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Motivation
In the theory of phase transitions the Allen-Cahn functional

JεΩ(v) =

∫
Ω

(
ε
|∇v |2

2
+

1

ε
W (v)

)
dx , v ∈ H1, 0 < ε << 1,

Ω ⊂ Rn a smooth domain, W : Rm → R a smooth nonnegative

potential which vanishes on a �nite set

{W = 0} = A = {a1, . . . , aN},

is a model for the free energy of substance which can exist in N
equally preferred phases: the zeros of W . The associated parabolic

equation is a model for phase separation

ut = ε2∆u −Wu(u).

A basic step: the characterization of minimizers uε of JεΩ:

JεΩ(uε) = min
v∈A

JεΩ(v).



Standard arguments of variational calculus yield existence of a

minimizer uε for di�erent choices of the admissible set A which

may include a mass constraint

1

|Ω|

∫
Ω
vdx = m, for some m ∈ Rm,

or a Dirichlet condition

v |∂Ω = v ε0, for some v ε0 : ∂Ω→ Rm.

Once existence is known, a challenging mathematical problem is the

understanding of the �ne structure of uε. In particular the e�ect of:

• the shape of Ω,

• the mass constraint and the boundary datum v ε
0
,

• the connections among the zeros of W and of the surface

tensions σaa′ , of these connections.



The di�use interface I ε

I ε = {x ∈ Ω̄ : min
a∈A
|uε(x)− a| > δ}, δ = δε,

separates the phases

Ωa = {x ∈ Ω : |uε(x)− a| ≤ δ}, a ∈ A.

and determines the structure of uε. Note that JεΩ(uε) ≤ C implies

|I ε| ≤ C
ε

δ2
and |I ε| ε→ 0, δ = εα, α ∈ (0,

1

2
).
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• For the constrained problem Baldo (1990), using

Γ-convergence, proved

uε
L1→ u0 ⇒ u0 =

∑
a∈A

aISa

and {Sa1 , . . . ,SaN} minimizes
∑

a,a′∈A σaa′H
n−1(∂∗Sa ∩ ∂∗Sa′)

in the set of partitions of Ω that satisfy
∑

a∈A a|Sa| = m.

− We can ask if, as the jump set of u0, also I ε enjoys some

minimality property.

• A deep result on the structure of stable critical points for the

constrained problem (for m = 1, N = 2 and A = {a−, a+}) is
due to Sternberg and Zumbrun (1998). They showed that: Ω
strictly convex, 0 < ε << 1 and δε = εk with k > 0 su�ciently

large, imply

I ε is a connected set.



Dirichlet conditions: a Theorem on the connectivity of I ε

Set

Γεa = {x ∈ ∂Ω : |v ε0(x)− a| ≤ δ}.

Assume:

1) Ω ⊂ Rn is homeomorphic to a ball.

2) There is a subset Ã ⊂ A such that

v ε
0
(∂Ω) ∩ Bδ0(a) = ∅ for a ∈ A \ Ã.

Γεa, a ∈ Ã ⊂ A is homeomorphic to a n-1 ball,

3) δ = δε is a regular value in the sense of Sard Lemma.

Then

I ε is a connected set.



Main points of the proof

• A maximum principle for minimizers (Alikakos et altri 2012).

Assume that E ⊂ Rn is open bounded with Lipshitz boundary

and let uε be a minimizer. Then, for small δ > 0

|uε(x)− a| ≤ δ, x ∈ ∂E ⇒ |uε(x)− a| < δ, x ∈ E .

• A topological Lemma (Czarnecki et altri 2001)

If E ⊂ Rn is a domain (open bounded and connected) then

∂E is connected if and only if the complement E ′ = Rn \ E is

connected.



Let ωε a connected component of Ω \I ε. The de�nition of I ε

implies

|uε(x)− a| ≤ δ, x ∈ ∂ωε, for some a ∈ A.

Assume that (ωε)′ contains a bounded component ω̃′. Then

∂ω̃′ ⊂ ∂(ωε)′ = ∂ωε.

and, in contradiction with ω̃′ ⊂ (ωε)′, the Maximum Principle

implies

|uε(x)− a| < δ, x ∈ ω̃′.
⇒ (ωε)′ coincides with its unbounded connected component.

Ω

ωε

ω̃′

Then the topological Lemma

⇒ ∂ωε is connected



Let Φ a family of connected components ωε of Ω \I ε. Then

I ε
Φ = Ω \ ∪ωε∈Φω

ε is a connected set.

Ω connected ⇒: given p, q ∈ I ε
Φ there is an arc in Ω that connects

p to q. The connectivity of ∂ωε implies: if p′ and q′ are the

extremes of a subarc contained in ωε, the subarc can be replaced by

an arc in ∂ωε. In particular I ε is connected

Ω

p

q

p′
q′ p′

q′
I ε

ωε

ωε



Restricting to 2D: Ω ⊂ R2

δ a regular value, the IFT and ωε ⊂ Ω ⊂ R2 ⇒ ∂ωε is a C 1 curve.

Actually a Jordan curve since ∂ωε is connected. It follows that ωε

is homeomorphic to a ball. uε|∂Ω = v ε
0
implies that Ñ = ]Ã of the

∂ωε have an arc in common with ∂Ω.

⇒ I ε is homotopically equivalent to a closed ball deprived of

N = ]A points, Ñ = ]Ã of which on the boundary.

N = 7

Ñ = 4

nb = 8

ns = 14

∃ a network G̃ ε ⊂ I ε with nb = 2(N − 1)− Ñ branching points of

triple junction type and ns = 3(N − 1)− Ñ arcs that separate the

phases: Ω \ G̃ ε = ∪aS̃a and Ωε
a ⊂ S̃a.



Exponential decay

• Let u1 be a minimizer of J1E , O ⊂ E and a ∈ A. Assume

x ∈ O, a′ ∈ A \ {a} ⇒ |u1(x)− a′| > δ. Then given η > 0,

r ≥ rη and Br (y) ⊂ O ⇒ |u1(y)− a| ≤ η.
This applies to S̃a yielding (for some kδ,Kδ > 0)

|uε(x)− a| ≤ Kδe
kδ
ε
d(x ,∂S̃a) x ∈ S̃a.

p
S̃a1

S̃a3

S̃a2
γ1

γ2

γ3

N = Ñ = 3

nb = 2(N − 1)− Ñ = 1

ns = 3(N − 1)− Ñ = 3



The optimal network G ε

- There exist in�nitely many networks G̃ ε with the properties

described above.

Is there an optimal choice?

The networks G̃ ε can be classi�ed in a �nite number of types. If γi ,
i = 1, . . . , ns are the arcs of G̃ ε, then there are ai and a′i

γi ⊂ ∂S̃ai ∩ ∂S̃a′i .

A natural choice is to associate to each network G the number

F (G ) =
ns∑
i=1

σaia′i |γi |.

It can be shown that there exists a network G ε which minimizes F .

The minimum F (G ε) can be regarded as a weighted length of I ε.



A possible approach to the �ne structure of uε

1. Determine a free optimal network Ĝ and a sharp upper bound

of the form

JεΩ(uε) ≤ F (Ĝ ) + Cεµ, µ ∈ (0, 1).

2. Show that, if G is a network which coincides with Ĝ on ∂Ω
and is not contained in a h-neighborhood of Ĝ , then

F (G )−F (Ĝ ) ≥ ch2.

3. Construct a sharp lower bound of the form

JεΩ(uε) ≥ F (G ε)− Cεµ, µ ∈ (0, 1).

4. Deduce from 1 and 3 and the geometric inequality 2

F (G ε)− Cεµ ≤ JεΩ(uε) ≤ F (Ĝ ) + Cεµ

ch2 ≤ F (G ε)−F (Ĝ ) ≤ 2Cεµ ⇒ h ≤ Cε
µ
2 .



Associate to Ĝ a map v̂ ε that satis�es

v̂ ε ∼ a, x ∈ Ŝa, d(x , ∂Ŝa) ≥ ε| ln ε|,

v̂ ε(x + sνx) = ūaa′(
s

ε
), |s| < ε| ln ε|, x ∈ ∂Ŝa ∩ ∂Ŝa′ .

where νx is the normal vector to Ĝ at x and ūaa′ the connection a
to a′ and Ω \ Ĝ = ∪aŜa. It follows

JεΩ(uε) ≤ JεΩ(v̂ ε) ≤ F (Ĝ ) + ε| ln ε|.

The lower bound. For x ∈ G ε, νx a unit vector orthogonal to G ε at

x denote Fx the connected component of {x + tνx : |t| < εβ} ∩ Ī ε

that contains x . Since |I ε| ≤ ε
δ2ε

= ε1−2α, we expect that for most

x ∈ γi the extremes of Fx lie on Ωε
ai
and Ωε

a′i
with ai , a

′
i determined

by γi ⊂ ∂Sεai ∩ ∂S
ε
a′ .



|Fx | ≥ εβ |Fx | < εβ

x
x x xFx Fx

γ
γ

γ

γa′

a

a′

a a′ a a a

Let Jx be the energy of the restriction of uε to Fx .

I ε

a1

a1

a2

G ε G̃ ε

N = Ñ = 2, nb = 0, ns = 1

The partition associated to G ε

can be singular.

What can be said if Ωε
a is connected?



The simplest nontrivial case

q1

q2

a2a1 Ω
ν

Assumptions:

1. A = {W = 0} = {a1, a2, a3}, and σa1a2 < σa1a3 + σa1a3 ,

where σaiaj =
∫
R |ū

′
aiaj
|2, ūaiaj heteroclinic ai → aj

2. v ε
0
∼ ūaiaj ((x − q1) · ν), x ∈ ∂Ω,

3. Ωε
ai

= {|uε(x)− ai | ≤ δ = εα} is connect



The networks G ε and Ĝ .

N = 3, Ñ = 2 ⇒ nb = 2, ns = 4

a2a1 a3

γ1

γ2

γ12γ21

p1

p2

p̄1

p̄2

p2

p1

p̄1

p̄2

p1 = p2

F (G ε) = σa1a2(|γ1|+ |γ2|) + σa1a3 |γ21|+ σa2a3 |γ12|.

F (Ĝ ) = σa1a2 |p̄1 − p̄2|.



The upper bound for JεΩ(uε)

The characterization of F (Ĝ ) suggests v̂ ε = ūa1a2((x − q1) · ν)|Ω
as a good test function

JεΩ(uε) ≤ JεΩ(v̂ ε) ≤ σa1a2 |q1 − q2|+ ε| ln ε| ≤ F (Ĝ ) + ε| ln ε|

A geometric inequality: if G 6⊂ h− neighborhood of Ĝ , then

F (G )−F (Ĝ ) ≥ ch2,

If we derive a lower bound of the form

JεΩ(uε) ≥ F (G ε)− εµ, µ ∈ (0, 1),

then the upper bound and the geometric inequality imply

εη ≥ F (G ε)−F (Ĝ ) ≥ ch2, ⇒ h = ε
µ
2 .



The lower bound for JεΩ(uε)

The minimality of G ε ⇒ that locally G ε is either rectilinear or Fx
and the center of curvature lie on opposite sides.

Fx

Fx

Fx

x

x

x

G ε y x

ξ
b)

Set Φε = ∪x∈G εFx then, if the connectivity of Ωε
ai
⇒ no b), we

have |Φε| ≥
∫
G ε |Fx |dx and

JεΦε(uε) ≥
∫

G ε

Jxdx ≥
∫

G ε−
Jxdx , (Jx = JFx (uε|Fx )

G ε− = {x ∈ G ε : |Fx | < εβ}, G ε+ = {x ∈ G ε : |Fx | ≥ εβ}.



• εβ|G ε+| ≤ | ∪x∈G ε+ Fx | ≤ |I ε| ≤ ε1−2α, (δε = εα),
⇒ |G ε+| ≤ ε1−(2α+β)

• x ∈ G ε− ⇒ Jx ≥ σaiaj − ε2α

• JεΩ(uε) ≥ JεΦε(uε) ≥
∫
G ε− Jxdx

≥ σa1a2(|γ1|+ |γ2|) + σa1a3 |γ21|+ σa2a3 |γ12| − εµ

= F (G ε)− εµ.

From this and the geometric inequality it follows that G ε is

contained in a ε
µ
2 -neighborhood of sg[q1, q2]. Moreover

||γ1|+ |γ2| − |q1 − q2|| ≤ εµ,

max{|γ12|, |γ21|} ≤ εµ.



Fx ∩ Fy = ∅, for x 6= y ∈ G ε \ (Bεη(p1) ∪ Bεη(p1))

ξ

a2a1
p1

p2
γ12γ21

γ2

γ1 E

ξ ∈ Fx ∩ Fy for x 6= y ∈ γ1

Fx

Fy E ⊂ I ε and E ∩ Ωa2 = ∅

Fy

Fx

ξ a2a1
p1

p2

E

p̄1

p̄2

γ21

γ2

γ1

ξ ∈ Fx ∩ Fy for x ∈ γ1 and y ∈ γ2



p2

p1

a2a3

a1

a1

rr
λ2

λ1

`′

`

`2 p̃1

p̃2

a1

a1

a2a3 G̃

Br ⊂ E ⊂ I ε ⇒ r ≤ ε
1

2
−α,

⇒ |`− λ1| ≤ εµ, |`′ − λ2| ≤ εµ,
|`2 − (λ1 + λ2)| ≤ εµ.
⇒ F (G ε)−F (G̃ )

= σa2a3`2 + σa2a1(`+ `′)− σa1a3(`+ `′)− σa2a3 |p̃1 − p̃2|
≥ (σa2a3 + σa2a1 − σa1a3)(λ1 + λ2)− εµ.

That contradicts the minimality of G ε unless λ1 + λ2 ≤ εη.



A potential with four zeros

0
a
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ū0
ū

σ0 = σ0a
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0
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σ < 1

sin
π
3

2σ0
σ > 1
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