Flexibility of distributions

Álvaro del Pino Gómez (Universiteit Utrecht)

June 26, 2022

Álvaro del Pino Gómez (Universiteit Utrecht)

Flexibility of distributions

June 26, 2022 1/20

< ロ > < 回 > < 回 > < 回 > < 回</p>

Álvaro del Pino Gómez (Universiteit Utrecht)

Flexibility of distributions

↓ ◆ E ▶ E ∽ へ C June 26, 2022 2/20

The objects under study:

Álvaro del Pino Gómez (Universiteit Utrecht)

Flexibility of distributions

June 26, 2022 2/20

< ロ > < 回 > < 回 > < 回 > < 回 >

The objects under study: Certain geometric structures called *tangent distributions*.

The objects under study: Certain geometric structures called *tangent distributions*.

What about them?

イロン イヨン イヨン

The objects under study: Certain geometric structures called *tangent distributions*.

What about them? We want to classify them up to homotopy.

The objects under study: Certain geometric structures called *tangent distributions*.

What about them? We want to classify them up to homotopy.

How?

The objects under study: Certain geometric structures called *tangent distributions*.

What about them? We want to classify them up to homotopy.

How? We will use a family of tools, popularised by Gromov, called the *h*-principle.

The objects under study: Certain geometric structures called *tangent distributions*.

What about them? We want to classify them up to homotopy.

How? We will use a family of tools, popularised by Gromov, called the *h*-principle.

Why?

The objects under study: Certain geometric structures called *tangent distributions*.

What about them? We want to classify them up to homotopy.

How? We will use a family of tools, popularised by Gromov, called the *h*-principle.

Why? For most types of distributions little is known.

The objects under study: Certain geometric structures called *tangent distributions*.

What about them? We want to classify them up to homotopy.

How? We will use a family of tools, popularised by Gromov, called the *h*-principle.

Why? For most types of distributions little is known. But the one case we know (Contact Topology) is pretty amazing.

< ロ > < 回 > < 回 > < 回 > < 回 >

This story can be attempted for arbitrary geometric structures.

This story can be attempted for arbitrary geometric structures.

Some questions with the "flavour" we care about may be:

This story can be attempted for arbitrary geometric structures.

Some questions with the "flavour" we care about may be:

• Fix a manifold *M* and a dimension *n*. Can *M* be immersed into \mathbb{R}^n ?

This story can be attempted for arbitrary geometric structures.

Some questions with the "flavour" we care about may be:

- Fix a manifold M and a dimension n. Can M be immersed into \mathbb{R}^n ?
- How many connected components does the space of symplectic structures on *M* have?

This story can be attempted for arbitrary geometric structures.

Some questions with the "flavour" we care about may be:

- Fix a manifold M and a dimension n. Can M be immersed into \mathbb{R}^n ?
- How many connected components does the space of symplectic structures on *M* have?
- Is there a non-trivial loop of positive scalar curvature metrics on M?

Distributions

Álvaro del Pino Gómez (Universiteit Utrecht)

Flexibility of distributions

June 26, 2022 4/20

(ロ) (部) (目) (日)

We are interested in studying (M, ξ) , where:

< ロ > < 回 > < 回 > < 回 > < 回 >

We are interested in studying (M, ξ) , where:

• *M* is a smooth manifold.

< ロ > < 回 > < 回 > < 回 > < 回 >

We are interested in studying (M, ξ) , where:

- *M* is a smooth manifold.
- $\xi \subset TM$ is a vector subbundle ("distribution").

We are interested in studying (M, ξ) , where:

- *M* is a smooth manifold.
- $\xi \subset TM$ is a vector subbundle ("distribution").
- The dimension of the fibres of ξ is called the *rank*.

We are interested in studying (M, ξ) , where:

- *M* is a smooth manifold.
- $\xi \subset TM$ is a vector subbundle ("distribution").
- The dimension of the fibres of ξ is called the *rank*.

Typical examples:

We are interested in studying (M, ξ) , where:

- *M* is a smooth manifold.
- $\xi \subset TM$ is a vector subbundle ("distribution").
- The dimension of the fibres of ξ is called the *rank*.

Typical examples:

• If $X : M \to TM$ is a nowhere vanishing vector field then $\langle X \rangle$ is a rank-1 distribution ("line field").

We are interested in studying (M, ξ) , where:

- *M* is a smooth manifold.
- $\xi \subset TM$ is a vector subbundle ("distribution").
- The dimension of the fibres of ξ is called the *rank*.

Typical examples:

- If $X : M \to TM$ is a nowhere vanishing vector field then $\langle X \rangle$ is a rank-1 distribution ("line field").
- If $X_1, \dots, X_r : M \to TM$ is tuple of linearly-independent vector fields, then $\langle X_1, \dots, X_r \rangle$ is a distribution of rank r.

We are interested in studying (M, ξ) , where:

- *M* is a smooth manifold.
- $\xi \subset TM$ is a vector subbundle ("distribution").
- The dimension of the fibres of ξ is called the *rank*.

Typical examples:

- If $X : M \to TM$ is a nowhere vanishing vector field then $\langle X \rangle$ is a rank-1 distribution ("line field").
- If $X_1, \dots, X_r : M \to TM$ is tuple of linearly-independent vector fields, then $\langle X_1, \dots, X_r \rangle$ is a distribution of rank r.
- Any distribution of rank r is locally of this form.

Consider the standard contact structure

$$(\mathbb{R}^3, \xi_{\text{std}} := \ker(dz + ydx) = \langle \partial_x - y\partial_z, \partial_y \rangle).$$

Álvaro del Pino Gómez (Universiteit Utrecht)

<ロ> < 回 > < 回 > < 回 > < 回 >

Consider the standard contact structure

$$(\mathbb{R}^3, \xi_{\text{std}} := \ker(dz + ydx) = \langle \partial_x - y\partial_z, \partial_y \rangle).$$

Key geometric fact: "The vector fields in ξ_{std} rotate with respect to each other".

Consider the standard contact structure

$$(\mathbb{R}^3, \xi_{\text{std}} := \ker(dz + ydx) = \langle \partial_x - y \partial_z, \partial_y \rangle).$$

Key geometric fact: "The vector fields in ξ_{std} rotate with respect to each other".

By combining motions along ∂_y and $\partial_x - y \partial_z$, we are able to move along ∂_z .

Consider the standard contact structure

$$(\mathbb{R}^3, \xi_{\text{std}} := \ker(dz + ydx) = \langle \partial_x - y \partial_z, \partial_y \rangle).$$

Key geometric fact: "The vector fields in ξ_{std} rotate with respect to each other".

By combining motions along ∂_y and $\partial_x - y \partial_z$, we are able to move along ∂_z .

More formally, since:

$$[\partial_y, \partial_x - y\partial_z] = \partial_z$$

Alvaro del Pino Gómez (Universiteit Utrecht)

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Consider the standard contact structure

$$(\mathbb{R}^3, \xi_{\text{std}} := \ker(dz + ydx) = \langle \partial_x - y \partial_z, \partial_y \rangle).$$

Key geometric fact: "The vector fields in ξ_{std} rotate with respect to each other".

By combining motions along ∂_y and $\partial_x - y \partial_z$, we are able to move along ∂_z .

More formally, since:

$$[\partial_y, \partial_x - y\partial_z] = \partial_z$$

we have that

$$[\phi_{\partial_y}^t, \phi_{\partial_x - y\partial_z}^t] = \phi_{\partial_z}^{t^2} (+h.o.t.)$$

Álvaro del Pino Gómez (Universiteit Utrecht)

Flexibility of distributions

Definition

 (M,ξ) is **bracket-generating** if iterated brackets of vector fields tangent to ξ generate all vector fields in M.

Definition

 (M,ξ) is **bracket-generating** if iterated brackets of vector fields tangent to ξ generate all vector fields in M.

Being bracket-generating is not restrictive enough to produce an interesting homotopy theory, so...

4 ロン 4 回 と 4 三 と 4 三

Definition

 (M,ξ) is **bracket-generating** if iterated brackets of vector fields tangent to ξ generate all vector fields in M.

Being bracket-generating is not restrictive enough to produce an interesting homotopy theory, so...

Heuristic definition

 (M,ξ) is **non-degenerate** if the vector fields tangent to ξ have "as many non-trivial Lie brackets as possible".

< □ > < □ > < □ > < □ > < □ >

Definition

 (M,ξ) is **bracket-generating** if iterated brackets of vector fields tangent to ξ generate all vector fields in M.

Being bracket-generating is not restrictive enough to produce an interesting homotopy theory, so...

Heuristic definition

 (M,ξ) is **non-degenerate** if the vector fields tangent to ξ have "as many non-trivial Lie brackets as possible".

Main Question

What is the homotopy type of the space of the non-degenerate distributions of type (k, n)?

Álvaro del Pino Gómez (Universiteit Utrecht)

One case at a time

One case at a time

Álvaro del Pino Gómez (Universiteit Utrecht)

Flexibility of distributions

June 26, 2022 8/20

<ロ> <部> <部> <き> <き><

Dimension 3

Lemma

(M^3,ξ^2) is non-degenerate iff it is $\mathit{contact}$

<ロ> < 回 > < 回 > < 回 > < 回 >
Lemma

 (M^3, ξ^2) is non-degenerate iff it is *contact* (i.e. if $\xi = \langle X, Y \rangle$ then $[X, Y] \notin \xi$).

<ロ> < 同> < 同> < 三> < 三>

Lemma

 (M^3, ξ^2) is non-degenerate iff it is *contact* (i.e. if $\xi = \langle X, Y \rangle$ then $[X, Y] \notin \xi$).

Lemma

 (M^3, ξ^2) is non-degenerate iff it is *contact* (i.e. if $\xi = \langle X, Y \rangle$ then $[X, Y] \notin \xi$).

Theorem (Bennequin; 1982)

There are contact structures that are not in $Dist_{OT}(M, 2)$.

Álvaro del Pino Gómez (Universiteit Utrecht)

Flexibility of distributions

Dimension 3 (continued)

Theorem (Eliashberg; 1989)

$$\operatorname{Dist}_{\operatorname{OT}}(M^3, 2) \xrightarrow{\pi_0 - \operatorname{surjection}} \operatorname{Dist}_f(M^3, 2)$$

Álvaro del Pino Gómez (Universiteit Utrecht)

<ロ> < 回> < 回> < 回> < 三> < 三>

Álvaro del Pino Gómez (Universiteit Utrecht)

Flexibility of distributions

June 26, 2022 11/20

э

Lemma

 (M^{2n+1},ξ^{2n}) is non-degenerate iff it is *contact*

・ ロ ト ・ 『 ト ・ ヨ ト ・ 日 ト

Lemma

 (M^{2n+1},ξ^{2n}) is non-degenerate iff it is *contact* (i.e. for every X tangent to ξ there is Y s.t. $[X,Y] \notin \xi$).

< ロ > < 回 > < 回 > < 回 > < 回 >

Lemma

 (M^{2n+1},ξ^{2n}) is non-degenerate iff it is *contact* (i.e. for every X tangent to ξ there is Y s.t. $[X,Y] \notin \xi$).

Theorem (Borman-Eliashberg-Murphy; 2014)

$$\begin{array}{c} \operatorname{Dist}_{\mathrm{nd}}(M^{2n+1},2n) & \xrightarrow{\pi_k - \operatorname{surjection}} & \operatorname{Dist}_f(M^{2n+1},2n) \\ & \uparrow & & \\ & & & & \\ & & & \\ & & & \\ & & & &$$

Álvaro del Pino Gómez (Universiteit Utrecht)

June 26, 2022 11/20

< ロ > < 回 > < 回 > < 回 > < 回 >

(ロ) (型) (ヨ) (ヨ)

Definition

Fix (M^{2n+1}, ξ^{2n}) . A submanifold $L^n \subset M$ is Legendrian if $TL \subset \xi$.

Álvaro del Pino Gómez (Universiteit Utrecht)

Definition

Fix (M^{2n+1}, ξ^{2n}) . A submanifold $L^n \subset M$ is Legendrian if $TL \subset \xi$.

Theorem (Murphy; 2012)

In dimension at least $2n + 1 \ge 5$:

Alvaro del Pino Gómez (Universiteit Utrecht)

Definition

Fix (M^{2n+1}, ξ^{2n}) . A submanifold $L^n \subset M$ is Legendrian if $TL \subset \xi$.

Theorem (Murphy; 2012)

In dimension at least $2n + 1 \ge 5$:

Theorem (Casals-Murphy-Presas; 2015)

 (M,ξ) is overtwisted iff the unknot $\mathbb{S}^n \subset M$ is loose.

Álvaro del Pino Gómez (Universiteit Utrecht)

Flexibility of distributions

(ロ) (型) (ヨ) (ヨ)

Theorem (Murphy; 2012)

In dimension at least $2n + 1 \ge 5$:

$$\operatorname{Emb}_{\operatorname{loose}}(L; M^{2n+1}, \xi) \xrightarrow{\pi_0 - \operatorname{surjection}} \operatorname{Emb}_f(L; M^{2n+1}, \xi)$$

・ ロ ト ・ 『 ト ・ ヨ ト ・ 日 ト

Álvaro del Pino Gómez (Universiteit Utrecht)

Flexibility of distributions

■ ► ◀ ■ ► ■ ∽ < ⊂ June 26, 2022 14/20

Lemma

 (M^4,ξ^3) is non-degenerate iff it is *even-contact*

(ロ) (型) (ヨ) (ヨ)

Lemma

 (M^4, ξ^3) is non-degenerate iff it is *even-contact* (i.e. $\xi = \langle X, Y, Z \rangle$ with $[X, Y] \notin \xi$).

・ ロ ト ・ 『 ト ・ ヨ ト ・ 日 ト

Lemma

 (M^4, ξ^3) is non-degenerate iff it is *even-contact* (i.e. $\xi = \langle X, Y, Z \rangle$ with $[X, Y] \notin \xi$).

Theorem (McDuff; 1987)

$$\operatorname{Dist}_{\operatorname{nd}}(M^4,3) \longrightarrow \operatorname{Dist}_f(M^4,3)$$

Álvaro del Pino Gómez (Universiteit Utrecht)

く ロ マ く 雪 マ く 雪 マ

Lemma

 (M^4, ξ^3) is non-degenerate iff it is *even-contact* (i.e. $\xi = \langle X, Y, Z \rangle$ with $[X, Y] \notin \xi$).

Theorem (McDuff; 1987)

$$\operatorname{Dist}_{\operatorname{nd}}(M^4,3) \longrightarrow \operatorname{Dist}_f(M^4,3)$$

There are still interesting questions about these structures, but they are more *geometric* in nature (Pia; 2018).

Álvaro del Pino Gómez (Universiteit Utrecht)

Flexibility of distributions

June 26, 2022 14/20

Álvaro del Pino Gómez (Universiteit Utrecht)

Flexibility of distributions

■ ► ◀ ■ ► ■ ∽ < ⊂ June 26, 2022 15/20

Lemma

(M^4,ξ^2) is non-degenerate iff it is Engel

(ロ) (型) (ヨ) (ヨ)

Lemma

(M^4, ξ^2) is non-degenerate iff it is *Engel* (i.e. $\xi = \langle X, Y \rangle$ and $\langle X, Y, [X, Y], [X, [X, Y]] \rangle = TM$).

・ ロ ト ・ 『 ト ・ ヨ ト ・ 日 ト

Lemma

 (M^4, ξ^2) is non-degenerate iff it is *Engel* (i.e. $\xi = \langle X, Y \rangle$ and $\langle X, Y, [X, Y], [X, [X, Y]] \rangle = TM$).

Theorem (Casals-dP-Perez-Presas-Vogel; 2016-2020)

Álvaro del Pino Gómez (Universiteit Utrecht)

Theorem (Casals-dP-Presas; 2017-2018)

(Almost all) curves tangent to an Engel structure are flexible.

Theorem (Casals-dP-Presas; 2017-2018)

(Almost all) curves tangent to an Engel structure are flexible.

Theorem (Martinez Aguinaga-dP; 2022)

Curves transverse to an Engel structure are flexible.

Theorem (Casals-dP-Presas; 2017-2018)

(Almost all) curves tangent to an Engel structure are flexible.

Theorem (Martinez Aguinaga-dP; 2022)

Curves transverse to an Engel structure are flexible.

Theorem (Kegel; 2022? Gompf; 2022?)

There is a π_0 -surjection for surfaces transverse to Engel structures.

Alvaro del Pino Gómez (Universiteit Utrecht)

Flexibility of distributions

June 26, 2022 16/20

Theorem (Casals-dP-Presas; 2017-2018)

(Almost all) curves tangent to an Engel structure are flexible.

Theorem (Martinez Aguinaga-dP; 2022)

Curves transverse to an Engel structure are flexible.

Theorem (Kegel; 2022? Gompf; 2022?)

There is a π_0 -surjection for surfaces transverse to Engel structures.

Conjecture/theorem (Fokma-Martinez Aguinaga-dP; 2023?) There is a π_k -surjection for surfaces transverse to Engel structures. Same result for so-called (1,1)-surfaces.

Álvaro del Pino Gómez (Universiteit Utrecht)

Flexibility of distributions

Álvaro del Pino Gómez (Universiteit Utrecht)

・ロン ・四 と ・ ヨ と ・ ヨ と

Observation

Non-degenerate rank 4 distributions in dimension 5 are contact.

(ロ) (型) (ヨ) (ヨ)

Observation

Non-degenerate rank 4 distributions in dimension 5 are contact.

Theorem (Martinez Aguinaga-dP; 2021)

Non-degenerate rank 3 distributions in dimension 5 are flexible.

Observation

Non-degenerate rank 4 distributions in dimension 5 are contact.

Theorem (Martinez Aguinaga-dP; 2021)

Non-degenerate rank 3 distributions in dimension 5 are flexible.

Conjecture

One can define overtwisted (2,3,5) distributions much like in the contact and Engel cases.

Alvaro del Pino Gómez (Universiteit Utrecht)

Observation

Non-degenerate rank 4 distributions in dimension 5 are contact.

Theorem (Martinez Aguinaga-dP; 2021)

Non-degenerate rank 3 distributions in dimension 5 are flexible.

Conjecture

One can define overtwisted (2,3,5) distributions much like in the contact and Engel cases.

Question

What about distributions of rank 2 in arbitrary dimension?

Álvaro del Pino Gómez (Universiteit Utrecht)

Flexibility of distributions

June 26, 2022 17/20

Higher dimensions

・ロン ・四 と ・ ヨ と ・ ヨ と

Higher dimensions

Theorem (Martinez Aguinaga-dP; 2021)

Hyperbolic distributions of rank 4 in dimension 6 are flexible.

Álvaro del Pino Gómez (Universiteit Utrecht)

Higher dimensions

Theorem (Martinez Aguinaga-dP; 2021)

Hyperbolic distributions of rank 4 in dimension 6 are flexible.

Question

What about elliptic distributions of rank 4 in dimension 6?
Higher dimensions

Theorem (Martinez Aguinaga-dP; 2021)

Hyperbolic distributions of rank 4 in dimension 6 are flexible.

Question

What about elliptic distributions of rank 4 in dimension 6?

Theorem (Jovanovik-Martinez Aguinaga-dP-Zelenko; 2022?) Hyperbolic distributions of corank 2 in odd dimensions are flexible.

Alvaro del Pino Gómez (Universiteit Utrecht)

Flexibility of distributions

June 26, 2022 18/20

イロン イヨン イヨン

Higher dimensions

Theorem (Martinez Aguinaga-dP; 2021)

Hyperbolic distributions of rank 4 in dimension 6 are flexible.

Question

What about elliptic distributions of rank 4 in dimension 6?

Theorem (Jovanovik-Martinez Aguinaga-dP-Zelenko; 2022?)

Hyperbolic distributions of corank 2 in odd dimensions are flexible.

Question

What about distributions of corank 2 in even dimensions?

Álvaro del Pino Gómez (Universiteit Utrecht)

Flexibility of distributions

June 26, 2022 18/20

Álvaro del Pino Gómez (Universiteit Utrecht)

Flexibility of distributions

June 26, 2022 19/20

2

Theorem (dP-Toussaint; 2021-22)

(Almost all?) tangent embeddings in jet spaces are flexible (unless the jet space is contact).

Theorem (dP-Toussaint; 2021-22)

(Almost all?) tangent embeddings in jet spaces are flexible (unless the jet space is contact).

Conjecture/theorem (Fokma-Martinez Aguinaga-dP; 2023?)

Transverse embeddings of codimension at least 3 are flexible.

Álvaro del Pino Gómez (Universiteit Utrecht)

イロン イヨン イヨン

Theorem (dP-Toussaint; 2021-22)

(Almost all?) tangent embeddings in jet spaces are flexible (unless the jet space is contact).

Conjecture/theorem (Fokma-Martinez Aguinaga-dP; 2023?)

Transverse embeddings of codimension at least 3 are flexible.

Conjecture/theorem (Fokma-Martinez Aguinaga-dP; 2023?) Transverse embeddings of codimension 2 satisfy π_k -surjectivity.

Álvaro del Pino Gómez (Universiteit Utrecht)

Flexibility of distributions

June 26, 2022 20/20

2

<ロ> <部> <部> <き> <き><

Main Question

We will continue proving flexibility, but how do we prove rigidity?

Álvaro del Pino Gómez (Universiteit Utrecht)

(ロ) (型) (ヨ) (ヨ)

Main Question

We will continue proving flexibility, but how do we prove rigidity?

Relating to contact structures?

Main Question

We will continue proving flexibility, but how do we prove rigidity?

- Relating to contact structures?
- Using SubRiemannian geometry?

Main Question

We will continue proving flexibility, but how do we prove rigidity?

- Relating to contact structures?
- Using SubRiemannian geometry?
- Using surgery methods adapted to the distribution?

Main Question

We will continue proving flexibility, but how do we prove rigidity?

- Relating to contact structures?
- Using SubRiemannian geometry?
- Using surgery methods adapted to the distribution? (On-going work with Accornero, Gironella, Toussaint).

Main Question

We will continue proving flexibility, but how do we prove rigidity?

- Relating to contact structures?
- Using SubRiemannian geometry?
- Using surgery methods adapted to the distribution? (On-going work with Accornero, Gironella, Toussaint).
- Using moduli spaces of geometrically motivated PDEs?

Main Question

We will continue proving flexibility, but how do we prove rigidity?

- Relating to contact structures?
- Using SubRiemannian geometry?
- Using surgery methods adapted to the distribution? (On-going work with Accornero, Gironella, Toussaint).
- Using moduli spaces of geometrically motivated PDEs?

Thank You!