
Shannon Entropy from Category Theory
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SHANNON ENTROPY

A probability distribution p on a finite set X has a Shannon
entropy:

H(X , p) = −
∑
x∈X

px ln px

This says how ‘evenly spread’ p is.

Or: how much information you learn, on average, when someone
picks an element x ∈ X according to the distribution p and tells
you what it is — if all you’d known before was that it was
randomly distributed according to p.



Flip a coin!

If X = {h, t} and ph = pt = 1
2 , then

H(X , p) = −
(
1
2 ln 1

2 + 1
2 ln 1

2

)
= ln 2

so you learn ln 2 nats of information on average, or 1 bit.

But if ph = 1, pt = 0 you learn

H(X , p) = − (1 ln 1 + 0 ln 0) = 0



THE EXPECTED SURPRISE

To compute Shannon entropy we turn probabilities px into
surprisals by taking their negative logarithm, and then compute
their expected value:

H(X , p) = −
∑
x∈X

px ln px

So, Shannon entropy is the “expected surprise”.



WHAT’S SO GREAT ABOUT SHANNON ENTROPY?

There are many alternatives notions of entropy. For example, the
Tsallis entropy:

1

α− 1

(
1−

∑
x∈X

pαx

)
for real α 6= 1, and the Rényi entropy:

1

1− α
ln

(∑
x∈X

pαx

)

for α ≥ 0 with α 6= 1.

Both approach the Shannon entropy as α→ 1. Both have good
properties, discussed here:

I Tom Leinster, Entropy and Diversity: the Axiomatic
Approach, 2020.

https://arxiv.org/abs/2012.02113
https://arxiv.org/abs/2012.02113


So, we should say which good properties single out Shannon
entropy!

The most important is the ‘chain rule’. To state this, note that we
can compose probability distributions in a tree-like way:

•( 1
3
, 1
3
, 1
3
) •(1) • ( 3

4
, 1
4
)

• ( 1
2
, 0, 1

2
) = • ( 1

6
, 1
6
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6
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•( 1
6
, 1
6
, 1
6
, 0, 3

8
, 1
8
) =

•( 1
3
, 1
3
, 1
3
) •(1) • ( 3

4
, 1
4
)

• ( 1
2
, 0, 1

2
)

Whenever you compose probability distributions in a tree-like way,
Shannon entropy obeys the ‘chain rule’:

H(16 ,
1
6 ,

1
6 , 0,

3
8 ,

1
8) = H(12 , 0,

1
2) + 1

2 H(13 ,
1
3 ,

1
3) + 0H(1) + 1

2 H(34 ,
1
4)



More generally:

H

 • q1 •q2 •q3

• p

 =

H

(
• p

)
+p1 H

(
•q1

)
+p2 H

(
•q2

)
+p3 H

(
•q3

)

In a more compressed notation, the chain rule says

H(p ◦ (q1, . . . , qn)) = H(p) +
n∑

i=1

pi H(qi )

when p is a probability distribution on {1, . . . , n}.



Theorem (Faddeev, Leinster). Suppose I is a map sending any
probability distribution on any finite set to a nonnegative real
number, and:

1. I is invariant under bijections.

2. I is continuous.

3. I obeys the chain rule.

Then I is a constant nonnegative multiple of Shannon entropy.

This is a modern version of Dmitry Faddeev’s 1956 theorem, due
to Leinster: it’s Theorem 2.5.1 in Leinster’s book Entropy and
Diversity: the Axiomatic Approach.

https://arxiv.org/abs/2012.02113
https://arxiv.org/abs/2012.02113
https://arxiv.org/abs/2012.02113


How does the logarithm function show up?

If we let
φ(n) = I ( 1n , . . . ,

1
n )

then the chain rule implies

φ(mn) = φ(m) + φ(n)

This has obvious solutions

φ(n) = c ln n

but to rule out nonobvious solutions we must use the continuity
condition on I . We then need more tricks to show

I (p1, . . . , pn) = −c
n∑

i=1

pi ln pi



It would be nice to see Shannon entropy emerge naturally from
category theory! That was our goal here:

I John Baez, Tobias Fritz and Tom Leinster, A characterization
of entropy in terms of information loss, 2011.

The key idea:

Category theory is really about morphisms, not objects. So we
should talk not about the Shannon entropy of an object — a finite
set with a probability measure — but the change in entropy due to
some kind of morphism between these objects.

https://arxiv.org/abs/1106.1791
https://arxiv.org/abs/1106.1791


Given finite sets with probability distributions (X , p) and (Y , q), a
measure-preserving map from the first to the second is a function

f : X → Y

that sends p to q in this way:

qy =
∑

x : f (x)=y

px

It’s a ‘deterministic way of processing random data’.
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The composite of measure-preserving maps is measure-preserving.
So, we get a category FinProb with

I finite sets equipped with probability distributions as objects

I measure-preserving maps as morphisms.



Let’s define the entropy loss of a measure-preserving map
f : (X , p)→ (Y , q) by

Loss(f ) = H(X , p)− H(Y , q)

The data processing inequality says that

Loss(f ) ≥ 0

Deterministic processing of random data always decreases entropy!

X Y

H(X , p) ≈ 1.04 H(Y , q) ≈ 0.56
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We have

Loss(g ◦ f ) = H(X , p)− H(Z , r)

= H(X , p)− H(Y , q) + H(Y , q)− H(Z , r)

= Loss(f ) + Loss(g)

So, information loss is a functor from FinProb to some category
with numbers in [0,∞) as morphisms and addition as composition.



Indeed there is a category [0,∞) with:

I one object ∗
I nonnegative real numbers c as morphisms c : ∗ → ∗
I addition as composition.

We’ve just seen that

Loss : FinProb→ [0,∞)

is a functor. Can we characterize this functor?

Yes. The key is that Loss is ‘convex-linear’ and ‘continuous’.



We can define convex linear combinations of objects in FinProb.
For any 0 ≤ λ ≤ 1, let

λ(X , p) + (1− λ)(Y , q)

be the disjoint union of X and Y , with the probability distribution
given by λp on X and (1− λ)q on Y .

We can also define convex linear combinations of morphisms.

f : (X , p)→ (X ′, p′), g : (Y , q)→ (Y ′, q′)

give

λf +(1−λ)g : λ(X , p)+(1−λ)(Y , q)→ λ(X ′, p′)+(1−λ)(Y ′, q′)

This is simply the function that equals f on X and g on Y .



We can show entropy loss is convex linear:

Loss
(
λf + (1− λ)g

)
= λLoss(f ) + (1− λ)Loss(g)

This follows from the chain rule:

H(λ(X , p) + (1− λ)(Y , q)) = Hλ + λH(X , p) + (1− λ)H(Y , q)

where
Hλ = −

(
λ lnλ + (1− λ) ln(1− λ)

)
is the entropy of a coin with probability λ of landing heads-up.
This extra term cancels when we compute entropy loss.



FinProb and [0,∞) are also topological categories: they have
topological spaces of objects and morphisms, and composition of
morphisms is continuous.

Loss : FinProb→ [0,∞) is a continuous functor: it is continuous
on objects and morphisms.



Theorem (Baez, Fritz, Leinster). Any continuous convex-linear
functor

F : FinProb→ [0,∞)

is a constant multiple of the entropy loss: for some c ≥ 0,

g : (X , p)→ (Y , q) =⇒ F (g) = c Loss(g)

The easy part of the proof: show that

F (g) = Φ(X , p)− Φ(X , q)

for some quantity Φ(X , p). The hard part: show that

Φ(X , p) = −c
∑
x∈X

px ln px

This boils down to Faddeev’s theorem.

http://arxiv.org/abs/1106.1791


There are many generalizations!

There is precisely a one-parameter family of convex structures on
the category [0,∞). For each one, there is an entropy loss functor

Lossq : FinProb→ [0,∞)

that is continuous and convex-linear. It is defined using Tsallis
entropy:

Hα(X , p) =
1

α− 1

(
1−

∑
x∈X

pαx

)

http://math.ucr.edu/home/baez/information_loss.pdf#9
http://math.ucr.edu/home/baez/information_loss.pdf#9


The entropy of one probability distribution on X relative to
another:

I (p, q) =
∑
x∈X

px ln

(
px
qx

)
is the expected amount of information you gain when you thought
the right probability distribution was q and you discover it’s really
p.

There is a category-theoretic characterization of relative entropy:

I John Baez and Tobias Fritz, A Bayesian characterization of
relative entropy, 2014.

Later Leinster gave a simplified proof in the case where
qx = 0⇒ px = 0, and some generalizations:

I Tom Leinster, A short characterization of relative entropy,
2017.

https://arxiv.org/abs/1402.3067
https://arxiv.org/abs/1402.3067
https://arxiv.org/abs/1712.04903


Relative entropy generalizes nicely to infinite measurable spaces:

I (µ, ν) =

∫
X

ln

(
dµ

dν

)
dµ

where µ, ν are probability measures, µ is absolutely continuous
with respect to ν, and dµ/dν is the Radon–Nikodym derivative.

Gagné and Panagaden generalized the categorical characterization
of relative entropy to this case:

I Nicolas Gagné and Prakash Panangaden, A categorical
characterization of relative entropy on standard Borel spaces,
2017.

https://arxiv.org/abs/1703.08853
https://arxiv.org/abs/1703.08853


Parzygnat generalized the categorical characterization of Shannon
information to the quantum case:

I Arthur Parzygnat, A functorial characterization of von
Neumann entropy, 2020.

He is now working toward a categorical characterization of the
quantum version of relative entropy:

I Arthur Parzygnat, Towards a functorial description of
quantum relative entropy, 2021.

https://arxiv.org/abs/2009.07125
https://arxiv.org/abs/2009.07125
https://arxiv.org/abs/2105.04059
https://arxiv.org/abs/2105.04059


Also, this picture should remind you of ‘operads’, a formalism for
composing operations in a tree-like way:

•( 1
3
, 1
3
, 1
3
) •(1) • ( 3

4
, 1
4
)

• ( 1
2
, 0, 1

2
) = • ( 1

6
, 1
6
, 1
6
, 0, 3

8
, 1
8
)

Leinster’s thoughts on this topic led him to characterize Shannon
entropy using operads:

I Tom Leinster, An operadic introduction to entropy, 2011.

Our work with Tobias Fritz was an attempt to simplify this
beautiful but rather abstract result.

https://golem.ph.utexas.edu/category/2011/05/an_operadic_introduction_to_en.html


Bradley has recently given another characterization of entropy
using operads:

I Tai-Danae Bradley, Entropy as a topological operad
derivation, 2021.

And this is what she’ll talk about next!

https://arxiv.org/abs/2107.09581
https://arxiv.org/abs/2107.09581

