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Motivation
In the theory of phase transitions the Allen-Cahn functional
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sz(v):/ (ewzv’+vv(v))dx, veH!, 0<e<<l,
Q €

Q C R" a smooth domain, W : R™ — R a smooth nonnegative
potential which vanishes on a finite set

{WzO}:A:{al,...,aN},

is a model for the free energy of substance which can exist in N
equally preferred phases: the zeros of W. The associated parabolic
equation is a model for phase separation

ur = € Au — Wy(u).
A basic step: the characterization of minimizers u¢ of J§:

Jo(u) = min Jo(v).



Standard arguments of variational calculus yield existence of a
minimizer u® for different choices of the admissible set < which
may include a mass constraint

1
|Q|/vdx:m, for some m € R,
Q

or a Dirichlet condition
vlgg = vj, for some v§:0Q — R™.
Once existence is known, a challenging mathematical problem is the

understanding of the fine structure of u®. In particular the effect of:

e the shape of Q,
e the mass constraint and the boundary datum vg,

e the connections among the zeros of W and of the surface
tensions o,y , of these connections.



The diffuse interface .#°€

I ={x € Q:min|u‘(x) —a| > 6}, §=04,
acA
separates the phases
Q,={xeQ:|u(x)—al <6}, ac A
and determines the structure of u¢. Note that JG(u) < C implies

€

52 and |.7¢] 50, § =€, aE(O,}).
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e For the constrained problem Baldo (1990), using
l-convergence, proved
el o 0
u—u = u = Z:allsa
acA

and {Sa,, ..., Say} minimizes 3, ;4 0o H™1(0*S, N 0*Sy)
in the set of partitions of Q that satisfy ) _, a[S,| = m.

— We can ask if, as the jump set of u°, also .#¢ enjoys some
minimality property.

e A deep result on the structure of stable critical points for the
constrained problem (for m=1, N=2and A= {a_,a,})is
due to Sternberg and Zumbrun (1998). They showed that: Q
strictly convex, 0 < € << 1 and d, = X with k > 0 sufficiently
large, imply

J€ is a connected set.



Dirichlet conditions: a Theorem on the connectivity of .#¢

Set
e =4{xeoQ:|y(x)—al <d}.

Assume:
1) Q C R" is homeomorphic to a ball.

2) There is a subset A C A such that
v5(0Q) N Bs,(a) =0 forac A\ A.
re, ae A C A is homeomorphic to a n-1 ball,

3) 6 = 0. is a regular value in the sense of Sard Lemma.
Then

Z€ is a connected set.



Main points of the proof

e A maximum principle for minimizers (Alikakos et altri 2012).
Assume that E C R"” is open bounded with Lipshitz boundary
and let u® be a minimizer. Then, for small § > 0

lu(x) —a| <0, x€dE = |u(x)—al<d, xeE.

e A topological Lemma (Czarnecki et altri 2001)
If EC R"is a domain (open bounded and connected) then
OE is connected if and only if the complement E/ = R"\ E is
connected.



Let w® a connected component of Q\ .#€. The definition of .7¢
implies

lu(x) —a] <0, x € 0w, forsome acA.
Assume that (w®)’ contains a bounded component &’. Then
9 C O(we) = dw".
and, in contradiction with @' C (w¢)’, the Maximum Principle

implies
lu‘(x) —al <6, xed&.

= (w*)’ coincides with its unbounded connected component.

Then the topological Lemma

= Ow°® is connected




Let ® a family of connected components w® of Q\ .Z€. Then
I = Q\ Uyecow® is a connected set.

2 connected =: given p, q € . there is an arc in Q that connects
p to g. The connectivity of Ow® implies: if p’ and ¢’ are the
extremes of a subarc contained in w*, the subarc can be replaced by
an arc in Jw*. In particular .#€ is connected

@/




Restricting to 2D: Q C R?

0 a regular value, the IFT and w® C Q C R2 = Qweis a C! curve.
Actually a Jordan curve since dw€ is connected. It follows that w®
is homeomorphic to a ball. u¢|sq = v§ implies that N = #A of the
Ow*® have an arc in common with 0.

= s homotoﬁpicallx equivalent to a closed ball deprived of
N = #A points, N = A of which on the boundary.

(\
® Q:

3 a network ¥¢ C .#€ with n, = 2(N — 1) - N branching points of
triple junction type and ns = 3(N — 1) — N arcs that separate the
phases: Q\ ¥° = U,S, and Qf C S..



Exponential decay
o Let u! be a minimizer of JL, O C E and a € A. Assume
x€ 0, d € A\{a} = |u}(x)— 4| > 4. Then given n > 0,
r>r,and B.(y) C O = |ul(y) —a| <.
This applies to S, yielding (for some ks, Ks > 0)

k & ~
u(x) — a] < Kze e 90:0%) x e &

N=N-=3
nb:2(N—1)—
ns=3(N-1)—N=3

<
I

13




The optimal network ¥°¢

- There exist infinitely many networks ¢ with the properties
described above.

Is there an optimal choice?

The networks % can be classified in a finite number of types. If 7;,
i=1,...,ns are the arcs of ¢, then there are a; and a

i C 05, NS,

A natural choice is to associate to each network ¢ the number
Ns
ﬁ(g) = Zaaia/’»’ﬂyf"
i=1

It can be shown that there exists a network ¢¢ which minimizes .%.
The minimum .7 (¥¢) can be regarded as a weighted length of .7¢.



A possible approach to the fine structure of u°

. Determine a free optimal network ¢ and a sharp upper bound
of the form

JS(uf) < F(9) + Ce*, € (0,1).

. Show that, if 4 is a network which coincides vyith 4 on 00
and is not contained in a h-neighborhood of ¢, then

F(9) — F(9) > ch?.

. Construct a sharp lower bound of the form

Jo(u) > F(9°) — Ce, n e (0,1).

. Deduce from 1 and 3 and the geometric inequality 2

F(9°) — Cet < J5(u) < F(F) + Cet

ch? < F(9°) — F(4) <2Cet = h< Ce

B
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Associate to & a map V¢ that satisfies

~a, xe$,, d(x,05,)>¢€lne,
s A R
V(x4 svx) = Ua (=), |s| <e€|lnel, x €95, N0Sy.
€

A~

where v, is the normal vector to 4 at x and i,y the connection a
to &’ and Q\ ¢ = U,S,. It follows

JS(u€) < J§(0°) < F (D) + | Inel.

The lower bound. For x € 4¢, v, a unit vector orthogonal to ¥¢ at
x denote F the connected component of {x + tv, : |t| < €’} N .7
that contains x. Since || < & = el 722 we expect that for most
x € ~; the extremes of F, lie onngf and le{ with a;, a; determined

by i C 0S5 N ASE,.



v
|FX|265 |Fx| <éP

Let J, be the energy of the restriction of u® to F.

N=N=2n,=0,ns=1

The partition associated to ¥¢

can be singular.

What can be said if Q is connected?




The simplest nontrivial case

az

al dn

a Assumptions:

1. A={W =0} ={a1,a,a3}, and a2, < 02125 + Tayas;

where 04,0, = [ |E;iaj|2’ a2, heteroclinic a; — aj
2. V5 ~ laa((x — q1) - v), x €09,

3. Q5 = {|u(x) —aj| <0 =€} is connect



The networks €€ and €.

N=3N=2 = np=2,ns =4

P2 P2
al a ar P2 WP1 = P2
P1
p1 p1

F(G) = 0ayap(|71] + [12]) + Tayas|21] + 0apa5]712]-

y(g) = Oa1a,|P1 — P2/



The upper bound for J§(uf)

The characterization of .7 (%) suggests 0¢ = ,,.,((x — q1) - ¥)|a
as a good test function

Jo(t) < J5(0) < Taren i — ol + el Ine| < F(F) + el Ine]
A geometric inequality: if ¢ ¢ h— neighborhood of ¢, then
F(G) - F(9) = ch?,
If we derive a lower bound of the form
Jo(u®) = F(4°) — ¢, n e (0,1),
then the upper bound and the geometric inequality imply

> F(G)— F(G) > ch®, = h=e2.



The lower bound for J§(u©)

The minimality of ¥¢ = that locally ¢¢ is either rectilinear or F;
and the center of curvature lie on opposite sides.

Set € = UycgeFy then, if the connectivity of le_ = no b), we
have |®¢| > [, |Fx|dx and

JS,E(UE) > Jedx > Jydx, (Jx = JFX(UE|FX)

@Ge @Ge—

G- ={xe9:|F| <P}, Gt ={xe9:|F| >



o G| < [Ureger F| <[I < 172, (0 =€),
= |gt| < e1—(20+8)

* XEYT = J>04, — 2

o Jo(u) = Jge(u) > [y Jxdx
> 03182(‘71| + "72|) + 03133‘721| + 03293"712| — et
=.7(9°) — €.

From this and the geometric inequality it follows that ¥€ is
contained in a €2 -neighborhood of sg[qt, g2]. Moreover

7]+ 172l = a1 — gof| < €,

max{| 12|, [721|} < €.



F,NF, =0, forx#y €9\ (Ba(p1) U Ba(pr))

a EeFnNF forx#yem

EcC .7 and ENQ,, =0

a (eFNF,forxery andy €y




P2

B.CEC.9¢ = r<e®

= 0= M| < e, 0= M| <€,

6 — (M1 + )| < ek,

=  F(9) - F(9)

= Oaasl2 + Oapay (L + 1) — oy ((+ ') — 0ayas| P1 — P2
> (Capay + Tapay — Tayas)(A1 + A2) — €.

That contradicts the minimality of 4¢ unless Ay + Ay < €.



A potential with four zeros

209 1
g
o sin 3




