

Neural Density Fields

by Dario Izzo ESA's Advanced Concepts Team

2022 seminar in Mathematics, Physics & Machine Learning, https://mpml.tecnico.ulisboa.pt/seminars?action=show&id=6712

European Space Agency

Irregular bodies in the solar system

Representing the gravity field (state-of-the-art)

 $U(r,\theta,\phi) = \frac{\mu}{r} \sum_{l=0}^{l=\infty} \sum_{m=0}^{m=l} \left(\frac{r_0}{r}\right) P_{lm}(\cos\theta) \cdot \left(C_{lm}\cos m\phi + S_{lm}\sin m\phi\right)$ $C_{lm} = \frac{(2 - \delta_{m,0})}{M} \frac{(l - m)!}{(l + m)!} \int_{V} \rho\left(\frac{r}{r_0}\right)^l \cdot P_{lm}(\cos\theta) \cos m\phi dV$ Stokes Coefficients $S_{lm} = \frac{(2 - \delta_{m,0})}{M} \frac{(l-m)!}{(l+m)!} \int_{V} \rho\left(\frac{r}{r_0}\right)^l \cdot P_{lm}(\cos\theta) \sin m\phi dV$ → THE EUROPEAN SPACE AGENCY

1. Spherical harmonics - $(\frac{1}{3})$

Spherical harmonics - $(\frac{2}{3})$

💻 🄜 📲 🚍 📟 🕂 📲 🧮 🔚 📲 🔜 📲 🚍 🚛 🚳 🍉 📲 🚼 🖬 📰 📾 🏜 🚺 🔸 🗰 🛤

Spherical harmonics - (3/3)

Poor convergence properties next to irregular surfaces.

2.Polyhedral gravity (1/2)

14

Polyhedral gravity (2/2)

code: https://github.com/esa/polyhedral-gravity-model

Relies and needs on the asteroid shape, unable to see inside.

→ THE EUROPEAN SPACE AGENCY

3.Mascon models

Great flexibility but poor precision next to the surface and needs shape information.

→ THE EUROPEAN SPACE AGENCY

An ill-posed problem! (gravity inversion)

-

observations

+

Newton's Shell theorem :(

*

a fourth way ... Neural Density Fields

<u>Izzo, Dario</u>, and Pablo Gómez. "Geodesy of irregular small bodies via neural density fields: geodesyNets." *arXiv preprint arXiv:2105.13031* (2021).

von Looz, Moritz, Pablo Gomez, and <u>Dario Izzo</u>. "Study of the asteroid Bennu using geodesyANNs and Osiris-Rex data." *arXiv preprint arXiv:2109.14427* (2021).

Inspired from NeRF: (neural radiance fields)

The weights of a neural network are able to store highly detailed information on complex 3D scene

Mildenhall, Ben, et al. "Nerf: Representing scenes as neural radiance fields for view synthesis." *European conference on computer vision*. Springer, Cham, 2020.

"With four parameters I can fit an elephant, with five I can make him wiggle his trunk"

John von Neumann

	Approach					
	Masc.	Harm.	Poly.	geodesyNets		
Differentiable	X	\checkmark	~	\checkmark		
Inside Brillouin sphere	~	X	\checkmark	\checkmark		
Heterogeneous densities	~	~	X	\checkmark		
Shape model not needed	~	~	X	\checkmark		
Can utilize shape model	~	X	~	\checkmark		
Accurate in the near field	X	\checkmark	\checkmark	\checkmark		

+

*

→ THE EUROPEAN SPACE AGENCY

Network architecture: SIREN

$$\Phi(\mathbf{x}) = \mathbf{W}_n \left(\phi_{n-1} \circ \phi_{n-2} \circ \ldots \circ \phi_0 \right) (\mathbf{x}) + \mathbf{b}_n, \quad \mathbf{x}_i \mapsto \phi_i \left(\mathbf{x}_i \right) = \sin \left(\mathbf{W}_i \mathbf{x}_i + \mathbf{b}_i \right).$$

Sitzmann, Vincent, et al. "Implicit neural representations with periodic activation functions." *Advances in Neural Information Processing Systems* 33 (2020): 7462-7473.

26

The loss

constraint: $\iiint_V
ho(x,y,z) dV = M$

solution:
$$ho(x,y,z)=c\mathcal{N}(x,y,z)$$

Its as if we added one more parameter (weight) after the output neurons!

$$\sum_{i} (y_i - c\hat{y}_i)^2 = c^2 \sum_{i} \hat{y}_i^2 - 2c \sum_{i} y_i \hat{y}_i + \sum_{i} y_i^2$$
$$(c = \frac{\sum y_i \hat{y}_i}{\sum \hat{y}_i^2}) \qquad \dots \text{ can also be used in g}$$

generic ML tasks

27

Experiments

Test cases

Sampling points

Model

Surface normals

Samples taken at three altitudes low, mid and high

Nominal Learning

Results Nominal learning

		Sampling Altitudes			Absolute Errors			Relative Errors		
	Body	$h_{low}[m]$	$h_{med}[m]$	$h_{hi}[m]$	$\epsilon_{low}[m/s^2]$	$\epsilon_{med}[m/s^2]$	$\epsilon_{hi}[m/s^2]$	ϵ_{low} [%]	$\epsilon_{med}[\%]$	$\epsilon_{hi}[\%]$
HMG	Bennu	14.1	28.2	70.4	2.63e-08	4.75e-09	6.89e-10	0.11	0.02	0.005
	Churyumov- Gerasimenko	125	250	625	1.13e-07	2.02e-08	2.20e-09	0.19	0.04	0.006
	Eros	817	1630	4080	2.24e-06	4.45e-07	5.52e-08	0.16	0.04	0.01
	Itokawa	14	28	70.1	3.15e-08	6.35e-09	1.06e-09	0.15	0.04	0.01
	Planetesimal	125	250	625	5.69e-08	1.31e-08	3.43e-09	0.11	0.03	0.011
	Torus	125	250	625	1.41e-07	3.74e-08	8.49e-09	0.28	0.09	0.034
HTG	Bennu	14.1	28.2	70.4	4.70e-08	9.57e-09	1.57e-09	0.20	0.05	0.011
	Itokawa	14	28	70.1	4.27e-08	9.36e-09	9.33e-10	0.20	0.05	0.009
	Planetesimal	125	250	625	9.90e-08	2.53e-08	4.22e-09	0.20	0.06	0.014

Visualizing the Neural Density field

Torus

Visualizing the Neural Density field

67P

Differential Learning

fusing in camera information

Results

differential learning

Heterogeneous body	Sampling Altitudes			Absolute Errors			Relative Errors		
	$h_{low}[m]$	$h_{med}[m]$	$h_{hi}[m]$	$\epsilon_{low}[m/s^2]$	$\epsilon_{med}[m/s^2]$	$\epsilon_{hi}[m/s^2]$	ϵ_{low} [%]	$\epsilon_{med}[\%]$	$\epsilon_{hi}[\%]$
Bennu	14.1	28.2	70.4	4.07e-08	1.19e-08	7.67e-09	0.10	0.03	0.031
Itokawa	14	28	70.1	2.49e-08	1.45e-08	1.01e-08	0.12	0.08	0.091
Planetesimal	125	250	625	3.55e-08	2.29e-08	1.84e-08	0.08	0.06	0.071

Do we need a neural model for the density field?

		Bennu	Churyumov-Gerasimenko	Eros	Itokawa
GeodesyNet	low	0.72	2.30	1.82	2.13
	hi	0.02	1.75	0.17	0.38
masconCUBE	low	1.00	2.87	2.39	2.47
	hi	0.01	2.03	0.13	0.70

Open questions:

- Pumping up the card memory (points used limited by NVIDIA 2080 RTX capability).
- Numerical quadrature vs Monte Carlo methods.
- Sensitivity to data noise (random and non gravitational).
- Sensitivity to data availability (spacecraft orbit design).
- On-board training effectiveness.
- Thorough comparison with masconCUBE and spherical harmonics using the same training.

Eclipse Nets

... also an implicit neural representation

Biscani, Francesco, and <u>Dario Izzo</u>. "Reliable event detection for Taylor methods in astrodynamics." *Monthly Notices of the Royal Astronomical Society* 513.4 (2022): 4833-4844.

The eclipse function: $F(\mathbf{r}, \hat{\mathbf{i}}_S)$

The eclipse function can be used to determine the presence or absence of solar radiation pressure.

The eclipse function: $F(\mathbf{r}, \hat{\mathbf{i}}_S)$

Even intersections -> EF is the length of the ray inside the asteroid

No intersections -> EF is the distance of the point to the shadow cone.

→ THE EUROPEAN SPACE AGENCY

The eclipse function: $F(\mathbf{r}, \hat{\mathbf{i}}_S)$

*

44

+

eclipseNet

$$\ddot{\mathbf{r}} = -G \sum_{j=0}^{N} \frac{m_j}{|\mathbf{r} - \mathbf{r}_j|^3} (\mathbf{r} - \mathbf{r}_j) - 2\omega \times \mathbf{v} - \omega \times \omega \times \mathbf{r} - \eta v(\mathbf{r}) \mathbf{\hat{i}}_S(t),$$

$$\nu(\mathbf{r}) = 1$$
no penubra

$$\eta(\mathbf{r}, \mathbf{i}_S) = H(F(\mathbf{r}, \mathbf{i}_S))$$

We obtain a "neural" ODE on top of which to perform event detection -> heyoka!

Biscani, Francesco, and Dario Izzo. "Reliable event detection for Taylor methods in astrodynamics." *Monthly Notices of the Royal Astronomical Society* 513.4 (2022): 4833-4844.

→ THE EUROPEAN SPACE AGENCY

 +

48

→ THE EUROPEAN SPACE AGENCY

*

Thank you for listening!

