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outline of the talk

1. Background:

1.1 What is an Optimal Partition Problem?

1.2 The Yamabe Equation

2. Statement of our results

3. Outline of some proofs
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background



what is an optimal partition problem?

• Class of admissible sets: A(Ω)

• Cost Function: Φ : A(Ω)` → R

Minimization problem:

inf {Φ(ω1, . . . , ω`) : ωi ∈ A(Ω), ωi ∩ ωj = ∅ ∀i 6= j}
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what is an optimal partition problem?

• Class of admissible sets: A(Ω)

• Cost Function: Φ : A(Ω)` → R

Minimization problem:

inf {Φ(ω1, . . . , ω`) : ωi ∈ A(Ω), ωi ∩ ωj = ∅ ∀i 6= j}

Examples

1) (Spectral minimal partitions)

Ω ⊂ Rm, A(Ω) = {ω ⊂ Ω open}, k ∈ N:

Φ (ω1, . . . , ωl) =
l∑
i=1

λk (wi)

[Bucur, Buttazzo, Henrot, 1998], [Conti-Terracini-Verzini, 2005], [Caffarelli-Lin,

2007], [Boundin-Bucur-Oudet, 2010], [Ramos-T. Terracini, 2016],. . .
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what is an optimal partition problem?

• Class of admissible sets: A(Ω)

• Cost Function: Φ : A(Ω)` → R

Minimization problem:

inf {Φ(ω1, . . . , ω`) : ωi ∈ A(Ω), ωi ∩ ωj = ∅ ∀i 6= j}

Examples

2) (Nonlinear eigenvalues) Ω ⊂ Rm, A(Ω) = {ω ⊂ Ω open},
λ ∈ (−λ1(Ω),∞),

−∆u+ λu = |u|p−2u, u ∈ H1
0 (wi) , 2 < p < 2∗

wi 7→ c (wi) least energy level,

Φ (ω1, . . . , ωl) =

l∑
i=1

c (wi)

[Conti-Terracini -Verzini, 2002, 2003, 2005], [Tavares-Terracini, 2012],. . .

l = 2 −→ least energy nodal solution
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what is an optimal partition problem?

• Class of admissible sets: A(Ω)

• Cost Function: Φ : A(Ω)` → R

Minimization problem:

inf {Φ(ω1, . . . , ω`) : ωi ∈ A(Ω), ωi ∩ ωj = ∅ ∀i 6= j}

Examples

3) (Nonlinear eigenvalues - critical) λ ∈ (−λ1(Ω), 0),

−∆u+ λu = |u|2
∗−2u, u ∈ H1

0 (wi) ,

wi 7→ c (wi) least energy level,

Φ (ω1, . . . , ωl) =
l∑
i=1

c (wi)

[Chen-Zou, 2012, 2015], [T.-You, 2020], [T.-You-Zou, 2022],...
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what is an optimal partition problem?

• Class of admissible sets: A(Ω)

• Cost Function: Φ : A(Ω)` → R

Minimization problem:

inf {Φ(ω1, . . . , ω`) : ωi ∈ A(Ω), ωi ∩ ωj = ∅ ∀i 6= j}

Examples

4) (Manifolds - sphere)

[Szulkin-Clapp-Saldaña, 2020]:

optimal partition problems related to the Yamabe equation on the sphere +

symmetries
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the yamabe equation

−∆gu+ κmSgu = |u|2
∗−2u on M, (Yamabe)

where:

• (M, g) is a closed Riemannian manifold of dimension m ≥ 3;

• Sg scalar curvature;

• ∆g := divg∇g is the Laplace-Beltrami operator

• κm := m−2
4(m−1)

• 2∗ := 2m
m−2

is the critical Sobolev exponent.
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origin of the problem

M a manifold of dimension m.

Definition. Metrics g and g̃ are conformally equivalent if there exists

a smooth function ρ > 0 such that g̃ = ρg.

If we write ρ = u
4

m−2 for u > 0 smooth, and let

• Sg - scalar curvature of (M, g);

• Sg̃ - scalar curvature of (M, g̃);

then

−4(m− 2)

2(m− 1)
∆gu+ Sgu = Sg̃u

m+2
m−2 ⇐⇒ −∆gu+ κmSgu = κmSg̃u

m+2
m−2 .

So, if we ask:

Given (M, g) with scalar curvature Sg, is there a conformal metric

with constant scalar curvature?

This amounts to solve:

−∆gu+ κmSgu︸ ︷︷ ︸
=:Lgu

= κ|u|2
∗−2u on M
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the yamabe invariant

Associated to

−∆gu+ κmSgu︸ ︷︷ ︸
=:Lgu

= κ|u|2
∗−2u on M

we have the Yamabe invariant:

YM := inf
u∈H1

g(M)r{0}

Q(u)

|u|2g,2∗
,

where

Q(u) =

ˆ
M

|∇gu|2 + κmSg|u|2 dµg

|u|g,2∗ =

(ˆ
M

|u|2
∗

dµg

)1/2∗
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the case of the sphere

If M = Sm ⊂ Rm+1 with the standard metric:

YSm = inf
u∈D1,2(Rm)r{0}

ˆ
Rm
|∇u|2 dx(ˆ

Rm
|u|2 dx

)2/2∗

Equation and Bubble:

−∆U = U2∗−1 in Rm, Uδ,ξ(x) = αm

(
δ

δ2 + |x− ξ|2

)m−2
2
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a bit of history

• Yamabe (1960): inf
u∈H1

g(M)r{0}

Q(u)

|u|2g,q
with q < 2∗, and then q → 2∗.

• Trudinger (1968): If YM ≤ 0, then we are done.

• Aubin (1976) showed two things:

• If YM < YSm , then YM is achieved.

• If m ≥ 6 and (M, g) is not locally conformally flat, then the inequality is true

• Shoen (1984): proved the remaining cases.

Recommended reading:

Lee and Parker, The Yamabe problem. Bull. Amer. Math Soc. (1987).

Some key ideas:

1. work with the Green function of Lg, and understand its expansion;

2. use conformal normal coordinates around some special points;

3. consider a very spiked bubble.
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an equivalent variational framework

Lgu = κ|u|2
∗−2u, YM = inf

u∈H1
g(M)r{0}

‖u‖2g
|u|2g,2∗

> 0

Another point of view:

J(u) : =
1

2
‖u‖2g −

1

2∗
|u|2

∗
g,2∗

=
1

2

ˆ
M

(|∇gu|2g + κmSgu
2) dµg −

1

2∗

ˆ
M

|u|2
∗

dµg.

Nehari manifold:

N := {u ∈ H1
g (M) : u 6= 0 and J ′(u)u = 0}.

and

c = inf
N
J.

Then

c =
1

m
Y
m/2
M .

Aubin’s compactness condition:

c <
1

m
Y
m/2
Sm
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back to partition problems



Ω is an open subset of M , YM > 0.−∆gu+ κmSgu = |u|2
∗−2u in Ω,

u = 0 on ∂Ω.
(1)

Energy functional: JΩ : H1
g,0(Ω)→ R

JΩ(u) :=
1

2

ˆ
Ω

(|∇gu|2g + κmSgu
2) dµg −

1

2∗

ˆ
Ω

|u|2
∗

dµg.

Nehari manifold:

NΩ := {u ∈ H1
g,0(Ω) : u 6= 0 and J ′Ω(u)u = 0}.

We have a map:

Ω 7→ cΩ := inf
u∈NΩ

JΩ(u).
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Given ` ≥ 2, we consider the optimal `-partition problem

inf
{Ω1,...,Ω`}∈P`

∑̀
i=1

cΩi , (OPP)

where P` := {{Ω1, . . . ,Ω`} : Ωi 6= ∅ is open in M and Ωi ∩ Ωj = ∅ if i 6= j}.

Question: Does an optimal partition always exist?
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Question: Does an optimal partition always exist?

Answer: No! (for instance if M = Sm ⊂ Rm+1 with the standard metric)

cΩ is not attained in any open subset Ω of Sm such that int(ΩC) 6= ∅.

In subsets of Rm, the problem:

−∆u = |u|2
∗−2u in Σ(Ω), u = 0 on ∂[Σ(Ω)].

does not have a least energy solution.
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our main results

1. To give conditions on (M, g) which guarantee the existence of an optimal

`-partition for every `.

2. Characterize the optimal partition.

3. With partitions in ` = 2 sets, prove new results regarding existence of

least energy nodal solutions of the Yamabe equation:

−∆gu+ κmSgu = |u|2
∗−2u on M.

How do we do it?
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weak formulation of the problem

inf
{Ω1,...,Ω`}∈P`

∑̀
i=1

cΩi , (OPP)

y
inf

{∑̀
i=1

J(ui) : ui ∈ N ∀i, ui · uj ≡ 0 ∀i 6= j

}
, (WOPP)

J(u) =
1

2
‖u‖2g −

1

2∗
|u|2

∗
g,2∗ .

Remove the constraints ui · uj ≡ 0: competition parameter λ < 0,

J (u1, . . . , u`) :=
∑̀
i=1

(
1

2
‖ui‖2g −

1

2∗
|ui|2

∗
g,2∗

)
− λ

γ + 1

∑̀
i,j=1

j 6=i

ˆ
M

|uj |γ+1|ui|γ+1 dµg.
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a related elliptic system

−∆gui+κmSgui = |ui|2
∗−2ui+λui|ui|γ−1

∑̀
j=1

j 6=i

|uj |γ+1 on M, i = 1, . . . , `,

where:

• λ < 0,

• 2(γ + 1) = 2∗.

Jλ(u1, . . . , u`) :=
∑̀
i=1

(
1

2
‖ui‖2g −

1

2∗
‖ui‖2

∗
g,2∗

)
− λ

γ + 1

∑̀
i,j=1

j 6=i

ˆ
M

|uj |γ+1|ui|γ+1 dµg.
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Nλ := {(u1, . . . , u`) ∈ H : ui 6= 0, ∂iJλ(u1, . . . , u`)ui = 0, ∀i = 1, . . . , `}.

Define the least energy nontrivial level:
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main results



−∆gui +κmSgui = |ui|2
∗−2ui +λui|ui|γ−1

∑̀
j=1

j 6=i

|uj |γ+1 on M, i = 1, . . . , `

Theorem (Clapp, Pistoia, T., 2021)
Assume that one of the following two conditions holds true:

(A1) m = 3, γ = 2, (M, g) is not conformal to the standard

3-sphere.

(A2) m ≥ 9, 2(γ + 1) = 2∗, (M, g) is not locally conformally flat.

Then, the system has a least energy nontrivial solution (u1, . . . , u`) such

that ui ∈ C2(M) and ui > 0 for every i = 1, . . . , `.
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Let now λ = λn → −∞. What happens to the solutions?

−∆gui+κmSgui = |ui|2
∗−2ui+λnui|ui|γ−1

∑̀
j=1

j 6=i

|uj |γ+1 on M, i = 1, . . . , `,

We assume that

(A3) (M, g) is not locally conformally flat and m ≥ 10.

Moreover, if m = 10, also ask that

|Sg(q)|2 <
5

28
|Wg(q)|2g ∀q ∈M,

where Wg(q) is the Weyl tensor of (M, g) at q.
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Theorem (Clapp-Pistoia-T., 2021)
Assume (A3), let λn → −∞ and take (un,1, . . . , un,`) to be a least energy

nontrivial solution to the system

−∆gui+κmSgui = |ui|2
∗−2ui+λnui|ui|γ−1

∑̀
j=1

j 6=i

|uj |γ+1 i = 1, . . . , `,

such that un,i ∈ C2(M) and un,i > 0.

(i) Uniform bounds: (un)n is uniformly bounded in L∞ ∩ C0,α(M).

(ii) Convergence to a limiting profile: un,i → u∞,i in H1
g ∩ C0,α(M)

• u∞,i ≥ 0, u∞,i 6= 0,

•
ˆ
M
λn|un,i|γ+1|un,j |γ+1 → 0 as n→∞ whenever i 6= j, therefore

(u∞,i) · (u∞,j) ≡ 0 for i 6= j

• u∞,i|Ωi is a least energy solution to the problem

−∆gu+ κmSgu = |u|2
∗−2u in Ωi, u = 0 on ∂Ωi,

where Ωi := {p ∈M : u∞,i(p) > 0}.

(iii) Optimal Regularity of the limit: u∞,i ∈ C0,1(M)
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Theorem (Clapp-Pistoia-T., 2021)

(iv) {Ω1, . . . ,Ω`} ∈ P`, and it is an optimal `-partition for the Yamabe

equation on (M, g).

In particular, each Ωi is connected.

(v) Γ := M r
⋃`
i=1 Ωi = R ∪S ,

• R is an (m− 1)-dimensional C1,α-submanifold of M . Given p0 ∈ R

there exist i 6= j such that

lim
p→p+

0

|∇gui(p)| = lim
p→p−0

|∇guj(p)| 6= 0,

where p→ p±0 are the limits taken from opposite sides of R.

• S is a closed subset of M with Hausdorff dimension ≤ m− 2. For

p0 ∈ S we have

lim
p→p0

|∇gui(p)|2 = 0 for every i = 1, . . . , `.

In particular, M = ∪`i=1Ωi.
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In the case ` = 2, we have the following:

Theorem (Clapp-Pistoia-T., 2021)
Assume (A3). Then w := u∞,1 − u∞,2 is a least energy sign-changing

solution to the Yamabe equation

−∆gu+ κmSgu = |u|2
∗−2u on M,
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Previous results:

Ammann and Humbert, The second Yamabe invariant. JFA 235 (2006),

→ Existence of least energy nodal solution when dimM ≥ 11 and M is not

conformally flat.

→ Work in classes of generalized metrics conformal to a metric g
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solution to the Yamabe equation

−∆gu+ κmSgu = |u|2
∗−2u on M,

Previous results:

Ammann and Humbert, The second Yamabe invariant. JFA 235 (2006),

→ Existence of least energy nodal solution when dimM ≥ 11 and M is not

locally conformally flat.

→ Work in classes of generalized metrics conformal to a metric g

For any ` ≥ 3, let u = u∞,1 + . . . u∞,`:

• u > 0 and regular in ∪`i=1Ωi = M \ Γ.

g̃ = u2∗−2g is a generalized metric conformal to g.
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In the case ` = 2, we have the following:

Theorem (Clapp-Pistoia-T., 2021)
Assume (A3). Then w := u∞,1 − u∞,2 is a least energy sign-changing

solution to the Yamabe equation

−∆gu+ κmSgu = |u|2
∗−2u on M,

Multiplicity Results on the sphere:

[Ding, CMP 1986]: Existence of infinitely many sign-changing solutions

to the Yamabe equation

[Fernández and Petean, JDE 2020]: Given ` ≥ 2, there exists a solution

with `-nodal domains

24



some ideas about the proofs



ideas about the proofs

1. Existence of nontrivial solutions for systems:

−∆gui+κmSgui = |ui|2
∗−2ui+λui|ui|γ−1

∑̀
j=1

j 6=i

|uj |γ+1 on M, i = 1, . . . , `,

2. For the singular limit λ = λn → −∞, convergence of the corresponding

least energy solutions (un,1, . . . , un,`).

3. Regularity results for limiting profiles.
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1. existence results for systems: the compactness condition

Recall that for the Yamabe equation:

−∆gu+ κmSgu = |u|2
∗−2u on M, (2)

a least energy solution exists when 0 < YM < YSm .

Taking the point of view of the Euler-Lagrange functional:

J(u) :=
1

2
‖u‖2g −

1

2∗
|u|2

∗
g,2∗ , u ∈ H1

g (M)

Nehari manifold:

c = inf
N
J, N := {u ∈ H1

g (M) : u 6= 0 and J ′(u)u = 0}.

Then the compactness condition reads:

c <
1

m
Y
m/2
Sm .
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existence results for systems: the compactness condition

−∆gui+κmSgui = |ui|2
∗−2ui+λui|ui|γ−1

∑̀
j=1

j 6=i

|uj |γ+1 on M, i = 1, . . . , `,

J (u1, . . . , u`) :=
∑̀
i=1

(
1

2
‖ui‖2g −

1

2∗
|ui|2

∗
g,2∗

)
− λ

γ + 1

∑̀
i,j=1

j 6=i

ˆ
M

|uj |γ+1|ui|γ+1 dµg.

We need to not only prevent blowup of minimizing sequences, but also

minimizers with zero components.

For each Z ⊂ {1, . . . , `}, take the system of |Z| equations

−∆gui + κmSgui = |ui|2
∗−2ui + λui|ui|γ−1

∑
j∈Z
j 6=i

|uj |γ+1, i ∈ Z (SZ)

Least energy level:

ĉZ := inf
u∈NZ

JZ(u).
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Proposition

Assume that

ĉ < min

{
ĉZ + (`− |Z|) (YSm)m/2

m
: Z ( {1, . . . , `}

}
.

Then ĉ is attained at a solution (u1, . . . , u`) with ui 6= 0 ∀i.
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Proposition

Assume that

ĉ < min

{
ĉZ + (`− |Z|) (YSm)m/2

m
: Z ( {1, . . . , `}

}
.

Then ĉ is attained at a solution (u1, . . . , u`) with ui 6= 0 ∀i.

Idea to check this inequality: choice of a suitable test function V .
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ĉ < min
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ĉZ + (`− |Z|) (YSm)m/2

m
: Z ( {1, . . . , `}

}
.

Then ĉ is attained at a solution (u1, . . . , u`) with ui 6= 0 ∀i.

If (u1, . . . , uk) is a least energy solution of a system with k < ` equations

−→ use (u1, . . . , uk, V, . . . , V ).
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Proposition

Assume that

ĉ < min

{
ĉZ + (`− |Z|) (YSm)m/2

m
: Z ( {1, . . . , `}

}
.

Then ĉ is attained at a solution (u1, . . . , u`) with ui 6= 0 ∀i.

If (u1, . . . , uk) is a least energy solution of a system with k < ` equations

−→ use (u1, . . . , uk, V, . . . , V ).

Choice of Test Function: idea by Lee-Parker (1987)

1. Conformal normal coordinates at p:

det g̃ij = 1 +O(rm), r = |x|m

m ≥ 5 =⇒ S = O(r2), ∆S =
1

6
|W |2 at p

2. Asymptotic expansion of the Green function of Lg

3. Use the bubble: Uδ,ξ(x) = αm

(
δ

δ2 + |x− ξ|2

)m−2
2

4. Construct a suitable test function V and use estimates from

Esposito-Pistoia-Vetois (2014) 30



2. asymptotic behavior as λn → −∞



2. asymptotic behavior as λn → −∞

−∆gui+κmSgui = |ui|2
∗−2ui+λnui|ui|γ−1

∑̀
j=1

j 6=i

|uj |γ+1 on M, i = 1, . . . , `,

Let (un,1, . . . , un,`) be (nonnegative) nontrivial energy solution.

Weak convergence as λn → −∞:

un,i ⇀ ūi in H1
g (M).
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−∆gui+κmSgui = |ui|2
∗−2ui+λnui|ui|γ−1

∑̀
j=1

j 6=i

|uj |γ+1 on M, i = 1, . . . , `,

Let (un,1, . . . , un,`) be (nonnegative) nontrivial energy solution.

Weak convergence as λn → −∞:

un,i ⇀ ūi in H1
g (M).

Challenges:

• Is it true that ūi 6≡ 0 for every i?

• Is (ū1, . . . , ū`) a solution of the weak formulation of the optimal partition

problem?

• Are the limiting profiles continuous?
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un,i ⇀ ūi in H1
g (M).

Compactness property + test function argument implies:

• strong H1
g (M) convergence

• ūi 6≡ 0
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2. asymptotic behavior as λn → −∞

−∆gui+κmSgui = |ui|2
∗−2ui+λnui|ui|γ−1

∑̀
j=1

j 6=i

|uj |γ+1 on M, i = 1, . . . , `,

Let (un,1, . . . , un,`) be (nonnegative) nontrivial energy solution.

Weak convergence as λn → −∞:

un,i ⇀ ūi in H1
g (M).

Compactness property + test function argument implies:

• strong H1
g (M) convergence

• ūi 6≡ 0

Classical iterative procedure implies:

• Uniform bounds in L∞ norm:

|ui,n|g,∞ ≤ C ∀n
32



Proposition

For λn < 0 such that λn → −∞, let un = (un,1, . . . , un,`) be a nonneg-

ative solution to the system

−∆gui + κmSgui = |ui|2
∗−2ui + λnui|ui|γ−1

∑̀
j=1

j 6=i

|uj |γ+1, i = 1, . . . , `.

Then

|un|L∞(M) ≤ C =⇒ ‖un‖C0,α(M) ≤ Cα

In local coordinates:

−div(A(x)∇ui) = fi(x, ui) + a(x)
∑̀
j=1
j 6=i

λ|uj |γ+1|ui|γ−1ui in Ω ⊂ Rm

• a ∈ C0(Ω) and a > 0 in Ω,

• A ∈ C1 and 〈A(x)ξ, ξ〉 ≥ θ|ξ|2

• fi are continuous and |fi(x, s)| = o(s) as s→ 0
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− div(A(x)∇ui) = fi(x, ui)+a(x)
∑̀
j=1
j 6=i

λ|uj |γ+1|ui|γ−1ui in Ω, i = 1, . . . , `.

Theorem
Let Ω be an open subset of Rm, γ > 0.

For each λ < 0 let (uλ,1, . . . , uλ,`) be a nonnegative solution to the

system such that {uλ,i : λ < 0} is uniformly bounded in L∞(Ω).

Then, given a compact subset K of Ω and α ∈ (0, 1), there exists C =

C(α,K) > 0 such that

‖uλ,i‖C0,α(K) ≤ C.
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− div(A(x)∇ui) = fi(x, ui)+a(x)
∑̀
j=1
j 6=i

λ|uj |γ+1|ui|γ−1ui in Ω, i = 1, . . . , `.

Theorem
Let Ω be an open subset of Rm, γ > 0.

For each λ < 0 let (uλ,1, . . . , uλ,`) be a nonnegative solution to the

system such that {uλ,i : λ < 0} is uniformly bounded in L∞(Ω).

Then, given a compact subset K of Ω and α ∈ (0, 1), there exists C =

C(α,K) > 0 such that

‖uλ,i‖C0,α(K) ≤ C.

Proof of this theorem: adaptation of

Soave, T., Terracini and Zilio, Hölder bounds and regularity of

emerging free boundaries for strongly competing Schrödinger equations

with nontrivial grouping. Nonlinear Analysis (2016)

(which deals with the Laplacian operator)
34



Proof of uniform Hölder bounds:

• Contradiction argument and blowup analysis

• Liouville type results applied to blowup limits

• Almgren’s monotonicity formula

At the blowup limit, we find the operator:

div(A∇u),

with A a symmetric, positive definite (constant!) matrix.

A natural change of variables leads to

∆u

(here we were inspired by [Soave, Terracini, JEMS 2022])
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an extra

Theorem (Dias-T., ongoing)
Optimal uniform bounds:

|uλ|L∞(M) ≤ C =⇒ ‖uλ‖C0,1(M) ≤ C1

Uniform bounds in C0,1-norm are much harder to get because

Liouville-type results like:

u harmonic in Rm, [u]C0,α(Rm) := sup
x,y∈Rm
x 6=y

|u(x)− u(y)|
|x− y|α <∞ =⇒ u ≡ C

are false when α = 1!
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3. regularity results for limiting

profiles.



3. regularity results for limiting profiles.

−∆gui + κmSgui = |ui|2
∗−2ui + λui|ui|γ−1

∑̀
j=1

j 6=i

|uj |γ+1

yλ→ −∞
inf

{Ω1,...,Ω`}∈P`

∑̀
i=1

cΩi ,

Once again: local coordinates

− div(A(x)∇ui) = fi(x, ui)+a(x)
∑̀
j=1
j 6=i

λ|uj |γ+1|ui|γ−1ui in Ω, i = 1, . . . , `.
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Theorem

Let Ω be an open subset of Rm and γ > 0. For each λ < 0, let

(uλ,1, . . . , uλ,`) be a nonnegative solution to the system satisfying

• uλ,i → ui strongly in H1(Ω) ∩ C0,α(Ω) for every α ∈ (0, 1), as

λ→ −∞, where ui 6≡ 0.

•
ˆ

Ω

λ|uλ,i|γ+1|uλ,j |γ+1 → 0 whenever i 6= j;

• −div(A(x)∇ui) = fi(x, ui) in the open set {x ∈ Ω : ui(x) > 0}.

Then, the following statements hold true:

(a) ui is Lipschitz continuous for every i = 1, . . . , `.

(b) the nodal set Γ := {x ∈ Ω : ui(x) = 0 ∀i = 1, . . . , `} = R ∪S ,

• R is an (m− 1)-dimensional C1,α-submanifold of M . Given x0 ∈ R

there exist i 6= j such that

lim
p→x+

0

〈A(x)∇ui,∇ui〉 = lim
p→x−0

〈A(x)∇uj ,∇uj〉 6= 0,

• S is a closed subset of M with Hausdorff measure ≤ m− 2.

lim
p→x0

〈A(x)∇ui,∇ui〉 = 0
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Theorem
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•
ˆ

Ω
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Proof of the Lipschitz continuity goes along the lines of:

[Noris-T.-Terracini-Verzini, CPAM 2010]

[Soave-T.-Tavares-Zilio, Nonl. Anal. 2016]

while the regularity of the nodal set follows

[T.-Terracini CPDE 2012]

[Soave-T.-Tavares-Zilio, Nonl. Anal. 2016]

but therein the differential operator is the Laplacian.

A key fact is the proof of local Pohozaev type identities:

r
∑̀
i=1

ˆ
∂Br(x0)

(
2(∂νui)

2 − |∇ui|2
)

=2
∑̀
i=1

ˆ
Br(x0)

fi(x, ui)〈∇ui, x− x0〉

+ (2−m)
∑̀
i=1

ˆ
Br(x0)

|∇ui|2
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almgren’s monotonicity formula

E(r) =
1

rm−2

d∑
i=1

ˆ
Br(x0)

(|∇ui|2 − fi(x, ui)ui)

H(r) =
1

rm−1

d∑
i=1

ˆ
∂Br(x0)

u2
i

Almgren’s quotient:

N(r) =
E(r)

H(r)

Then

N ′(r) ≥ −2Cr(N(r) + 1).

In particular,

eCr
2

(N(r) + 1) is a non decreasing function for r ∼ 0

N(0+) := lim
r→0+

N(r) exists and is finite.

Also

(logH(r))′ =
2

r
N(r)
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Adapting to divergence form operators with nonconstant matrices is not

straightforward at all!

Use ideas from

[Kukavica, Duke 2008]

[Garofalo-Smit Vega Garcia, Advances Math. 2014]

[Garofalo-Petrosyan-Smit Vega Garcia, JMPA 2016]

[Soave-Weth, SIAM Math. Anal. 2018]
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Reduction to the case A(0) = Id:

Tx0x := x0 +A(x0)
1
2 x,

Ax0(x) := A(x0)−
1
2A(Tx0x)A(x0)−

1
2

Advantages:

• Reduction to a case locally close to the Laplacian case.

• Good control as a function of x0.
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In the case A(0) = Id:

µ(x) :=

〈
A(x)

x

|x| ,
x

|x|

〉
∼ 1, Z(x) :=

A(x)x

µ(x)
∼ x.

Local Pohozaev Identities:

r

ˆ
∂Br

〈A∇ui,∇ui〉 − 2

ˆ
∂Br

〈Z,∇ui〉〈A∇ui, ν〉 = 2

ˆ
Br

fi(x, ui)〈∇ui, Z〉

+

ˆ
Br

〈Z,∇ahl〉
∂ui
∂xh

∂ui
∂xl
− 2

ˆ
Br

ahl
∂Zj
∂xh

∂ui
∂xj

∂ui
∂xl

+

ˆ
Br

divZ〈A∇ui,∇ui〉

Almgren quotient:

E(r) :=
1

rm−2

∑̀
i=1

ˆ
Br

(〈A(x)∇ui,∇ui〉 − fi(x, ui)ui) dx

H(r) :=
1

rm−1

∑̀
i=1

ˆ
∂Br

µ(x)u2
i dσ

N(r) :=
E(r)

H(r)
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Monotonicity formula, case A(0) = Id:

N ′(r) ≥ −C(N(r) + 1).

In particular:

eCr(N(r) + 1) is a non decreasing function for r ∼ 0,

N(0+) := lim
r→0+

N(r) exists and is finite.

Moreover, ∣∣∣∣(logH(r))′ − 2

r
N(r)

∣∣∣∣ ≤ C for r ∼ 0.
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to finish as we started

M. Clapp, A. Pistoia, H. T.

Yamabe systems, optimal partitions, and nodal solutions to the

Yamabe equation

arXiv:2106.00579 (2021)

Main points:

• Consider shape optimization problems involving partitions on manifolds

• The energy functional is related to the Yamabe equation

• Explore a connection with elliptic systems

• Sign-changing solutions to the Yamabe equation

Keywords:

• A priori estimates for elliptic systems

• Variational Methods

• Monotonicity formula and free boundary regularity for equations and

systems with variable coefficients.
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Thank you for your attention.
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