8th IST-IME, Lisbon September 5-9, 2022

On the fine structure of minimizers in the Allen-Cahn theory of phase transitions

G.Fusco

## Motivation

In the theory of phase transitions the Allen-Cahn functional

$$
J_{\Omega}^{\epsilon}(v)=\int_{\Omega}\left(\epsilon \frac{|\nabla v|^{2}}{2}+\frac{1}{\epsilon} W(v)\right) d x, \quad v \in H^{1}, \quad 0<\epsilon \ll 1
$$

$\Omega \subset \mathbb{R}^{n}$ a smooth domain, $W: \mathbb{R}^{m} \rightarrow \mathbb{R}$ a smooth nonnegative potential which vanishes on a finite set

$$
\{W=0\}=A=\left\{a_{1}, \ldots, a_{N}\right\}
$$

is a model for the free energy of substance which can exist in $N$ equally preferred phases: the zeros of $W$. The associated parabolic equation is a model for phase separation

$$
u_{t}=\epsilon^{2} \Delta u-W_{u}(u)
$$

A basic step: the characterization of minimizers $u^{\epsilon}$ of $J_{\Omega}^{\epsilon}$ :

$$
J_{\Omega}^{\epsilon}\left(u^{\epsilon}\right)=\min _{v \in \mathscr{A}} J_{\Omega}^{\epsilon}(v) .
$$

Standard arguments of variational calculus yield existence of a minimizer $u^{\epsilon}$ for different choices of the admissible set $\mathscr{A}$ which may include a mass constraint

$$
\frac{1}{|\Omega|} \int_{\Omega} v d x=m, \text { for some } m \in \mathbb{R}^{m}
$$

or a Dirichlet condition

$$
\left.v\right|_{\partial \Omega}=v_{0}^{\epsilon}, \text { for some } v_{0}^{\epsilon}: \partial \Omega \rightarrow \mathbb{R}^{m}
$$

Once existence is known, a challenging mathematical problem is the understanding of the fine structure of $u^{\epsilon}$. In particular the effect of:

- the shape of $\Omega$,
- the mass constraint and the boundary datum $v_{0}^{\epsilon}$,
- the connections among the zeros of $W$ and of the surface tensions $\sigma_{a a^{\prime}}$, of these connections.


## The diffuse interface $\mathscr{I}^{\epsilon}$

$$
\mathscr{I}^{\epsilon}=\left\{x \in \bar{\Omega}: \min _{a \in A}\left|u^{\epsilon}(x)-a\right|>\delta\right\}, \quad \delta=\delta_{\epsilon}
$$

separates the phases

$$
\Omega_{a}=\left\{x \in \Omega:\left|u^{\epsilon}(x)-a\right| \leq \delta\right\}, \quad a \in A
$$

and determines the structure of $u^{\epsilon}$. Note that $J_{\Omega}^{\epsilon}\left(u^{\epsilon}\right) \leq C$ implies

$$
\left|\mathscr{I}^{\epsilon}\right| \leq C \frac{\epsilon}{\delta^{2}} \text { and }\left|\mathscr{I}^{\epsilon}\right| \xrightarrow{\epsilon} 0, \quad \delta=\epsilon^{\alpha}, \alpha \in\left(0, \frac{1}{2}\right) .
$$



- For the constrained problem Baldo (1990), using $\Gamma$-convergence, proved

$$
u^{\epsilon} \xrightarrow{L^{1}} u^{0} \Rightarrow u^{0}=\sum_{a \in A} a \mathbb{I}_{S_{a}}
$$

and $\left\{S_{a_{1}}, \ldots, S_{a_{N}}\right\}$ minimizes $\sum_{a, a^{\prime} \in A} \sigma_{a a^{\prime}} H^{n-1}\left(\partial^{*} S_{a} \cap \partial^{*} S_{a^{\prime}}\right)$ in the set of partitions of $\Omega$ that satisfy $\sum_{a \in A} a\left|S_{a}\right|=m$.

- We can ask if, as the jump set of $u^{0}$, also $\mathscr{I}^{\epsilon}$ enjoys some minimality property.
- A deep result on the structure of stable critical points for the constrained problem (for $m=1, N=2$ and $A=\left\{a_{-}, a_{+}\right\}$) is due to Sternberg and Zumbrun (1998). They showed that: $\Omega$ strictly convex, $0<\epsilon \ll 1$ and $\delta_{\epsilon}=\epsilon^{k}$ with $k>0$ sufficiently large, imply
$\mathscr{I}^{\epsilon}$ is a connected set.


## Dirichlet conditions: a Theorem on the connectivity of $\mathscr{I}^{\epsilon}$

Set

$$
\Gamma_{a}^{\epsilon}=\left\{x \in \partial \Omega:\left|v_{0}^{\epsilon}(x)-a\right| \leq \delta\right\} .
$$

Assume:

1) $\Omega \subset \mathbb{R}^{n}$ is homeomorphic to a ball.
2) There is a subset $\tilde{A} \subset A$ such that
$v_{0}^{\epsilon}(\partial \Omega) \cap B_{\delta_{0}}(a)=\emptyset$ for $a \in A \backslash \tilde{A}$.
$\Gamma_{a}^{\epsilon}, \quad a \in \tilde{A} \subset A$ is homeomorphic to a $n-1$ ball,
3) $\delta=\delta_{\epsilon}$ is a regular value in the sense of Sard Lemma.

Then
$\mathscr{I}^{\epsilon}$ is a connected set.

## Main points of the proof

- A maximum principle for minimizers (Alikakos et altri 2012). Assume that $E \subset \mathbb{R}^{n}$ is open bounded with Lipshitz boundary and let $u^{\epsilon}$ be a minimizer. Then, for small $\delta>0$

$$
\left|u^{\epsilon}(x)-a\right| \leq \delta, \quad x \in \partial E \quad \Rightarrow \quad\left|u^{\epsilon}(x)-a\right|<\delta, \quad x \in E
$$

- A topological Lemma (Czarnecki et altri 2001) If $E \subset \mathbb{R}^{n}$ is a domain (open bounded and connected) then $\partial E$ is connected if and only if the complement $E^{\prime}=\mathbb{R}^{n} \backslash E$ is connected.

Let $\omega^{\epsilon}$ a connected component of $\Omega \backslash \mathscr{I}^{\epsilon}$. The definition of $\mathscr{I}^{\epsilon}$ implies

$$
\left|u^{\epsilon}(x)-a\right| \leq \delta, \quad x \in \partial \omega^{\epsilon}, \quad \text { for some } a \in A
$$

Assume that $\left(\omega^{\epsilon}\right)^{\prime}$ contains a bounded component $\tilde{\omega}^{\prime}$. Then

$$
\partial \tilde{\omega}^{\prime} \subset \partial\left(\omega^{\epsilon}\right)^{\prime}=\partial \omega^{\epsilon}
$$

and, in contradiction with $\tilde{\omega}^{\prime} \subset\left(\omega^{\epsilon}\right)^{\prime}$, the Maximum Principle implies

$$
\left|u^{\epsilon}(x)-a\right|<\delta, \quad x \in \tilde{\omega}^{\prime} .
$$

$\Rightarrow\left(\omega^{\epsilon}\right)^{\prime}$ coincides with its unbounded connected component.
Then the topological Lemma
$\Rightarrow \partial \omega^{\epsilon}$ is connected

Let $\Phi$ a family of connected components $\omega^{\epsilon}$ of $\Omega \backslash \mathscr{I}^{\epsilon}$. Then

$$
\mathscr{I}_{\Phi}^{\epsilon}=\Omega \backslash \cup_{\omega^{\epsilon} \in \Phi} \omega^{\epsilon} \quad \text { is a connected set. }
$$

$\Omega$ connected $\Rightarrow$ : given $p, q \in \mathscr{I}_{\Phi}^{\epsilon}$ there is an arc in $\Omega$ that connects $p$ to $q$. The connectivity of $\partial \omega^{\epsilon}$ implies: if $p^{\prime}$ and $q^{\prime}$ are the extremes of a subarc contained in $\omega^{\epsilon}$, the subarc can be replaced by an arc in $\partial \omega^{\epsilon}$. In particular $\mathscr{I}^{\epsilon}$ is connected


## Restricting to $2 D: \Omega \subset \mathbb{R}^{2}$

$\delta$ a regular value, the IFT and $\omega^{\epsilon} \subset \Omega \subset \mathbb{R}^{2} \Rightarrow \partial \omega^{\epsilon}$ is a $C^{1}$ curve. Actually a Jordan curve since $\partial \omega^{\epsilon}$ is connected. It follows that $\omega^{\epsilon}$ is homeomorphic to a ball. $\left.u^{\epsilon}\right|_{\partial \Omega}=v_{0}^{\epsilon}$ implies that $\tilde{N}=\sharp \tilde{A}$ of the $\partial \omega^{\epsilon}$ have an arc in common with $\partial \Omega$.
$\Rightarrow \mathscr{I}^{\epsilon}$ is homotopically equivalent to a closed ball deprived of $N=\sharp A$ points, $\tilde{N}=\sharp \tilde{A}$ of which on the boundary.


$$
\begin{gathered}
N=7 \\
\tilde{N}=4 \\
n_{b}=8 \\
n_{s}=14
\end{gathered}
$$

$\exists$ a network $\tilde{\mathscr{G}}^{\epsilon} \subset \mathscr{I}^{\epsilon}$ with $n_{b}=2(N-1)-\tilde{N}$ branching points of triple junction type and $n_{s}=3(N-1)-\tilde{N}$ arcs that separate the phases: $\Omega \backslash \tilde{\mathscr{G}}^{\epsilon}=\cup_{a} \tilde{S}_{a}$ and $\Omega_{a}^{\epsilon} \subset \tilde{S}_{a}$.

## Exponential decay

- Let $u^{1}$ be a minimizer of $J_{E}^{1}, O \subset E$ and $a \in A$. Assume

$$
\begin{aligned}
& x \in O, a^{\prime} \in A \backslash\{a\} \Rightarrow\left|u^{1}(x)-a^{\prime}\right|>\delta . \text { Then given } \eta>0, \\
& r \geq r_{\eta} \text { and } B_{r}(y) \subset O \Rightarrow\left|u^{1}(y)-a\right| \leq \eta .
\end{aligned}
$$

This applies to $\tilde{S}_{a}$ yielding (for some $k_{\delta}, K_{\delta}>0$ )

$$
\left|u^{\epsilon}(x)-a\right| \leq K_{\delta} e^{\frac{k_{\delta}}{\epsilon} d\left(x, \partial \tilde{S}_{a}\right)} \quad x \in \tilde{S}_{a} .
$$



$$
\begin{aligned}
& N=\tilde{N}=3 \\
& n_{b}=2(N-1)-\tilde{N}=1 \\
& n_{s}=3(N-1)-\tilde{N}=3
\end{aligned}
$$

## The optimal network $\mathscr{G}^{\epsilon}$

- There exist infinitely many networks $\tilde{\mathscr{G}}{ }^{\epsilon}$ with the properties described above.
Is there an optimal choice?
The networks $\tilde{\mathscr{G}} \tilde{\epsilon}^{\epsilon}$ can be classified in a finite number of types. If $\gamma_{i}$, $i=1, \ldots, n_{s}$ are the arcs of $\tilde{\mathscr{G}}^{\epsilon}$, then there are $a_{i}$ and $a_{i}^{\prime}$

$$
\gamma_{i} \subset \partial \tilde{S}_{a_{i}} \cap \partial \tilde{S}_{a_{i}^{\prime}} .
$$

A natural choice is to associate to each network $\mathscr{G}$ the number

$$
\mathscr{F}(\mathscr{G})=\sum_{i=1}^{n_{s}} \sigma_{a_{i} a_{i}^{\prime}}\left|\gamma_{i}\right| .
$$

It can be shown that there exists a network $\mathscr{G}^{\epsilon}$ which minimizes $\mathscr{F}$. The minimum $\mathscr{F}\left(\mathscr{G}^{\epsilon}\right)$ can be regarded as a weighted length of $\mathscr{I}^{\epsilon}$.

## A possible approach to the fine structure of $u^{\epsilon}$

1. Determine a free optimal network $\hat{\mathscr{G}}$ and a sharp upper bound of the form

$$
J_{\Omega}^{\epsilon}\left(u^{\epsilon}\right) \leq \mathscr{F}(\hat{\mathscr{G}})+C \epsilon^{\mu}, \mu \in(0,1) .
$$

2. Show that, if $\mathscr{G}$ is a network which coincides with $\hat{\mathscr{G}}$ on $\partial \Omega$ and is not contained in a $h$-neighborhood of $\hat{\mathscr{G}}$, then

$$
\mathscr{F}(\mathscr{G})-\mathscr{F}(\hat{\mathscr{G}}) \geq c h^{2} .
$$

3. Construct a sharp lower bound of the form

$$
J_{\Omega}^{\epsilon}\left(u^{\epsilon}\right) \geq \mathscr{F}\left(\mathscr{G}^{\epsilon}\right)-C \epsilon^{\mu}, \mu \in(0,1) .
$$

4. Deduce from 1 and 3 and the geometric inequality 2

$$
\begin{aligned}
& \mathscr{F}\left(\mathscr{G}^{\epsilon}\right)-C \epsilon^{\mu} \leq J_{\Omega}^{\epsilon}\left(u^{\epsilon}\right) \leq \mathscr{F}(\hat{\mathscr{G}})+C \epsilon^{\mu} \\
& c h^{2} \leq \mathscr{F}\left(\mathscr{G}^{\epsilon}\right)-\mathscr{F}(\hat{\mathscr{G}}) \leq 2 C \epsilon^{\mu} \Rightarrow h \leq C \epsilon^{\frac{\mu}{2}} .
\end{aligned}
$$

Associate to $\hat{\mathscr{G}}$ a map $\hat{v}^{\epsilon}$ that satisfies

$$
\begin{aligned}
& \hat{v}^{\epsilon} \sim a, \quad x \in \hat{S}_{a}, \quad d\left(x, \partial \hat{S}_{a}\right) \geq \epsilon|\ln \epsilon|, \\
& \hat{v}^{\epsilon}\left(x+s \nu_{x}\right)=\bar{u}_{a a^{\prime}}\left(\frac{s}{\epsilon}\right), \quad|s|<\epsilon|\ln \epsilon|, \quad x \in \partial \hat{S}_{a} \cap \partial \hat{S}_{a^{\prime}} .
\end{aligned}
$$

where $\nu_{x}$ is the normal vector to $\hat{\mathscr{G}}$ at $x$ and $\bar{u}_{a a^{\prime}}$ the connection $a$ to $a^{\prime}$ and $\Omega \backslash \hat{\mathscr{G}}=\cup_{a} \hat{S}_{a}$. It follows

$$
J_{\Omega}^{\epsilon}\left(u^{\epsilon}\right) \leq J_{\Omega}^{\epsilon}\left(\hat{v}^{\epsilon}\right) \leq \mathscr{F}(\hat{\mathscr{G}})+\epsilon|\ln \epsilon| .
$$

The lower bound. For $x \in \mathscr{G}^{\epsilon}, \nu_{x}$ a unit vector orthogonal to $\mathscr{G}^{\epsilon}$ at $x$ denote $F_{x}$ the connected component of $\left\{x+t \nu_{x}:|t|<\epsilon^{\beta}\right\} \cap \overline{\mathscr{I}}^{\epsilon}$ that contains $x$. Since $\left|\mathscr{I}^{\epsilon}\right| \leq \frac{\epsilon}{\delta_{\epsilon}^{2}}=\epsilon^{1-2 \alpha}$, we expect that for most $x \in \gamma_{i}$ the extremes of $F_{X}$ lie on $\Omega_{a_{i}}^{\epsilon}$ and $\Omega_{a_{i}^{\prime}}^{\epsilon}$ with $a_{i}, a_{i}^{\prime}$ determined by $\gamma_{i} \subset \partial S_{a_{i}}^{\epsilon} \cap \partial S_{a^{\prime}}^{\epsilon}$.


$$
\left|F_{x}\right| \geq \epsilon^{\beta}
$$



$$
\left|F_{x}\right|<\epsilon^{\beta}
$$

Let $J_{x}$ be the energy of the restriction of $u^{\epsilon}$ to $F_{x}$.


$$
N=\tilde{N}=2, n_{b}=0, n_{s}=1
$$

The partition associated to $\mathscr{G}^{\epsilon}$ can be singular.
What can be said if $\Omega_{a}^{\epsilon}$ is connected?

## The simplest nontrivial case



Assumptions:

1. $A=\{W=0\}=\left\{a_{1}, a_{2}, a_{3}\right\}, \quad$ and $\sigma_{a_{1} a_{2}}<\sigma_{a_{1} a_{3}}+\sigma_{a_{1} a_{3}}$, where $\sigma_{a_{i} a_{j}}=\int_{\mathbb{R}}\left|\bar{u}_{a_{i} a_{j}}^{\prime}\right|^{2}, \quad \bar{u}_{a_{i} a_{j}}$ heteroclinic $a_{i} \rightarrow a_{j}$
2. $v_{0}^{\epsilon} \sim \bar{u}_{a_{i} a_{j}}\left(\left(x-q_{1}\right) \cdot \nu\right), \quad x \in \partial \Omega$,
3. $\Omega_{a_{i}}^{\epsilon}=\left\{\left|u^{\epsilon}(x)-a_{i}\right| \leq \delta=\epsilon^{\alpha}\right\}$ is connect

The networks $\mathscr{G}^{\epsilon}$ and $\hat{\mathscr{G}}$.

$$
N=3, \tilde{N}=2 \quad \Rightarrow \quad n_{b}=2, n_{s}=4
$$



$$
\begin{gathered}
\mathscr{F}\left(\mathscr{G}^{\epsilon}\right)=\sigma_{a_{1} a_{2}}\left(\left|\gamma_{1}\right|+\left|\gamma_{2}\right|\right)+\sigma_{a_{1} a_{3}}\left|\gamma_{21}\right|+\sigma_{a_{2} a_{3}}\left|\gamma_{12}\right| . \\
\mathscr{F}(\hat{\mathscr{G}})=\sigma_{a_{1} a_{2}}\left|\bar{p}_{1}-\bar{p}_{2}\right| .
\end{gathered}
$$

## The upper bound for $J_{\Omega}^{\epsilon}\left(u^{\epsilon}\right)$

The characterization of $\mathscr{F}(\hat{\mathscr{G}})$ suggests $\hat{v}^{\epsilon}=\left.\bar{u}_{a_{12} a_{2}}\left(\left(x-q_{1}\right) \cdot \nu\right)\right|_{\Omega}$ as a good test function

$$
J_{\Omega}^{\epsilon}\left(u^{\epsilon}\right) \leq J_{\Omega}^{\epsilon}\left(\hat{v}^{\epsilon}\right) \leq \sigma_{a_{1} a_{2}}\left|q_{1}-q_{2}\right|+\epsilon|\ln \epsilon| \leq \mathscr{F}(\hat{\mathscr{G}})+\epsilon|\ln \epsilon|
$$

A geometric inequality: if $\mathscr{G} \not \subset h-$ neighborhood of $\hat{\mathscr{G}}$, then

$$
\mathscr{F}(\mathscr{G})-\mathscr{F}(\hat{\mathscr{G}}) \geq c h^{2},
$$

If we derive a lower bound of the form

$$
J_{\Omega}^{\epsilon}\left(u^{\epsilon}\right) \geq \mathscr{F}\left(\mathscr{G}^{\epsilon}\right)-\epsilon^{\mu}, \mu \in(0,1),
$$

then the upper bound and the geometric inequality imply

$$
\epsilon^{\eta} \geq \mathscr{F}\left(\mathscr{G}^{\epsilon}\right)-\mathscr{F}(\hat{\mathscr{G}}) \geq c h^{2}, \Rightarrow h=\epsilon^{\frac{\mu}{2}} .
$$

## The lower bound for $J_{\Omega}^{\epsilon}\left(u^{\epsilon}\right)$

The minimality of $\mathscr{G}^{\epsilon} \Rightarrow$ that locally $\mathscr{G}^{\epsilon}$ is either rectilinear or $F_{X}$ and the center of curvature lie on opposite sides.

b)


Set $\Phi^{\epsilon}=\cup_{x \in \mathscr{G} \epsilon} F_{x}$ then, if the connectivity of $\Omega_{a_{i}}^{\epsilon} \Rightarrow$ no $b$ ), we have $\left|\Phi^{\epsilon}\right| \geq \int_{\mathscr{G} \epsilon}\left|F_{X}\right| d x$ and

$$
\begin{array}{r}
J_{\Phi^{\epsilon}}^{\epsilon}\left(u^{\epsilon}\right) \geq \int_{\mathscr{G}^{\epsilon}} J_{x} d x \geq \int_{\mathscr{G}_{\epsilon-}} J_{x} d x,\left(J_{x}=J_{F_{x}}\left(u^{\epsilon} \mid F_{F_{x}}\right)\right. \\
\mathscr{G}^{\epsilon-}=\left\{x \in \mathscr{G}^{\epsilon}:\left|F_{x}\right|<\epsilon^{\beta}\right\}, \quad \mathscr{G}^{\epsilon+}=\left\{x \in \mathscr{G}^{\epsilon}:\left|F_{x}\right| \geq \epsilon^{\beta}\right\} .
\end{array}
$$

- $\epsilon^{\beta}\left|\mathscr{G}^{\epsilon+}\right| \leq\left|\cup_{x \in \mathscr{G}_{\epsilon+}} F_{x}\right| \leq\left|\mathscr{I}^{\epsilon}\right| \leq \epsilon^{1-2 \alpha},\left(\delta_{\epsilon}=\epsilon^{\alpha}\right)$,

$$
\Rightarrow \quad\left|\mathscr{G}^{\epsilon+}\right| \leq \epsilon^{1-(2 \alpha+\beta)}
$$

- $x \in \mathscr{G}^{\epsilon-} \Rightarrow J_{x} \geq \sigma_{a_{i} a_{j}}-\epsilon^{2 \alpha}$
- $J_{\Omega}^{\epsilon}\left(u^{\epsilon}\right) \geq J_{\Phi^{\epsilon}}^{\epsilon}\left(u^{\epsilon}\right) \geq \int_{\mathscr{G} \epsilon_{-}} J_{x} d x$

$$
\begin{aligned}
& \geq \sigma_{a_{1} a_{2}}\left(\left|\gamma_{1}\right|+\left|\gamma_{2}\right|\right)+\sigma_{a_{1} a_{3}}\left|\gamma_{21}\right|+\sigma_{a_{2} a_{3}}\left|\gamma_{12}\right|-\epsilon^{\mu} \\
& =\mathscr{F}\left(\mathscr{G}^{\epsilon}\right)-\epsilon^{\mu} .
\end{aligned}
$$

From this and the geometric inequality it follows that $\mathscr{G}^{\epsilon}$ is contained in a $\epsilon^{\frac{\mu}{2}}$-neighborhood of $\operatorname{sg}\left[q_{1}, q_{2}\right]$. Moreover
$\left|\left|\gamma_{1}\right|+\left|\gamma_{2}\right|-\left|q_{1}-q_{2}\right|\right| \leq \epsilon^{\mu}$, $\max \left\{\left|\gamma_{12}\right|,\left|\gamma_{21}\right|\right\} \leq \epsilon^{\mu}$.

$$
F_{x} \cap F_{y}=\emptyset, \quad \text { for } x \neq y \in \mathscr{G}^{\epsilon} \backslash\left(B_{\epsilon^{\eta}}\left(p_{1}\right) \cup B_{\epsilon^{\eta}}\left(p_{1}\right)\right)
$$


$\xi \in F_{x} \cap F_{y}$ for $x \in \gamma_{1}$ and $y \in \gamma_{2}$


$$
\begin{aligned}
& B_{r} \subset E \subset \mathscr{I}^{\epsilon} \quad \Rightarrow \quad r \leq \epsilon^{\frac{1}{2}-\alpha}, \\
& \Rightarrow\left|\ell-\lambda_{1}\right| \leq \epsilon^{\mu}, \quad\left|\ell^{\prime}-\lambda_{2}\right| \leq \epsilon^{\mu}, \\
& \left|\ell_{2}-\left(\lambda_{1}+\lambda_{2}\right)\right| \leq \epsilon^{\mu} . \\
& \Rightarrow \quad \mathscr{F}\left(\mathscr{G}^{\epsilon}\right)-\mathscr{F}(\tilde{\mathscr{G}}) \\
& =\sigma_{a_{2} a_{3}} \ell_{2}+\sigma_{a_{2} a_{1}}\left(\ell+\ell^{\prime}\right)-\sigma_{a_{1} a_{3}}\left(\ell+\ell^{\prime}\right)-\sigma_{a_{2} a_{3}}\left|\tilde{p}_{1}-\tilde{p}_{2}\right| \\
& \geq\left(\sigma_{a_{2} a_{3}}+\sigma_{a_{2} a_{1}}-\sigma_{a_{1} a_{3}}\right)\left(\lambda_{1}+\lambda_{2}\right)-\epsilon^{\mu} .
\end{aligned}
$$

That contradicts the minimality of $\mathscr{G}$ 而 unless $\lambda_{1}+\lambda_{2} \leq \epsilon^{\eta}$.

A potential with four zeros


