From Kakeya to Restriction, and how to make it sharp?

Diogo Oliveira e Silva, HCM Bonn

Global Portuguese Mathematicians IST Lisboa, July 14, 2017

The Kakeya Problem

What is the smallest area which is required to rotate a unit line segment by 180 degrees in the plane?

A Kakeya set is a compact subset $K \subset \mathbb{R}^{d}$ which contains a unit line segment in every direction.

Theorem (Besicovitch, 1920)

There exists a Kakeya set in \mathbb{R}^{d} with zero Lebesgue measure if $d \geq 2$.

Really?

A monster with many arms and a tiny heart

Kakeya Set Conjecture

If $K \subset \mathbb{R}^{d}$ is a Kakeya set, then $\operatorname{dim}_{H}(K)=d$.

- Known for $d=2$ (Davies 1972)
- Open for $d \geq 3$ despite significant partial progress by Bourgain, Wolff, Tao, …, Katz-Zahl (April 2017)

Kakeya Maximal function:

$$
f_{\delta}^{*}(\omega)=\sup _{a \in \mathbb{R}^{d}} \frac{1}{\left|T^{\delta}\right|} \int_{T_{\omega}^{\delta}(a)}|f|
$$

When does an inequality

$$
\forall \varepsilon>0, \exists C_{\varepsilon}<\infty: \quad\left\|f_{\delta}^{*}\right\|_{L^{p}\left(\mathbb{S}^{d-1}\right)} \leq C_{\varepsilon} \delta^{-\varepsilon}\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

hold, for some $p<\infty$? This requires $p \geq d$.

Fourier Restriction Theory

For $d \geq 2$, consider $(\mathbb{M}, \sigma) \subset \mathbb{R}^{d}$, a smooth compact hypersurface equipped with surface measure. The restriction operator

$$
\begin{aligned}
T: L^{p}\left(\mathbb{R}^{d}\right) & \rightarrow L^{q}(\mathbb{M}, \sigma) \\
f & \left.\mapsto \widehat{f}\right|_{\mathbb{M}}
\end{aligned}
$$

is the adjoint of the extension operator

$$
\begin{aligned}
T^{*}: L^{q^{\prime}}(\mathbb{M}, \sigma) & \rightarrow L^{p^{\prime}}\left(\mathbb{R}^{d}\right) \\
f & \mapsto \widehat{f \sigma}
\end{aligned}
$$

If $q=q^{\prime}=2$, then $\left(T^{*} \circ T\right)(f)=f * K$ with $K(x)=\widehat{\sigma}(-x)$.

A classical result

Theorem (Tomas-Stein, 1975)

Let $d \geq 2$ and $p^{\prime} \geq \frac{2 d+2}{d-1}$. Then, for every $f \in L^{2}\left(\mathbb{S}^{d-1}\right)$,

$$
\|\widehat{f \sigma}\|_{L^{p^{\prime}}\left(\mathbb{R}^{d}\right)} \lesssim d, p\|f\|_{L^{2}\left(\mathbb{S}^{d-1}\right)}
$$

- Explicitly:

$$
\widehat{f \sigma}(x)=\int_{\mathbb{S}^{d}-1} f(\omega) e^{-i x \cdot \omega} \mathrm{~d} \sigma_{\omega}
$$

- Range of exponents is best possible for L^{2} densities.
- Curvature plays a role: Any smooth compact hypersurface of nonvanishing Gaussian curvature will do.

$$
|\widehat{\sigma}(x)|=|x|^{-\frac{d-2}{2}}\left|J_{\frac{d-2}{2}}(|x|)\right| \lesssim d_{d}(1+|x|)^{-\frac{d-1}{2}}
$$

The Fourier Restriction Conjecture

Kakeya vs. Restriction

Kakeya Maximal Function Conjecture

$$
\forall \varepsilon>0, \exists C_{\varepsilon}<\infty: \quad\left\|f_{\delta}^{*}\right\|_{L^{d}\left(\mathbb{S}^{d-1}\right)} \leq C_{\varepsilon} \delta^{-\varepsilon}\|f\|_{L^{d}\left(\mathbb{R}^{d}\right)}
$$

- Known for $d=2$ (Córdoba 1977), open for $d \geq 3$
- Implies Kakeya Set Conjecture
- Implied by Fourier Restriction Conjecture, via

Uncertainty Principle

If \widehat{f} is supported in a ball of radius R, then f is "essentially constant" at scale R^{-1}.

Low dimensional Tomas-Stein

If $d=2$, then the endpoint exponent $p^{\prime}=\frac{2 \cdot 2+2}{2-1}=6$, and $\|\widehat{f \sigma}\|_{L^{6}\left(\mathbb{R}^{2}\right)} \leq \mathbf{C}_{2,6}\|f\|_{L^{2}\left(\mathbb{S}^{1}\right)}$ is equivalent to

$$
\|f \sigma * f \sigma * f \sigma\|_{L^{2}\left(\mathbb{R}^{2}\right)} \lesssim \mathbf{C}_{2,6}^{3}\|f\|_{L^{2}\left(\mathbb{S}^{1}\right)}^{3}
$$

If $d=3$, then the endpoint exponent $p^{\prime}=\frac{2 \cdot 3+2}{3-1}=4$, and
$\|\widehat{f \sigma}\|_{L^{4}\left(\mathbb{R}^{3}\right)} \leq \mathbf{C}_{3,4}\|f\|_{L^{2}\left(\mathbb{S}^{2}\right)}$ is equivalent to

$$
\|f \sigma * f \sigma\|_{L^{2}\left(\mathbb{R}^{3}\right)} \lesssim \mathbf{C}_{3,4}^{2}\|f\|_{L^{2}\left(\mathbb{S}^{2}\right)}^{2}
$$

- Case $d=3$: Christ-Shao (2012), Foschi (2015).
- No such reduction is possible in higher dimensions but, for $4 \leq d \leq 7$, a sharp $L^{2}\left(\mathbb{S}^{d-1}\right) \rightarrow L^{4}$ extension inequality was established in Carneiro-OS (2015).

Strichartz estimates (1977)

- For the homogeneous Schrödinger equation $i u_{t}=\Delta u$ with initial datum $u(x, 0)=f(x)$:

$$
\|u\|_{L^{2++}} \quad{ }_{\left(\mathbb{R}^{d+1}\right)} \leq \mathbf{S}_{d}\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)}
$$

Restriction theory on the paraboloid.

- For the homogeneous wave equation $u_{t t}=\Delta u$ with initial data $u(x, 0)=f(x)$ and $u_{t}(x, 0)=g(x)$:

$$
\|u\|_{L^{2+\frac{4}{d-1}}\left(\mathbb{R}^{d+1}\right)} \leq \mathbf{W}_{d}\|(f, g)\|_{\dot{H}^{\frac{1}{2}}\left(\mathbb{R}^{d}\right) \times \dot{H}^{-\frac{1}{2}}\left(\mathbb{R}^{d}\right)}
$$

Restriction theory on the cone.

- Low dimensional sharp versions?

Foschi (2007), Hundertmark-Zharnitsky (2006),
Bennett-Bez-Carbery-Hundertmark (2009),
OS-Quilodrán (2016), Gonçalves (2017).

D. Oliveira e Silva, HCM

An explicit computation

$$
\begin{aligned}
(\sigma * \sigma)(x) & =\iint_{\left(\mathbb{S}^{d-1}\right)^{2}} \delta(x-\omega-\nu) \mathrm{d} \sigma_{\omega} \mathrm{d} \sigma_{\nu} \\
& =\int_{\mathbb{S}^{d-1}} \boldsymbol{\delta}\left(1-|x-\omega|^{2}\right) \mathrm{d} \sigma_{\omega} \\
& =\frac{1}{|x|} \int_{\mathbb{S}^{d}-1} \boldsymbol{\delta}\left(\frac{|x|}{2}-\frac{x}{|x|} \cdot \omega\right) \mathrm{d} \sigma_{\omega} \\
& =\frac{1}{|x|} \int_{0}^{\pi} \delta\left(\frac{|x|}{2}-\cos \theta\right)(\sin \theta)^{d-2} \mathrm{~d} \theta \\
& =\frac{1}{|x|} \int_{-1}^{1} \delta\left(\frac{|x|}{2}-t\right)\left(1-t^{2}\right)^{\frac{d-3}{2}} \mathrm{~d} t \\
& =\frac{1}{|x|}\left(1-\frac{|x|^{2}}{4}\right)^{\frac{d-3}{2}} \quad \text { provided }|x| \leq 2
\end{aligned}
$$

First symmetries

Lemma (Positivity)

$$
\|f \sigma * f \sigma\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq\||f| \sigma *|f| \sigma\|_{L^{2}\left(\mathbb{R}^{d}\right)}
$$

with equality if and only if

$$
f(\omega) f(\nu)=h(\omega+\nu)|f(\omega) f(\nu)|, \quad \text { for a.e. }(\omega, \nu) \in\left(\mathbb{S}^{d-1}\right)^{2}
$$

and some measurable function $h: \overline{B(2)} \rightarrow \mathbb{C}$.
Given $f: \mathbb{S}^{d-1} \rightarrow \mathbb{R}^{+}$, define f_{\star} via $f_{\star}(\omega):=\sqrt{\frac{f(\omega)^{2}+f(-\omega)^{2}}{2}}$.

Lemma (Antipodality)

$$
\|f \sigma * f \sigma\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq\left\|f_{\star} \sigma * f_{\star} \sigma\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}
$$

with equality if and only if $f=f_{\star}$ (σ-a.e.).

Keeping the analysis global

$$
\begin{aligned}
& \|f \sigma * f \sigma\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}=Q(f, f, f, f)= \\
& \quad=\int_{\left(\mathbb{S}^{d-1}\right)^{4}} f\left(\omega_{1}\right) f\left(\omega_{2}\right) f\left(\omega_{3}\right) f\left(\omega_{4}\right) \delta\left(\omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}\right) \mathrm{d} \sigma_{\vec{\omega}}
\end{aligned}
$$

where the 4-linear form Q is given by

$$
Q\left(f_{1}, f_{2}, f_{3}, f_{4}\right):=\int_{\left(\mathbb{S}^{d-1}\right)^{4}} f_{1}\left(\omega_{1}\right) f_{2}\left(\omega_{2}\right) f_{3}\left(\omega_{3}\right) f_{4}\left(\omega_{4}\right) \mathrm{d} \Sigma_{\vec{\omega}}
$$

and the singular measure Σ on $\left(\mathbb{S}^{d-1}\right)^{4}$ is given by

$$
\mathrm{d} \Sigma_{\vec{\omega}}=\boldsymbol{\delta}\left(\omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}\right) \mathrm{d} \sigma_{\omega_{1}} \mathrm{~d} \sigma_{\omega_{2}} \mathrm{~d} \sigma_{\omega_{3}} \mathrm{~d} \sigma_{\omega_{4}}
$$

and supported on $\Gamma_{0}:=\left\{\vec{\omega} \in\left(\mathbb{S}^{d-1}\right)^{4}: \omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}=0\right\}$.
D. Oliveira e Silva, HCM

Almost sharp

Take four vectors $\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4} \in \mathbb{S}^{d-1}$ such that

$$
\omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}=0
$$

In this case, we have that

$$
\left|\omega_{1}+\omega_{2}\right|\left|\omega_{3}+\omega_{4}\right|+\left|\omega_{2}+\omega_{3}\right|\left|\omega_{1}+\omega_{4}\right|+\left|\omega_{3}+\omega_{1}\right|\left|\omega_{2}+\omega_{4}\right|=4
$$

(Think about $\left|\omega_{1}+\omega_{2}\right|^{2}+\left|\omega_{2}+\omega_{3}\right|^{2}+\left|\omega_{3}+\omega_{1}\right|^{2}$ instead)

$$
\begin{aligned}
& Q(f, f, f, f)=\int_{\left(\mathbb{S}^{d-1}\right)^{4}} f\left(\omega_{1}\right) f\left(\omega_{2}\right) f\left(\omega_{3}\right) f\left(\omega_{4}\right) \mathrm{d} \Sigma_{\vec{\omega}} \\
& =\frac{3}{4} \int_{\left(\mathbb{S}^{d-1}\right)^{4}} f\left(\omega_{1}\right) f\left(\omega_{2}\right)\left|\omega_{1}+\omega_{2}\right| f\left(\omega_{3}\right) f\left(\omega_{4}\right)\left|\omega_{3}+\omega_{4}\right| \mathrm{d} \Sigma_{\vec{\omega}} \\
& \quad \lesssim d \int_{\left(\mathbb{S}^{d-1}\right)^{2}} f\left(\omega_{1}\right)^{2} f\left(\omega_{2}\right)^{2}\left|\omega_{1}+\omega_{2}\right|^{2} \underbrace{\sigma * \sigma\left(\omega_{1}+\omega_{2}\right)} \mathrm{d} \sigma_{\omega_{1}} \mathrm{~d} \sigma_{\omega_{2}} \\
& =\frac{\left(4-\left|\omega_{1}+\omega_{2}\right|^{2}\right)^{\frac{d-3}{2}}}{\left|\omega_{1}+\omega_{2}\right|}
\end{aligned}
$$

One last ingredient

Consider the (real-valued, continuous) functional on $L^{1}\left(\mathbb{S}^{d-1}\right)$:

$$
\left.\left.H(g):=\iint_{\left(\mathbb{S}^{d}-1\right.}\right)^{2}\right) ~ \overline{g(\omega)} g(\nu)|\omega-\nu|\left(4-|\omega-\nu|^{2}\right)^{\frac{d-3}{2}} \mathrm{~d} \sigma_{\omega} \mathrm{d} \sigma_{\nu}
$$

Lemma (Monotonicity of H)

Let $3 \leq d \leq 7$. Let $g \in L^{1}\left(\mathbb{S}^{d-1}\right)$ be an even function with average μ. Then

$$
H(g) \leq H(\mu \mathbf{1})=|\mu|^{2} H(\mathbf{1})
$$

with equality if and only if g is a constant function.
Two possible approaches: heat flow, spectral decomposition.

Spherical harmonics and the Funk-Hecke formula

If $g \in L^{2}\left(\mathbb{S}^{d-1}\right)$, can decompose $g=\sum_{k \geq 0} Y_{k}$. Then:

$$
\left.\begin{array}{rl}
H(g) & =\sum_{k, j \geq 0} \int_{\mathbb{S}^{d-1}} \overline{Y_{k}(\omega)}(\underbrace{\int_{\mathbb{S}^{d-1}}}_{=\lambda_{j} Y_{j}(\omega)} Y_{j}(\nu)|\omega-\nu|\left(4-|\omega-\nu|^{2}\right)^{\frac{d-3}{2}} \mathrm{~d} \sigma_{\nu}
\end{array}\right) \mathrm{d} \sigma_{\omega}
$$

Compute the (signs of the) coefficients λ_{k} via Funk-Hecke:

$$
\lambda_{k}=\omega_{d-2} \int_{-1}^{1} \frac{C_{k}^{\frac{d-2}{2}}(t)}{C_{k}^{\frac{d-2}{2}}(1)} \phi(t)\left(1-t^{2}\right)^{\frac{d-3}{2}} \mathrm{~d} t
$$

And the result is...

Signs of the coefficients λ_{k}

	λ_{0}	λ_{1}	λ_{2}	λ_{3}	λ_{4}	λ_{5}	λ_{6}	\cdots
$d=3$	+	-	-	-	-	-	-	\cdots
$d=4$	+	0	-	0	-	0	-	\cdots
$d=5,6,7$	+	+	-	-	-	-	-	\cdots
$d \geq 8$	+	+	+	\star	\star	\star	\star	\cdots

$$
\begin{gathered}
\mathbb{P}^{2}=\left\{(\xi, \tau) \in \mathbb{R}^{2+1}: \tau=|\xi|^{2}\right\} \\
\mu(\xi, \tau)=\boldsymbol{\delta}\left(\tau-|\xi|^{2}\right) \mathrm{d} \xi \mathrm{~d} \tau
\end{gathered}
$$

Strichartz for Schrödinger in $\mathbb{R}^{2+1} \simeq L^{2}(\mu) \rightarrow L^{4}$ extension ineq.

$$
\begin{aligned}
(\mu * \mu)(\xi, \tau) & =\int_{\mathbb{R}^{2+2}} \delta\binom{\xi-\eta-\zeta}{\tau-|\eta|^{2}-|\zeta|^{2}} \mathrm{~d} \eta \mathrm{~d} \zeta \\
& =\int_{\mathbb{R}^{2}} \boldsymbol{\delta}\left(\tau-|\eta|^{2}-|\xi-\eta|^{2}\right) \mathrm{d} \eta \\
& =\int_{\mathbb{R}^{2}} \delta\left(\tau-\frac{|\xi|^{2}}{2}-2|\eta|^{2}\right) \mathrm{d} \eta \\
& =2 \pi \int_{0}^{\infty} \delta\left(\tau-\frac{|\xi|^{2}}{2}-2 r^{2}\right) r \mathrm{~d} r \\
& =\frac{\pi}{2} \int_{0}^{\infty} \delta\left(\tau-\frac{|\xi|^{2}}{2}-s\right) \mathrm{d} s=\frac{\pi}{2} \chi\left(\tau \geq \frac{|\xi|^{2}}{2}\right)
\end{aligned}
$$

Cauchy-Schwarz implies:

$$
|(f \mu * f \mu)(\xi, \tau)|^{2} \leq(\mu * \mu)(\xi, \tau) \cdot\left(|f|^{2} \mu *|f|^{2} \mu\right)(\xi, \tau)
$$

Integrate:

$$
\|f \mu * f \mu\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2} \leq \int_{\mathbb{R}^{2+1}}(\mu * \mu)(\xi, \tau) \cdot\left(|f|^{2} \mu *|f|^{2} \mu\right)(\xi, \tau) \mathrm{d} \xi \mathrm{~d} \tau
$$

Hölder implies:

$$
\|f \mu * f \mu\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2} \leq \frac{\pi}{2}\|f\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{4}
$$

Both inequalities simultaneously become equalities if

$$
f(\eta) f(\zeta)=F\left(\eta+\zeta,|\eta|^{2}+|\zeta|^{2}\right)
$$

(for some complex-valued F defined on $\operatorname{supp}(\mu * \mu)$, and almost every $(\eta, \zeta) \in \mathbb{R}^{2} \times \mathbb{R}^{2}$)
Sharp inequality, Gaussians are unique extremizers.

What about perturbations?

If $\tau=|\xi|^{2}$, then the convolution $\mu * \mu$ is constant in its support:

If $\tau=|\xi|^{2}+|\xi|^{4}$, then we instead have that:

D. Oliveira e Silva, HCM

Consequences to PDE

Family of fourth order Schrödinger equations in \mathbb{R}^{2+1} : For $\mu \geq 0$,

$$
\left\{\begin{array}{l}
i u_{t}+\Delta^{2} u-\mu \Delta u=0 \\
u(\cdot, 0)=f \in L_{x}^{2}\left(\mathbb{R}^{2}\right)
\end{array}\right.
$$

Jiang-Shao-Stovall (2014): Either extremizers for

$$
\left\|\left(\mu+|\nabla|^{2}\right)^{\frac{1}{4}} e^{i t\left(\Delta^{2}-\mu \Delta\right)} f\right\|_{L_{t, x}^{4}\left(\mathbb{R}^{3}\right)} \lesssim\|f\|_{L_{x}^{2}\left(\mathbb{R}^{2}\right)}
$$

exist, or "they exhibit classical Schrödinger behavior".

- Sharpened Strichartz inequality:

$$
\left\|S_{\mu}(t) D_{\mu}^{\frac{1}{2}} f\right\|_{L_{t, x}^{4}} \lesssim \sup _{\kappa}\left(|\kappa|^{-\frac{3}{22}}\left\|S_{\mu}(t) D_{\mu}^{\frac{4}{11}} f_{\kappa}\right\|_{L_{t, x}}\right)^{\frac{11}{2}}\|f\|_{L_{x}^{2}}^{\frac{7}{8}}
$$

- Linear profile decomposition

Our methods imply that extremizers exist if $\mu=0$, and that extremizers do not exist if $\mu=1$.

Three natural questions

- How to treat non-even integers?
- Do Gaussians extremize the endpoint extension inequality on the paraboloid in all dimensions?
- Do Constants extremize the endpoint extension inequality on the sphere in all dimensions?
- Common proof in the Lorentz invariant case?
- How to sharpen Kakeya?

Thank you very much

