From Kakeya to Restriction, and how to make it sharp?

Diogo Oliveira e Silva, HCM Bonn

Global Portuguese Mathematicians IST Lisboa, July 14, 2017

The Kakeya Problem

What is the smallest area which is required to rotate a unit line segment by 180 degrees in the plane?

A **Kakeya set** is a compact subset $K \subset \mathbb{R}^d$ which contains a unit line segment in every direction.

Theorem (Besicovitch, 1920)

There exists a Kakeya set in \mathbb{R}^d with zero Lebesgue measure if d > 2.

Really?

A monster with many arms and a tiny heart

Kakeya Set Conjecture

If $K \subset \mathbb{R}^d$ is a Kakeya set, then $\dim_H(K) = d$.

- Known for d = 2 (Davies 1972)
- Open for $d \geq 3$ despite significant partial progress by Bourgain, Wolff, Tao, ..., Katz–Zahl (April 2017)

Kakeya Maximal function:

$$f_{\delta}^*(\omega) = \sup_{a \in \mathbb{R}^d} rac{1}{|T^{\delta}|} \int_{T_{\omega}^{\delta}(a)} |f|$$

When does an inequality

$$\forall \varepsilon > 0, \exists C_{\varepsilon} < \infty: \quad \|f_{\delta}^*\|_{L^p(\mathbb{S}^{d-1})} \leq C_{\varepsilon} \delta^{-\varepsilon} \|f\|_{L^p(\mathbb{R}^d)}$$

hold, for some $p < \infty$? This requires $p \ge d$.

Fourier Restriction Theory

For $d \geq 2$, consider $(\mathbb{M}, \sigma) \subset \mathbb{R}^d$, a smooth compact hypersurface equipped with surface measure. The **restriction** operator

$$\begin{array}{ccc} T: L^p(\mathbb{R}^d) & \to & L^q(\mathbb{M}, \sigma) \\ f & \mapsto & \widehat{f}|_{\mathbb{M}} \end{array}$$

is the adjoint of the extension operator

$$T^*: L^{q'}(\mathbb{M}, \sigma) \rightarrow L^{p'}(\mathbb{R}^d)$$

 $f \mapsto \widehat{f}\widehat{\sigma}$

If
$$q = q' = 2$$
, then $(T^* \circ T)(f) = f * K$ with $K(x) = \widehat{\sigma}(-x)$.

A classical result

Theorem (Tomas–Stein, 1975)

Let $d \geq 2$ and $p' \geq \frac{2d+2}{d-1}$. Then, for every $f \in L^2(\mathbb{S}^{d-1})$,

$$\|\widehat{f\sigma}\|_{L^{p'}(\mathbb{R}^d)} \lesssim_{d,p} \|f\|_{L^2(\mathbb{S}^{d-1})}$$

Explicitly:

$$\widehat{f\sigma}(x) = \int_{\mathbb{S}^{d-1}} f(\omega) e^{-ix\cdot\omega} d\sigma_{\omega}$$

- Range of exponents is best possible for L^2 densities.
- **Curvature** plays a role: Any smooth compact hypersurface of nonvanishing Gaussian curvature will do.

$$|\widehat{\sigma}(x)| = |x|^{-\frac{d-2}{2}} |J_{\frac{d-2}{2}}(|x|)| \lesssim_d (1+|x|)^{-\frac{d-1}{2}}$$

The Fourier Restriction Conjecture

Kakeya vs. Restriction

Kakeya Maximal Function Conjecture

$$\forall \varepsilon > 0, \exists C_{\varepsilon} < \infty: \quad \|f_{\delta}^*\|_{L^d(\mathbb{S}^{d-1})} \leq C_{\varepsilon} \delta^{-\varepsilon} \|f\|_{L^d(\mathbb{R}^d)}$$

- Known for d=2 (Córdoba 1977), open for $d\geq 3$
- Implies Kakeya Set Conjecture
- Implied by Fourier Restriction Conjecture, via

Uncertainty Principle

If \hat{f} is supported in a ball of radius R, then f is "essentially constant" at scale R^{-1} .

Low dimensional Tomas-Stein

If d=2, then the endpoint exponent $p'=\frac{2\cdot 2+2}{2-1}=6$, and $\|\widehat{f\sigma}\|_{L^6(\mathbb{R}^2)}\leq \mathbf{C}_{2,6}\|f\|_{L^2(\mathbb{S}^1)}$ is equivalent to

$$\boxed{\|f\sigma*f\sigma*f\sigma\|_{L^2(\mathbb{R}^2)}\lesssim \mathbf{C}_{2,6}^3\|f\|_{L^2(\mathbb{S}^1)}^3}$$

If d=3, then the endpoint exponent $p'=\frac{2\cdot 3+2}{3-1}=4$, and $\|\widehat{f\sigma}\|_{L^4(\mathbb{R}^3)}\leq \mathbf{C}_{3,4}\|f\|_{L^2(\mathbb{S}^2)}$ is equivalent to

$$\boxed{\|f\sigma*f\sigma\|_{L^2(\mathbb{R}^3)}\lesssim \mathbf{C}_{3,4}^2\|f\|_{L^2(\mathbb{S}^2)}^2}$$

- Case d = 3: Christ-Shao (2012), Foschi (2015).
- No such reduction is possible in higher dimensions but, for $4 \le d \le 7$, a sharp $L^2(\mathbb{S}^{d-1}) \to L^4$ extension inequality was established in **Carneiro–OS** (2015).

Strichartz estimates (1977)

• For the homogeneous Schrödinger equation $iu_t = \Delta u$ with initial datum u(x,0) = f(x):

$$\|u\|_{L^{2+\frac{4}{d}}(\mathbb{R}^{d+1})} \le \mathbf{S}_d \|f\|_{L^2(\mathbb{R}^d)}$$

Restriction theory on the **paraboloid**.

• For the homogeneous wave equation $u_{tt} = \Delta u$ with initial data u(x,0) = f(x) and $u_t(x,0) = g(x)$:

$$||u||_{L^{2+\frac{4}{d-1}}(\mathbb{R}^{d+1})} \le \mathbf{W}_d ||(f,g)||_{\dot{H}^{\frac{1}{2}}(\mathbb{R}^d) \times \dot{H}^{-\frac{1}{2}}(\mathbb{R}^d)}$$

Restriction theory on the cone.

• Low dimensional sharp versions?

Foschi (2007), Hundertmark–Zharnitsky (2006), Bennett–Bez–Carbery–Hundertmark (2009), **OS–Quilodrán** (2016), Gonçalves (2017).

An explicit computation

$$(\sigma * \sigma)(x) = \iint_{(\mathbb{S}^{d-1})^2} \delta(x - \omega - \nu) d\sigma_{\omega} d\sigma_{\nu}$$

$$= \int_{\mathbb{S}^{d-1}} \delta(1 - |x - \omega|^2) d\sigma_{\omega}$$

$$= \frac{1}{|x|} \int_{\mathbb{S}^{d-1}} \delta\left(\frac{|x|}{2} - \frac{x}{|x|} \cdot \omega\right) d\sigma_{\omega}$$

$$= \frac{1}{|x|} \int_{0}^{\pi} \delta\left(\frac{|x|}{2} - \cos\theta\right) (\sin\theta)^{d-2} d\theta$$

$$= \frac{1}{|x|} \int_{-1}^{1} \delta\left(\frac{|x|}{2} - t\right) (1 - t^2)^{\frac{d-3}{2}} dt$$

$$= \frac{1}{|x|} \left(1 - \frac{|x|^2}{4}\right)^{\frac{d-3}{2}} \text{ provided } |x| \le 2$$

First symmetries

Lemma (Positivity)

$$||f\sigma * f\sigma||_{L^2(\mathbb{R}^d)} \le |||f|\sigma * |f|\sigma||_{L^2(\mathbb{R}^d)}$$

with equality if and only if

$$f(\omega)f(\nu) = h(\omega + \nu)|f(\omega)f(\nu)|, \text{ for a.e. } (\omega, \nu) \in (\mathbb{S}^{d-1})^2$$

and some measurable function $h: \overline{B(2)} \to \mathbb{C}$.

Given $f: \mathbb{S}^{d-1} \to \mathbb{R}^+$, define f_\star via $f_\star(\omega) := \sqrt{\frac{f(\omega)^2 + f(-\omega)^2}{2}}$.

Lemma (Antipodality)

$$||f\sigma * f\sigma||_{L^2(\mathbb{R}^d)} \le ||f_\star \sigma * f_\star \sigma||_{L^2(\mathbb{R}^d)}$$

with equality if and only if $f = f_{\star}$ (σ -a.e.).

Keeping the analysis global

$$\begin{split} \|f\sigma*f\sigma\|_{L^2(\mathbb{R}^d)}^2 &= Q(f,f,f,f) = \\ &= \int_{(\mathbb{S}^{d-1})^4} f(\omega_1) f(\omega_2) f(\omega_3) f(\omega_4) \, \boldsymbol{\delta} \big(\omega_1 + \omega_2 + \omega_3 + \omega_4\big) \, \mathrm{d}\sigma_{\vec{\omega}} \end{split}$$

where the 4-linear form Q is given by

$$Q(f_1, f_2, f_3, f_4) := \int_{(\mathbb{S}^{d-1})^4} f_1(\omega_1) f_2(\omega_2) f_3(\omega_3) f_4(\omega_4) \, \mathrm{d} \mathbf{\Sigma}_{\vec{\omega}}$$

and the singular measure Σ on $(\mathbb{S}^{d-1})^4$ is given by

$$\mathrm{d}\Sigma_{\vec{\omega}} = \delta(\omega_1 + \omega_2 + \omega_3 + \omega_4) \,\mathrm{d}\sigma_{\omega_1} \,\mathrm{d}\sigma_{\omega_2} \,\mathrm{d}\sigma_{\omega_3} \,\mathrm{d}\sigma_{\omega_4}$$

and supported on
$$\Gamma_0 := \{ \vec{\omega} \in (\mathbb{S}^{d-1})^4 : \omega_1 + \omega_2 + \omega_3 + \omega_4 = 0 \}.$$

Almost sharp

Take four vectors $\omega_1, \omega_2, \omega_3, \omega_4 \in \mathbb{S}^{d-1}$ such that

$$\omega_1 + \omega_2 + \omega_3 + \omega_4 = 0$$

In this case, we have that

$$|\omega_1 + \omega_2||\omega_3 + \omega_4| + |\omega_2 + \omega_3||\omega_1 + \omega_4| + |\omega_3 + \omega_1||\omega_2 + \omega_4| = \mathbf{4}$$

(Think about $|\omega_1+\omega_2|^2+|\omega_2+\omega_3|^2+|\omega_3+\omega_1|^2$ instead)

$$Q(f, f, f, f) = \int_{(\mathbb{S}^{d-1})^4} f(\omega_1) f(\omega_2) f(\omega_3) f(\omega_4) d\Sigma_{\vec{\omega}}$$

$$= \frac{3}{4} \int_{(\mathbb{S}^{d-1})^4} f(\omega_1) f(\omega_2) |\omega_1 + \omega_2| f(\omega_3) f(\omega_4) |\omega_3 + \omega_4| d\Sigma_{\vec{\omega}}$$

$$\lesssim_d \iint_{(\mathbb{S}^{d-1})^2} f(\omega_1)^2 f(\omega_2)^2 |\omega_1 + \omega_2|^2 \underbrace{\sigma * \sigma(\omega_1 + \omega_2)}_{=\frac{(4-|\omega_1 + \omega_2|^2)^{\frac{d-3}{2}}}{|\omega_1 + \omega_2|}} d\sigma_{\omega_1} d\sigma_{\omega_2}$$

One last ingredient

Consider the (real-valued, continuous) functional on $L^1(\mathbb{S}^{d-1})$:

$$H(g) := \iint_{(\mathbb{S}^{d-1})^2} \overline{g(\omega)} g(\nu) |\omega - \nu| (4 - |\omega - \nu|^2)^{\frac{d-3}{2}} d\sigma_\omega d\sigma_\nu$$

Lemma (Monotonicity of H)

Let $3 \le d \le 7$. Let $g \in L^1(\mathbb{S}^{d-1})$ be an even function with average μ . Then

$$H(g) \le H(\mu \mathbf{1}) = |\mu|^2 H(\mathbf{1})$$

with equality if and only if g is a constant function.

Two possible approaches: heat flow, spectral decomposition.

Spherical harmonics and the Funk-Hecke formula

If $g \in L^2(\mathbb{S}^{d-1})$, can decompose $g = \sum_{k \geq 0} Y_k$. Then:

$$H(g) = \sum_{k,j \ge 0} \int_{\mathbb{S}^{d-1}} \overline{Y_k(\omega)} \Big(\underbrace{\int_{\mathbb{S}^{d-1}} Y_j(\nu) |\omega - \nu| (4 - |\omega - \nu|^2)^{\frac{d-3}{2}} d\sigma_{\nu}}_{=\lambda_j Y_j(\omega)} \Big) d\sigma_{\omega}$$

$$= \sum_{k>0} \lambda_k \|Y_k\|_{L^2(\mathbb{S}^{d-1})}^2 \le \lambda_0 \|Y_0\|_{L^2(\mathbb{S}^{d-1})}^2?$$

Compute the (signs of the) coefficients λ_k via Funk–Hecke:

$$\lambda_k = \omega_{d-2} \int_{-1}^1 \frac{C_k^{\frac{d-2}{2}}(t)}{C_k^{\frac{d-2}{2}}(1)} \phi(t) (1 - t^2)^{\frac{d-3}{2}} dt$$

And the result is...

Signs of the coefficients λ_k

	λ_0	λ_1	λ_2	λ_3	λ_{4}	λ_5	λ_6	
d=3	+	_	_	_	_	_	_	
d = 4	+	0	_	0	_	0	_	
d = 5, 6, 7	+	+	_	_	_	_	_	
$d \ge 8$	+	+	+	*	*	*	*	• • •

2D Paraboloids via convolution estimates

$$\mathbb{P}^2 = \{ (\xi, \tau) \in \mathbb{R}^{2+1} : \tau = |\xi|^2 \}$$
$$\mu(\xi, \tau) = \delta(\tau - |\xi|^2) \, \mathrm{d}\xi \, \mathrm{d}\tau$$

Strichartz for Schrödinger in $\mathbb{R}^{2+1} \ \simeq \ L^2(\mu) o L^4$ extension ineq.

$$(\mu * \mu)(\xi, \tau) = \int_{\mathbb{R}^{2+2}} \delta \begin{pmatrix} \xi - \eta - \zeta \\ \tau - |\eta|^2 - |\zeta|^2 \end{pmatrix} d\eta \, d\zeta$$

$$= \int_{\mathbb{R}^2} \delta (\tau - |\eta|^2 - |\xi - \eta|^2) \, d\eta$$

$$= \int_{\mathbb{R}^2} \delta \left(\tau - \frac{|\xi|^2}{2} - 2|\eta|^2\right) d\eta$$

$$= 2\pi \int_0^\infty \delta \left(\tau - \frac{|\xi|^2}{2} - 2r^2\right) r \, dr$$

$$= \frac{\pi}{2} \int_0^\infty \delta \left(\tau - \frac{|\xi|^2}{2} - s\right) ds = \frac{\pi}{2} \chi \left(\tau \ge \frac{|\xi|^2}{2}\right)$$

Cauchy-Schwarz implies:

$$|(f\mu * f\mu)(\xi, \tau)|^2 \le (\mu * \mu)(\xi, \tau) \cdot (|f|^2 \mu * |f|^2 \mu)(\xi, \tau)$$

Integrate:

$$\|f\mu * f\mu\|_{L^2(\mathbb{R}^3)}^2 \le \int_{\mathbb{R}^{2+1}} (\mu * \mu)(\xi, \tau) \cdot (|f|^2 \mu * |f|^2 \mu)(\xi, \tau) \, \mathrm{d}\xi \, \mathrm{d}\tau$$

Hölder implies:

$$\boxed{\|f\mu * f\mu\|_{L^2(\mathbb{R}^3)}^2 \le \frac{\pi}{2} \|f\|_{L^2(\mathbb{R}^2)}^4}$$

Both inequalities simultaneously become equalities if

$$f(\eta)f(\zeta) = F(\eta + \zeta, |\eta|^2 + |\zeta|^2)$$

(for some complex-valued F defined on $\operatorname{supp}(\mu*\mu)$, and almost every $(\eta,\zeta)\in\mathbb{R}^2 imes\mathbb{R}^2)$

Sharp inequality, **Gaussians** are unique extremizers.

What about perturbations?

If $\tau = |\xi|^2$, then the convolution $\mu * \mu$ is **constant** in its support:

If $\tau = |\xi|^2 + |\xi|^4$, then we instead have that:

Consequences to PDE

Family of fourth order Schrödinger equations in \mathbb{R}^{2+1} : For $\mu \geq 0$,

$$\begin{cases} iu_t + \Delta^2 u - \mu \Delta u = 0 \\ u(\cdot, 0) = f \in L_x^2(\mathbb{R}^2) \end{cases}$$

Jiang-Shao-Stovall (2014): Either extremizers for

$$\|(\mu+|\nabla|^2)^{\frac{1}{4}}e^{it(\Delta^2-\mu\Delta)}f\|_{L^4_{t,x}(\mathbb{R}^3)}\lesssim \|f\|_{L^2_x(\mathbb{R}^2)}$$

exist, or "they exhibit classical Schrödinger behavior".

• Sharpened Strichartz inequality:

$$\|S_{\mu}(t)D_{\mu}^{\frac{1}{2}}f\|_{L^{4}_{t,x}}\lesssim \sup_{\kappa}\left(|\kappa|^{-\frac{3}{22}}\|S_{\mu}(t)D_{\mu}^{\frac{4}{11}}f_{\kappa}\|_{L^{\frac{11}{2}}_{t,x}}\right)^{\frac{1}{8}}\|f\|_{L^{2}_{x}}^{\frac{7}{8}}$$

• Linear profile decomposition

Our methods imply that extremizers **exist** if $\mu = 0$, and that extremizers **do not exist** if $\mu = 1$.

Three natural questions

- How to treat non-even integers?
 - Do Gaussians extremize the endpoint extension inequality on the paraboloid in all dimensions?
 - Do Constants extremize the endpoint extension inequality on the sphere in all dimensions?
- Common proof in the Lorentz invariant case?
- How to sharpen Kakeya?

Thank you very much