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Abstract—Over the last years, there has been substantial

progress in robust manipulation in unstructured environments.

The long-term goal of our work is to get away from precise,

but very expensive robotic systems and to develop affordable,

potentially imprecise, self-adaptive manipulator systems that can

interactively perform tasks such as playing with children. In

this paper, we demonstrate how a low-cost off-the-shelf robotic

system can learn closed-loop policies for a stacking task in only

a handful of trials—from scratch. Our manipulator is inaccurate

and provides no pose feedback. For learning a controller in the

work space of a Kinect-style depth camera, we use a model-based

reinforcement learning technique. Our learning method is data

efficient, reduces model bias, and deals with several noise sources

in a principled way during long-term planning. We present a

way of incorporating state-space constraints into the learning

process and analyze the learning gain by exploiting the sequential

structure of the stacking task.

I. INTRODUCTION

Over the last years, there has been substantial progress in
robust manipulation in unstructured environments. While ex-
isting techniques have the potential to solve various household
manipulation tasks, they typically rely on extremely expensive
robot hardware [12]. The long-term goal of our work is to
develop affordable, light-weight manipulator systems that can
interactively play with children. A key problem of cheap
manipulators, however, is their inaccuracy and the limited
sensor feedback, if any. In this paper, we show how to use a
cheap, off-the-shelf robotic manipulator ($370) and a Kinect-
style (http://www.xbox.com/kinect) depth camera (<$120) to
learn a block stacking task [2, 1] under state-space constraints.
We use data-efficient reinforcement learning (RL) to train a
controller directly in the work space of the depth camera.

Fully autonomous RL methods typically require many trials
to successfully solve a task (e.g., Q-learning), a good ini-
tialization (e.g., by imitation [3]), or a deep understanding
of the system. If this knowledge is unavailable, due to the
lack of understanding of complicated dynamics or because a
solution is simply not known, data-intensive learning methods
are required. In a robotic system, however, many physical
interactions with the environment are often infeasible and lead
to worn-out robots. The more fragile a robotic system the more
important data-efficient learning methods are.

To sidestep these problems, we build on PILCO (probabilis-
tic inference for learning control), a data-efficient model-based
(indirect) policy search method [7] that reduces model bias,

Fig. 1. Low-cost robotic arm by Lynxmotion [1] performing a block stacking
task. Since the manipulator does not provide any pose feedback, our system
learns a controller directly in the task space using visual feedback from a
Kinect-style depth camera.

a typical problem of model-based methods: PILCO employs
a flexible probabilistic non-parametric Gaussian process (GP)
dynamics model and takes model uncertainty consistently
into account during long-term planning. PILCO learns good
controllers from scratch, i.e., with random initializations; no
deep understanding of the system is required. In this paper, we
show how obstacle information provided by the depth camera
can be incorporated into PILCO’s planning and learning to
avoid collisions even during training, and how knowledge can
be efficiently transferred across related tasks.

The paper is structured as follows. After discussing related
work, we describe the task to be solved, the low-cost hardware
used, and a basic tracking algorithm in Sec. III. Sec. IV sum-
marizes the PILCO framework and details how we incorporate
collision avoidance into long-term planning under uncertainty.
Sec. V presents the experimental results. Sec. VI concludes
the paper with a discussion.

II. RELATED WORK

In [11], a model-free policy learning method is presented,
which relies on rollouts sampled from the system. Even in a
simple task (mountain-car) with only two policy parameters,
80 rollouts are required. For more complicated tasks, the
number of required rollouts quickly goes into the thousands.

[5] propose a consistent learning-planning method in par-
tially observable domains. A compact model of a discrete
latent space is learned and used for control learning by means
of point-based value iteration [16]. The approach in [5] for

Deisenroth, M. P., Rasmussen, C. E., & Fox, D. (2011). Learning to control a low-cost manipulator 
using data-efficient reinforcement learning. Robotics: Science and Systems VII, 7, 57-64.
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10 when adversarial piece eliminated 
-10 when losing a piece 
100 when winning game 
-100 when losing game 
-1 otherwise

Reinforcement Learning (RL)
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Signal  and new state rt st+1



1 episode  = 1 game


• Game 1:            … Defeat!


• Game 2:            … Defeat!


• Game :             … Victory!N

Episodic learning

Agent Environment

Signal  and new state rt st+1

Action  given state at st



Agent Environment

Signal  and new state rt st+1

Action  given state at st

History
s1, a1, r1, s2
s2, a2, r2, s3

⋮

Episodic learning



Predictive modelTrainingDataset
Cats: Dogs:

Recall Supervised Learning

Cat!
Cat!

?
Cat!…

*

* https://sandeep-bhuiya01.medium.com/disadvantages-of-cnn-models-95395fe9ae40

*



RL: History is the dataset!

History
s1, a1, r1, s2
s2, a2, r2, s3

⋮

Agent Environment given at st

 and rt st+1

Predictive modelTraining

*

* https://sandeep-bhuiya01.medium.com/disadvantages-of-cnn-models-95395fe9ae40

Success 
probability 
of all actions



Exploration / Exploitation

Exploitation: Using knowledge 
to maximize collected rewards

Exploration: Improving knowledge about the 
problem (better understanding the impacts of 
actions) possibly at the cost of rewards



• Goal: Get from S to T as fast as possible

• Optimal path (unknown): Path 2

• Shortest path currently known: Path 5

• Exploitation: Follow Path 5

• Exploration: Deviate from Path 5 

 Could allow to discover Path 2→

Galbrun, E., Pelechrinis, K., & Terzi, E. (2016). Urban navigation beyond shortest route: The case of safe paths. Information Systems, 57, 160-171.

Example: Learning the optimal path

Exploration!

Exploitation



How to achieve this with RL?

https://medium.com/@xaviergeerinck/the-markov-property-chain-reward-process-and-decision-process-4f63f7922401



∞

∑
i=0

γirt+i

Maximize

Discount rate: 0 < γ ≤ 1

Agent EnvironmentAction  given state at st

Signal  and new state rt st+1

s1, a1, r1, s2
s2, a2, r2, s3

⋮

Planning for the future
History



Bandits

rt

Agent EnvironmentAction  given state at st

Signal  and new state rt st+1

History
a1, r1
a2, r2

⋮

Maximize



• Action  is associated with features 


• Simple case: Discrete set 


• Expected reward function: 


• Reward  with 


• Assumption: Actions nearby in  have 
similar expected reward


• Assumption:  
with unknown  and known 

a ∈ 𝒜 x ∈ 𝒳
𝒳 ⊂ ℝ
f : 𝒳 ↦ ℝ

rt = f(xt) + εt ε ∼ 𝒩(0,σ2)
𝒳

f(x) = ⟨ϕ(x), θ⟩
θ ϕ( ⋅ )

Example: Structured bandits

rt

Agent Environment
Action at

Reward rt

History
a1, r1
a2, r2

⋮

Maximize

(associated with )xt



Kernel regression

• Kernel 


• Gaussian prior  with  for  
 

 
 

 
 
Posterior mean:  
 
Posterior covariance: 

k(x, x′ ) = ⟨ϕ(x), ϕ(x′ )⟩

θ ∼ 𝒩d(0,Σ) Σ =
σ2

λ
I λ > 0

KN = [k(xi, xj)]1≤i,j≤N and kN(x) = (k(x, xi))1≤i,j≤N

ℙ[ f |x1, …, xN, y1, …, yN] ∼ 𝒩 ((f(x)x∈𝒳), [kN(x, x′ )]x,x′ ∈𝒳)
fN(x) = kN(x)⊤(KN + λI)−1yN

kN(x, x′ ) = k(x, x′ ) − kN(x)⊤(KN + λI)−1kN(x′ )



Kernel regression

• Kernel 


• Gaussian prior  with  for  
 
Example: Posterior distributions after 1, 10, and 100 observations 

k(x, x′ ) = ⟨ϕ(x), ϕ(x′ )⟩

θ ∼ 𝒩d(0,Σ) Σ =
σ2

λ
I λ > 0

(xt, rt)



Example: Decision making at 


• Compute posterior distribution given previous observations


• Sample function  from the posterior


• Select 

t = 4

f̃
xt = arg max

x∈𝒳
f̃(x)

Kernel regression + Thompson Sampling (TS)
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STED Microscopy Optimization

Flavie Lavoie-Cardinal et Theresa Wiesner

Excitation 
laser

Depletion 
laser



Difficult to configure to acquire good images
Parameters:


• Power of lasers


• Time spent per pixel


• Number or repetitions


• …

Objectives:


• Signal to noise ratio


• Photobleaching


• Resolution


• Quality


• …
Imspector Software – Abberior Instruments



Bandit problem!

Imaging parameters

Feedback 

Durand et al. (2018) “A machine learning approach for online 
automated optimization of super-resolution optical microscopy”. 
Nature Communications.



Bandit problem!

Imaging parameters

Image quality score 

Durand et al. (2018) “A machine learning approach for online 
automated optimization of super-resolution optical microscopy”. 
Nature Communications.



What is good image quality?

Avoiding images likes these:

Acquiring more images likes these:



Multiple objectives to consider

Minimize photobleaching: Being 
able to acquire multiple images

Maximize image quality: Being able 
to acquire good images



Optimizing multiple objectives

Online analysis

% bleach
r(2)
t

Image 
quality score 

r(1)
t

Durand et al. (2018) “A machine learning approach for online 
automated optimization of super-resolution optical microscopy”. 
Nature Communications.

Imaging parameters
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Optimizing multiple objectives

Outcome 
options

Parameter 
selection

Online analysis

% bleach

⇒

r(2)
t

Image 
quality score 

r(1)
t

Durand et al. (2018) “A machine learning approach for online 
automated optimization of super-resolution optical microscopy”. 
Nature Communications.

Kernel regression + 
Thompson Sampling



Automated multi-objective optimization

Outcome 
options

Image 
quality score 

Parameter 
selection

Online analysis

% bleach

r(1)
t

r(2)
t

Durand et al. (2018) “A machine learning approach for online 
automated optimization of super-resolution optical microscopy”. 
Nature Communications.
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Experiments

Three parameters (1000 configurations): 

• Excitation laser power 

• Depletion laser power

• Duration of imaging per pixel


Acquire:

• Confocal (low resolution image)

• First STED

• Second STED

Goal: ↑ 1st STED quality and ↓ photobleaching

From abberior-instruments.com



Fully automated imagingFully automated imaging results
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Fully automated imagingFully automated imaging results
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Fully automated imagingFully automated imaging results
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Bandits formulation

New problem:

New problem:

…

 Good parameters for this sample→

Ù

…

Steps t = 1,2,…

…

…

… …

New problem:

 Good parameters for this sample→

 Good parameters for this sample→



… vs RL formulation

Episode 1

Episode 2

Episode 3

Steps t = 1,2,…

Parameter tuning policy

…

Ù

…

…

…

… …



pySTED

STED Photobleaching

Turcotte et al. (2022) “pySTED : A STED Microscopy Simulation Tool for Machine Learning Training”. 
AAAI workshop on AI to Accelerate Science and Engineering.

Datamap

Confocal

Detector Objective 
lens

Excitation 
laser

Depletion 
laser Fluorophore



Simulated imaging of a dendritic spine

= Transsynpatic 
    nanostructures

Real image

Simulated image



Learning an imaging policy

Imaging parameters

 Cheap acquisition→

Goal: Learn to tune efficiently the imaging 
parameters along a series of images in order 
to identify transsynaptic nanostructures



• Identifying nanostructures on a STED image:

• Identify local intensity maxima + 2D Gaussian fit


• Gaussian standard deviation (2 directions) < 250 nm (diffraction limit)  nanostructure


• Associating identified locations with true locations  Hungarian algorithm


• Comparing with true locations (ground truth) :

→

→

Evaluating an acquisition

-score = F1
TP

TP + 1
2 (FP + FN)



RL formulation

Episode:

 im
ag

es
T

State :st

Last confocal-STED pair 
and associated objective values Current confocal

• Signal to noise ratio

• Resolution

• Photobleaching

+

Action :at Imaging parameters

• Excitation laser power

• STED laser power

• Time spent per pixel

Reward :rt

-scoreF1 ( )



PPO (Proximal Policy Optimization)

CNN

NN

 
Visual information:

Concatenate

Recommended 
parameters:

• Excitation power

• STED power

• Time per pixel Previous objective values:


• Signal to noise ratio

• Resolution

• Photobleaching 

Previous confocal 
and STED Current 

confocal
+

Goal: Select  to maximise at

T

∑
i=t

ri

at
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Experiments
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Rewards that do not depend on ground truth

Expert image databank:

Best

Worst

…

Acquired image:

Reward : Ranking between 0 (worst) and 1 (best) rt
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Experiments

• Episodes of  images


• 20 000 episodes
T = 10



A fully automated parameter tuning strategy!

images



Thanks!

Questions?


