8th IST-IME, Lisbon September 5-9, 2022

On the fine structure of minimizers in the Allen-Cahn theory of phase transitions

G.Fusco

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Motivation

In the theory of phase transitions the Allen-Cahn functional

$$J^{\epsilon}_{\Omega}(v) = \int_{\Omega} \Big(\epsilon \frac{|\nabla v|^2}{2} + \frac{1}{\epsilon} W(v) \Big) dx, \ v \in H^1, \ 0 < \epsilon << 1,$$

 $\Omega \subset \mathbb{R}^n$ a smooth domain, $W : \mathbb{R}^m \to \mathbb{R}$ a smooth nonnegative potential which vanishes on a finite set

$$\{W=0\}=A=\{a_1,\ldots,a_N\},$$

is a model for the free energy of substance which can exist in N equally preferred phases: the zeros of W. The associated parabolic equation is a model for phase separation

$$u_t = \epsilon^2 \Delta u - W_u(u).$$

A basic step: the characterization of minimizers u^{ϵ} of J^{ϵ}_{Ω} :

$$J_{\Omega}^{\epsilon}(u^{\epsilon}) = \min_{v \in \mathscr{A}} J_{\Omega}^{\epsilon}(v).$$

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ◆□▶

Standard arguments of variational calculus yield existence of a minimizer u^{ϵ} for different choices of the admissible set \mathscr{A} which may include a mass constraint

$$rac{1}{|\Omega|}\int_{\Omega} v dx = m, \; ext{ for some } m \in \mathbb{R}^m,$$

or a Dirichlet condition

$$v|_{\partial\Omega} = v_0^{\epsilon}$$
, for some $v_0^{\epsilon} : \partial\Omega \to \mathbb{R}^m$.

Once existence is known, a challenging mathematical problem is the understanding of the fine structure of u^{ϵ} . In particular the effect of:

- the shape of Ω,
- the mass constraint and the boundary datum v_0^{ϵ} ,
- the connections among the zeros of W and of the surface tensions $\sigma_{aa'}$, of these connections.

The diffuse interface \mathscr{I}^{ϵ}

$$\mathscr{I}^{\epsilon} = \{ x \in \bar{\Omega} : \min_{a \in A} |u^{\epsilon}(x) - a| > \delta \}, \ \delta = \delta_{\epsilon},$$

separates the phases

$$\Omega_a = \{x \in \Omega : |u^{\epsilon}(x) - a| \le \delta\}, \ a \in A.$$

and determines the structure of u^ϵ . Note that $J^\epsilon_\Omega(u^\epsilon) \leq C$ implies

$$|\mathscr{I}^\epsilon| \leq Crac{\epsilon}{\delta^2} ext{ and } |\mathscr{I}^\epsilon| \stackrel{\epsilon}{
ightarrow} \mathsf{0}, \ \delta = \epsilon^lpha, \ lpha \in (\mathsf{0}, rac{1}{2}).$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

 For the constrained problem Baldo (1990), using Γ-convergence, proved

$$u^{\epsilon} \stackrel{L^{1}}{\rightarrow} u^{0} \quad \Rightarrow \quad u^{0} = \sum_{a \in A} a \mathbb{I}_{S_{a}}$$

and $\{S_{a_1}, \ldots, S_{a_N}\}$ minimizes $\sum_{a,a' \in A} \sigma_{aa'} H^{n-1}(\partial^* S_a \cap \partial^* S_{a'})$ in the set of partitions of Ω that satisfy $\sum_{a \in A} a |S_a| = m$.

– We can ask if, as the jump set of u^0 , also \mathscr{I}^{ϵ} enjoys some minimality property.

• A deep result on the structure of stable critical points for the constrained problem (for m = 1, N = 2 and $A = \{a_-, a_+\}$) is due to Sternberg and Zumbrun (1998). They showed that: Ω strictly convex, $0 < \epsilon << 1$ and $\delta_{\epsilon} = \epsilon^k$ with k > 0 sufficiently large, imply

$$\mathscr{I}^\epsilon$$
 is a connected set.

Dirichlet conditions: a Theorem on the connectivity of \mathscr{I}^ϵ

Set

$$\Gamma_{a}^{\epsilon} = \{ x \in \partial \Omega : |v_{0}^{\epsilon}(x) - a| \leq \delta \}.$$

Assume:

1) $\Omega \subset \mathbb{R}^n$ is homeomorphic to a ball.

2) There is a subset $ilde{A} \subset A$ such that $v_0^\epsilon(\partial\Omega) \cap B_{\delta_0}(a) = \emptyset$ for $a \in A \setminus ilde{A}$.

 $\Gamma^\epsilon_a, \;\; a\in ilde A\subset A$ is homeomorphic to a n-1 ball,

3) $\delta=\delta_\epsilon$ is a regular value in the sense of Sard Lemma. Then

 \mathscr{I}^ϵ is a connected set.

ション ふゆ く 山 マ チャット しょうくしゃ

Main points of the proof

 A maximum principle for minimizers (Alikakos et altri 2012). Assume that E ⊂ ℝⁿ is open bounded with Lipshitz boundary and let u^ε be a minimizer. Then, for small δ > 0

$$|u^{\epsilon}(x) - a| \leq \delta, \ x \in \partial E \quad \Rightarrow \quad |u^{\epsilon}(x) - a| < \delta, \ x \in E.$$

 A topological Lemma (Czarnecki et altri 2001) If E ⊂ ℝⁿ is a domain (open bounded and connected) then ∂E is connected if and only if the complement E' = ℝⁿ \ E is connected.

Let ω^{ϵ} a connected component of $\Omega \setminus \mathscr{I}^{\epsilon}$. The definition of \mathscr{I}^{ϵ} implies

$$|u^{\epsilon}(x) - a| \leq \delta, \quad x \in \partial \omega^{\epsilon}, \quad \text{for some } a \in A.$$

Assume that $(\omega^{\epsilon})'$ contains a bounded component $\widetilde{\omega}'$. Then

$$\partial \tilde{\omega}' \subset \partial (\omega^{\epsilon})' = \partial \omega^{\epsilon}.$$

and, in contradiction with $\tilde{\omega}' \subset (\omega^\epsilon)'$, the Maximum Principle implies

$$|u^{\epsilon}(x)-a|<\delta, \quad x\in \tilde{\omega}'.$$

 $\Rightarrow (\omega^\epsilon)'$ coincides with its unbounded connected component.

Then the topological Lemma

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\Rightarrow \ \partial \omega^{\epsilon}$ is connected

Let Φ a family of connected components ω^{ϵ} of $\Omega \setminus \mathscr{I}^{\epsilon}$. Then

$$\mathscr{I}_{\Phi}^{\epsilon} = \Omega \setminus \cup_{\omega^{\epsilon} \in \Phi} \omega^{\epsilon}$$
 is a connected set.

 Ω connected \Rightarrow : given $p, q \in \mathscr{I}_{\Phi}^{\epsilon}$ there is an arc in Ω that connects p to q. The connectivity of $\partial \omega^{\epsilon}$ implies: if p' and q' are the extremes of a subarc contained in ω^{ϵ} , the subarc can be replaced by an arc in $\partial \omega^{\epsilon}$. In particular \mathscr{I}^{ϵ} is connected

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Restricting to 2D: $\Omega \subset \mathbb{R}^2$

 δ a regular value, the IFT and $\omega^{\epsilon} \subset \Omega \subset \mathbb{R}^2 \Rightarrow \partial \omega^{\epsilon}$ is a C^1 curve. Actually a Jordan curve since $\partial \omega^{\epsilon}$ is connected. It follows that ω^{ϵ} is homeomorphic to a ball. $u^{\epsilon}|_{\partial\Omega} = v_0^{\epsilon}$ implies that $\tilde{N} = \sharp \tilde{A}$ of the $\partial \omega^{\epsilon}$ have an arc in common with $\partial \Omega$.

 $\Rightarrow \mathscr{I}^{\epsilon}$ is homotopically equivalent to a closed ball deprived of $N = \sharp A$ points, $\tilde{N} = \sharp \tilde{A}$ of which on the boundary.

 \exists a network $\tilde{\mathscr{G}}^{\epsilon} \subset \mathscr{I}^{\epsilon}$ with $n_b = 2(N-1) - \tilde{N}$ branching points of triple junction type and $n_s = 3(N-1) - \tilde{N}$ arcs that separate the phases: $\Omega \setminus \tilde{\mathscr{G}}^{\epsilon} = \cup_a \tilde{S}_a$ and $\Omega^{\epsilon}_a \subset \tilde{S}_a$.

Exponential decay

Let u¹ be a minimizer of J¹_E, O ⊂ E and a ∈ A. Assume x ∈ O, a' ∈ A \ {a} ⇒ |u¹(x) - a'| > δ. Then given η > 0, r ≥ r_η and B_r(y) ⊂ O ⇒ |u¹(y) - a| ≤ η.
This applies to Š_a yielding (for some k_δ, K_δ > 0)

$$|u^\epsilon(x)-a|\leq K_\delta e^{rac{k_\delta}{\epsilon}d(x,\partial ilde{S}_a)} \;\; x\in ilde{S}_a.$$

$$N = \tilde{N} = 3$$

$$n_b = 2(N - 1) - \tilde{N} = 1$$

$$n_s = 3(N - 1) - \tilde{N} = 3$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

The optimal network \mathscr{G}^{ϵ}

- There exist infinitely many networks $\tilde{\mathscr{G}}^\epsilon$ with the properties described above.

Is there an optimal choice?

The networks $\tilde{\mathscr{G}}^{\epsilon}$ can be classified in a finite number of types. If γ_i , $i = 1, \ldots, n_s$ are the arcs of $\tilde{\mathscr{G}}^{\epsilon}$, then there are a_i and a'_i

$$\gamma_i \subset \partial \tilde{S}_{a_i} \cap \partial \tilde{S}_{a'_i}.$$

A natural choice is to associate to each network ${\mathscr G}$ the number

$$\mathscr{F}(\mathscr{G}) = \sum_{i=1}^{n_{\mathsf{s}}} \sigma_{\mathsf{a}_i \mathsf{a}'_i} |\gamma_i|.$$

It can be shown that there exists a network \mathscr{G}^{ϵ} which minimizes \mathscr{F} . The minimum $\mathscr{F}(\mathscr{G}^{\epsilon})$ can be regarded as a weighted length of \mathscr{I}^{ϵ} .

A possible approach to the fine structure of u^ϵ

1. Determine a free optimal network $\hat{\mathscr{G}}$ and a sharp upper bound of the form

$$J^{\epsilon}_{\Omega}(u^{\epsilon}) \leq \mathscr{F}(\hat{\mathscr{G}}) + C\epsilon^{\mu}, \ \mu \in (0,1).$$

2. Show that, if \mathscr{G} is a network which coincides with $\hat{\mathscr{G}}$ on $\partial\Omega$ and is not contained in a *h*-neighborhood of $\hat{\mathscr{G}}$, then $\mathscr{F}(\mathscr{G}) - \mathscr{F}(\hat{\mathscr{G}}) \geq ch^2$.

(日) (伊) (日) (日) (日) (0) (0)

- 3. Construct a sharp lower bound of the form $J^{\epsilon}_{\Omega}(u^{\epsilon}) \geq \mathscr{F}(\mathscr{G}^{\epsilon}) C\epsilon^{\mu}, \ \mu \in (0, 1).$
- 4. Deduce from 1 and 3 and the geometric inequality 2

$$\mathscr{F}(\mathscr{G}^{\epsilon}) - C\epsilon^{\mu} \leq J^{\epsilon}_{\Omega}(u^{\epsilon}) \leq \mathscr{F}(\hat{\mathscr{G}}) + C\epsilon^{\mu}$$

 $ch^{2} \leq \mathscr{F}(\mathscr{G}^{\epsilon}) - \mathscr{F}(\hat{\mathscr{G}}) \leq 2C\epsilon^{\mu} \Rightarrow h \leq C\epsilon^{\frac{\mu}{2}}.$

Associate to $\hat{\mathscr{G}}$ a map \hat{v}^{ϵ} that satisfies

$$\hat{v}^{\epsilon} \sim a, \ x \in \hat{S}_{a}, \ d(x, \partial \hat{S}_{a}) \ge \epsilon |\ln \epsilon|,$$

 $\hat{v}^{\epsilon}(x + s\nu_{x}) = \bar{u}_{aa'}(rac{s}{\epsilon}), \ |s| < \epsilon |\ln \epsilon|, \ x \in \partial \hat{S}_{a} \cap \partial \hat{S}_{a'}$

where ν_x is the normal vector to $\hat{\mathscr{G}}$ at x and $\bar{u}_{aa'}$ the connection a to a' and $\Omega \setminus \hat{\mathscr{G}} = \cup_a \hat{S}_a$. It follows

$$J^{\epsilon}_{\Omega}(u^{\epsilon}) \leq J^{\epsilon}_{\Omega}(\hat{v}^{\epsilon}) \leq \mathscr{F}(\hat{\mathscr{G}}) + \epsilon |\ln \epsilon|.$$

The lower bound. For $x \in \mathscr{G}^{\epsilon}$, ν_x a unit vector orthogonal to \mathscr{G}^{ϵ} at x denote F_x the connected component of $\{x + t\nu_x : |t| < \epsilon^{\beta}\} \cap \bar{\mathscr{I}^{\epsilon}}$ that contains x. Since $|\mathscr{I}^{\epsilon}| \leq \frac{\epsilon}{\delta_{\epsilon}^2} = \epsilon^{1-2\alpha}$, we expect that for most $x \in \gamma_i$ the extremes of F_x lie on $\Omega^{\epsilon}_{a_i}$ and $\Omega^{\epsilon}_{a'_i}$ with a_i, a'_i determined by $\gamma_i \subset \partial S^{\epsilon}_{a_i} \cap \partial S^{\epsilon}_{a'}$.

Let J_x be the energy of the restriction of u^{ϵ} to F_x .

 $N = \tilde{N} = 2$, $n_b = 0$, $n_s = 1$ The partition associated to \mathscr{G}^{ϵ} can be singular. What can be said if Ω^{ϵ}_{a} is connected?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

The simplest nontrivial case

The networks \mathscr{G}^{ϵ} and $\hat{\mathscr{G}}$.

 $\mathscr{F}(\mathscr{G}^{\epsilon}) = \sigma_{\mathfrak{a}_1\mathfrak{a}_2}(|\gamma_1| + |\gamma_2|) + \sigma_{\mathfrak{a}_1\mathfrak{a}_3}|\gamma_{21}| + \sigma_{\mathfrak{a}_2\mathfrak{a}_3}|\gamma_{12}|.$ $\mathscr{F}(\widehat{\mathscr{G}}) = \sigma_{\mathfrak{a}_1\mathfrak{a}_2}|\bar{p}_1 - \bar{p}_2|.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

The upper bound for $J^{\epsilon}_{\Omega}(u^{\epsilon})$

The characterization of $\mathscr{F}(\hat{\mathscr{G}})$ suggests $\hat{v}^{\epsilon} = \bar{u}_{a_1 a_2}((x - q_1) \cdot \nu)|_{\Omega}$ as a good test function

$$J^{\epsilon}_{\Omega}(u^{\epsilon}) \leq J^{\epsilon}_{\Omega}(\hat{v}^{\epsilon}) \leq \sigma_{a_{1}a_{2}}|q_{1}-q_{2}|+\epsilon|\ln\epsilon| \leq \mathscr{F}(\hat{\mathscr{G}})+\epsilon|\ln\epsilon|$$

A geometric inequality: if $\mathscr{G} \not\subset h-$ neighborhood of $\hat{\mathscr{G}}$, then

$$\mathscr{F}(\mathscr{G}) - \mathscr{F}(\hat{\mathscr{G}}) \geq ch^2,$$

If we derive a lower bound of the form

$$J^{\epsilon}_{\Omega}(u^{\epsilon}) \geq \mathscr{F}(\mathscr{G}^{\epsilon}) - \epsilon^{\mu}, \; \mu \in (0,1),$$

then the upper bound and the geometric inequality imply

$$\epsilon^\eta \geq \mathscr{F}(\mathscr{G}^\epsilon) - \mathscr{F}(\hat{\mathscr{G}}) \geq ch^2, \ \Rightarrow \ h = \epsilon^{\frac{\mu}{2}}.$$

The lower bound for $J^{\epsilon}_{\Omega}(u^{\epsilon})$

The minimality of $\mathscr{G}^{\epsilon} \Rightarrow$ that locally \mathscr{G}^{ϵ} is either rectilinear or F_{x} and the center of curvature lie on opposite sides.

Set $\Phi^{\epsilon} = \bigcup_{x \in \mathscr{G}^{\epsilon}} F_x$ then, if the connectivity of $\Omega^{\epsilon}_{a_i} \Rightarrow$ no b), we have $|\Phi^{\epsilon}| \ge \int_{\mathscr{G}^{\epsilon}} |F_x| dx$ and

$$J^{\epsilon}_{\Phi^{\epsilon}}(u^{\epsilon}) \geq \int_{\mathscr{G}^{\epsilon}} J_{x} dx \geq \int_{\mathscr{G}^{\epsilon-}} J_{x} dx, \ (J_{x} = J_{F_{x}}(u^{\epsilon}|_{F_{x}})$$

 $\mathscr{G}^{\epsilon-} = \{ x \in \mathscr{G}^{\epsilon} : |F_x| < \epsilon^{\beta} \}, \quad \mathscr{G}^{\epsilon+} = \{ x \in \mathscr{G}^{\epsilon} : |F_x| \ge \epsilon^{\beta} \}.$

900

•
$$\epsilon^{\beta}|\mathscr{G}^{\epsilon+}| \leq |\cup_{x \in \mathscr{G}^{\epsilon+}} F_x| \leq |\mathscr{I}^{\epsilon}| \leq \epsilon^{1-2\alpha}, \ (\delta_{\epsilon} = \epsilon^{\alpha}),$$

 $\Rightarrow |\mathscr{G}^{\epsilon+}| \leq \epsilon^{1-(2\alpha+\beta)}$

•
$$x \in \mathscr{G}^{\epsilon-} \Rightarrow J_x \ge \sigma_{a_i a_j} - \epsilon^{2\alpha}$$

•
$$J_{\Omega}^{\epsilon}(u^{\epsilon}) \geq J_{\Phi^{\epsilon}}^{\epsilon}(u^{\epsilon}) \geq \int_{\mathscr{G}^{\epsilon-}} J_{x} dx$$

 $\geq \sigma_{a_{1}a_{2}}(|\gamma_{1}| + |\gamma_{2}|) + \sigma_{a_{1}a_{3}}|\gamma_{21}| + \sigma_{a_{2}a_{3}}|\gamma_{12}| - \epsilon^{\mu}$
 $= \mathscr{F}(\mathscr{G}^{\epsilon}) - \epsilon^{\mu}.$

From this and the geometric inequality it follows that \mathscr{G}^{ϵ} is contained in a $\epsilon^{\frac{\mu}{2}}$ -neighborhood of $\operatorname{sg}[q_1, q_2]$. Moreover

$$egin{aligned} &||\gamma_1|+|\gamma_2|-|q_1-q_2|| \leq \epsilon^{\mu}, \ & ext{max}\{|\gamma_{12}|,|\gamma_{21}|\} \leq \epsilon^{\mu}. \end{aligned}$$

 $F_x \cap F_y = \emptyset$, for $x \neq y \in \mathscr{G}^{\epsilon} \setminus (B_{\epsilon^{\eta}}(p_1) \cup B_{\epsilon^{\eta}}(p_1))$

▲ロト ▲撮 ト ▲ 臣 ト ▲ 臣 ト ● 回 ● の Q ()~

$$B_{r} \subset E \subset \mathscr{I}^{\epsilon} \implies r \leq \epsilon^{\frac{1}{2}-\alpha},$$

$$\Rightarrow |\ell - \lambda_{1}| \leq \epsilon^{\mu}, \quad |\ell' - \lambda_{2}| \leq \epsilon^{\mu},$$

$$|\ell_{2} - (\lambda_{1} + \lambda_{2})| \leq \epsilon^{\mu}.$$

$$\Rightarrow \quad \mathscr{F}(\mathscr{G}^{\epsilon}) - \mathscr{F}(\widetilde{\mathscr{G}})$$

$$= \sigma_{a_{2}a_{3}}\ell_{2} + \sigma_{a_{2}a_{1}}(\ell + \ell') - \sigma_{a_{1}a_{3}}(\ell + \ell') - \sigma_{a_{2}a_{3}}|\tilde{p}_{1} - \tilde{p}_{2}|$$

$$\geq (\sigma_{a_{2}a_{3}} + \sigma_{a_{2}a_{1}} - \sigma_{a_{1}a_{3}})(\lambda_{1} + \lambda_{2}) - \epsilon^{\mu}.$$

That contradicts the minimality of \mathscr{G}^{ϵ} unless $\lambda_1 + \lambda_2 \leq \epsilon^{\eta}$.

A potential with four zeros

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ⊙