
p ∈ N

C−1p
1

n+1 ≤ ωp(M) ≤ Cp
1

n+1

• The upper bound follows from constructing a nice map (more on that
later)

Φ : RPp → Zn(M;Z2) with Φ∗λp 6= 0

• The lower bound follows because if we fix p disjoint regions {Bi}pi=1
in M then any set that detects λp contains an element T that divides
the volume of every Bi in half and so

vol(T ) ≥
p∑

i=1

vol(T ∩ Bi) &
p∑

i=1

|Bi |n/(n+1) ' p1/(n+1).



Weyl Law

• Recall the Weyl Law for the Laplacian spectrum:

lim
p→∞

λp(M)

p
2

n+1

=
4π2

(vol Bn+1)
2

n+1

(vol M)−
2

n+1 .

Inspired by it, Gromov conjectured

Conjecture (Gromov’s Weyl Law, ’03): There is α(n) such that for all
(Mn+1,g)

lim
p→∞

ωp(M)

p
1

n+1

= α(n)|M|
n

n+1 .

Theorem (Liokumovich–Marques–N, ’16) Let (Mn+1,g) be a compact
manifold (with possible ∂M 6= 0). There is α(n) such that

lim
p→∞

ωp(M)p−
1

n+1 = α(n)|M|
n

n+1 .



Weyl Law

Weyl Law (L-M-N, ’16) limp→∞ ωp(M)p−
1

n+1 = α(n)|M|
n

n+1 .

•Weyl’s idea was to approximate a region in space by a union of many
small disjoint cubes and then use the fact the Laplacian spectrum for a
disjoint union of cubes can be computed explicitly to deduce his Weyl
Law.

• Unlike the Laplacian spectrum, the volume spectrum, due to being a
non-linear problem, is not known on any single example.

•We believe our proof can be used to prove Weyl Law’s for other
non-linear spectrums, like the spectrum for the p-Laplacian (as
conjectured by Friedlander)



Weyl Law
Weyl Law (L-M-N, ’16) limp→∞ ωp(M)p−

1
n+1 = α(n)|M|

n
n+1 .

• The key new ingredient we showed was the following Supperaditivity
inequality. Set ω̃p(Ω) = ωp(Ω)p−

1
n+1

Let U,V be two unit volume regions of Rn+1 and assume that
{Ui}Ni=1 ⊂ V are disjoint regions all similar to U.

Then, for all p ∈ N,
ω̃p(V ) &

∑N
i=1 vol(Ui)ω̃pi (U), where pi = [pvol(Ui)].

• Using this, we were able to prove a Weyl Law without knowing the
value of α(n) when M is a region of space. Using cut and paste
arguments we were able to deduce the case of a general closed
manifold from the previous case.



Minimal surfaces
• In the same way that eigenvalues are realized by eigenfunctions we
have this great connection to the theory of minimal hypersurfaces:

Theorem (Pitts, ’81, Schoen–Simon, ’82) For all p ∈ N there is an
embedded minimal hypersurface Σp (with multiplicities) so that
ωp(M) = vol(Σp).

Beware: Σp can be, for instance, 3Σ where Σ is a embedded minimal
hypersurface.

• Computing ωp(S3) is an important but hard problem. It is simple to
see that ω1(S3) = . . . = ω4(S3) = 4π and the minimal surface is the
equator.

• Nurser showed that ω5(S3) = . . . = ω7(S3) = 2π2 and the minimal
surface is the Clifford torus. He had to use the proof of the Willmore
Conjecture.

• He also showed that 2π2 < ω9(S3) < 8π. Which minimal surface is
it?



Minimal surfaces
• Birkhoff, (1917) Every (S2,g) admits a closed geodesic.

• Lusternik–Schnirelmann, (1929–1947) Every (S2,g) has three
distinct simple closed geodesics.

• Pitts (1981), Schoen–Simon, (1982) Every compact manifold
(M,g) admits an embedded minimal hypersurface smooth outside
a set of codimension 7.

• Franks (1992), Bangert (1993), Hingston (1993) Every (S2,g) has
an infinite number of closed geodesics.

Yau’s Conjecture ’82 Every compact 3-dimensional manifold admits an
infinite number of immersed minimal surfaces.

Theorem (Marques–N., ’13) Assume (Mn+1,g) has positive Ricci
curvature.
Then M admits an infinite number of distinct embedded minimal
hypersurfaces.



Minimal surfaces

• Uhlenbeck showed that, for a generic set of metrics, the eigenvalues
λp(M) are simple and the eigenfunction fp has Morse index p for all
p ∈ N.

Multiplicity One Conjecture (Marques–N, ’15) For bumpy metrics
(M,g) (generic condition), unstable components of minimal
hypersurfaces Σp with ωp(M) = vol(Σp) have multiplicity one.

•We confirmed this conjecture when p = 1. Assuming the Multiplicity
One Conjecture we can show that:

For every p ∈ N, the minimal hypersurface Σp with vol(Σp) = ωp(M)
has Morse index p and so they are all genuinely different.

• In particular this would imply that (Mn+1,g) would have an infinite
number of distinct minimal hypersurfaces for bumpy metrics and thus
solve a stronger version of Yau’s conjecture in this case.



Volume of Nodal sets

• Let φ0, . . . , φp be the first (p + 1)-eigenfunctions for the Laplacian in
(M,g). The zero set {φp = 0} is called a nodal set.

• Nodal sets give us a way to construct maps into Zn(M;Z2) thss
making a connection between them and the volume spectrum. More
precisely, there is a “natural” map that detects λp

Φp : RPp → Zn(M;Z2),

Φp([a0, . . . ,ap]) = {x ∈ M : a0φ0(x) + . . .+ apφp(x) = 0}.

• On round S3 we can use Crofton formula to estimate
supz∈RPp vol(Φp(z)) and conclude that α(2) ≤ (48/π)1/3. I would
expect this to be sharp.



Volume of Nodal sets
Recall the map

Φp : RPp → Zn(M;Z2),

Φp([a0, . . . ,ap]) = {x ∈ M : a0φ0(x) + . . .+ apφp(x) = 0}.

Yau Conjecture The volume of the nodal sets {φp = 0} grows like
p1/(n+1).

Proven by Donnelly–Fefferman in the analytic case and the lower
bound has been recently proven by Logunov for general metrics.

•Weyl Law implies a universal lower bound for
limp→∞ supz∈RPp

vol(Φp(z))

p1/(n+1) .

• Is supx∈RPp vol(Φp(x)) asymptotically optimal, as I would expect?
If true, vol({φp = 0})p−1/(n+1) would be bounded from above and
Yau’s conjecture would follow.



Conclusion
This is an exciting moment with lots of activity by young people:
• X. Zhou studied one parameter min-max for positive Ricci

curvature;
• Montezuma constructed min-max hypersurfaces intersecting a

concave set;
• Liokumovich and Chambers showed that minimal hypersurfaces

always exist on complete manifolds with finite volume;
• Liokumovich and Glynn-Adey found universal bounds for the

k-widths;
• Ketover and Zhou studied min-max for self-shrinkers;
• Ketover studied genus estimates for min-max in the surface case;
• Guaraco did min-max for Allen-Cahn equation; Guaraco-Gaspar

studied non-linear spectrum for Allen-Cahn equation;
• Song showed that the least area minimal surface is always

embedded;
• Compactness properties of minimal hypersurfaces with bounded

index: Sharp, Buzano–Sharp, Carlotto,
Chodosh–Ketover–Maximo, Li-Zhou;

• Beck–Hanin–Hughes studied min-max families given by nodal
sets of eigenfunctions.



Thank You!


