Shannon Entropy from Category Theory

1/4 e 7 e 3/4
1/2 e e 0

1/4 ¢ — > o 1/4

H~1.04 H ~ 0.56

John Baez
Categorical Semantics of Entropy
11 May 2022



SHANNON ENTROPY

A probability distribution p on a finite set X has a Shannon
entropy:

H(X,p) == pxInps
xeX

This says how ‘evenly spread’ p is.

Or: how much information you learn, on average, when someone
picks an element x € X according to the distribution p and tells
you what it is — if all you'd known before was that it was
randomly distributed according to p.



Flip a coin!

If X = {h,t} and py = p; = 3, then
H(X,p)=—(3In3+3In3)=1In2

so you learn In 2 nats of information on average, or 1 bit.

But if p, =1, pr = 0 you learn

H(X,p)=—(1In1+0In0)=0



THE EXPECTED SURPRISE

To compute Shannon entropy we turn probabilities py into
surprisals by taking their negative logarithm, and then compute
their expected value:

H(X,p) == pxInps
xeX

So, Shannon entropy is the “expected surprise”.



WHAT'’S SO GREAT ABOUT SHANNON ENTROPY?

There are many alternatives notions of entropy. For example, the

Tsallis entropy:
1
(s

xeX

for real a # 1, and the Rényi entropy:

CLan(ze)

xeX

for a > 0 with o # 1.

Both approach the Shannon entropy as @ — 1. Both have good
properties, discussed here:

» Tom Leinster, Entropy and Diversity: the Axiomatic
Approach, 2020.


https://arxiv.org/abs/2012.02113
https://arxiv.org/abs/2012.02113

So, we should say which good properties single out Shannon
entropy!

The most important is the ‘chain rule’. To state this, note that we
can compose probability distributions in a tree-like way:




Whenever you compose probability distributions in a tree-like way,
Shannon entropy obeys the ‘chain rule’:

H(E L L0380 = H(E,03) + LH(E, L. D) + 0HA) + LHE. L)



More generally:

(Yo o e )

In a more compressed notation, the chain rule says
n .
H(po(q"---,q") = H(p) + > _ pi H(q")
i=1

when p is a probability distribution on {1,..., n}.



Theorem (Faddeev, Leinster). Suppose / is a map sending any
probability distribution on any finite set to a nonnegative real
number, and:

1. [ is invariant under bijections.

2. | is continuous.

3. | obeys the chain rule.

Then [ is a constant nonnegative multiple of Shannon entropy.

This is a modern version of Dmitry Faddeev's 1956 theorem, due
to Leinster: it's Theorem 2.5.1 in Leinster's book Entropy and
Diversity: the Axiomatic Approach.


https://arxiv.org/abs/2012.02113
https://arxiv.org/abs/2012.02113
https://arxiv.org/abs/2012.02113

How does the logarithm function show up?

If we let
pn)y=1(%,..., %)
then the chain rule implies
¢(mn) = ¢(m) + ¢(n)
This has obvious solutions

é(n)=clnn

but to rule out nonobvious solutions we must use the continuity
condition on /. We then need more tricks to show

n
I(p1,--. pn) = —c > _ pilnp;
i=1



It would be nice to see Shannon entropy emerge naturally from
category theory! That was our goal here:

» John Baez, Tobias Fritz and Tom Leinster, A characterization
of entropy in terms of information loss, 2011.

The key idea:

Category theory is really about morphisms, not objects. So we
should talk not about the Shannon entropy of an object — a finite
set with a probability measure — but the change in entropy due to
some kind of morphism between these objects.


https://arxiv.org/abs/1106.1791
https://arxiv.org/abs/1106.1791

Given finite sets with probability distributions (X, p) and (Y, q), a
measure-preserving map from the first to the second is a function

f: X—=>Y

that sends p to g in this way:

dy = Z Px

x: f(x)=y

It's a ‘deterministic way of processing random data’.
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The composite of measure-preserving maps is measure-preserving.
So, we get a category FinProb with

> finite sets equipped with probability distributions as objects

> measure-preserving maps as morphisms.



Let's define the entropy loss of a measure-preserving map
fo(X,p) = (Y, q) by

Loss(f) = H(X,p) — H(Y,q)

The data processing inequality says that
Loss(f) >0

Deterministic processing of random data always decreases entropy!
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We have
Loss(gof) = H(X,p)—H(Z,r)
= H(X,p)—H(Y,q)+H(Y,q) — H(Z,r)
= Loss(f) + Loss(g)

So, information loss is a functor from FinProb to some category
with numbers in [0, 00) as morphisms and addition as composition.



Indeed there is a category [0, c0) with:

> one object %
> nonnegative real numbers ¢ as morphisms c: * — x

» addition as composition.

We've just seen that
Loss: FinProb — [0, o0)
is a functor. Can we characterize this functor?

Yes. The key is that Loss is ‘convex-linear’ and ‘continuous’.



We can define convex linear combinations of objects in FinProb.
Forany 0 < A <1, let

AXsp) + (1 =2)(Y,q)

be the disjoint union of X and Y/, with the probability distribution
given by A\p on X and (1 —X)gon Y.

We can also define convex linear combinations of morphisms.
fr(X,p) = (X.p), & (Y,a) = (Y.d)

give

A +(1=XN)g: AMX, p)+(1=A)(Y.q) = MX", p)+(1-A) (Y, q)

This is simply the function that equals f on X and g on Y.



We can show entropy loss is convex linear:

Loss()\f +(1- )\)g) = ALoss(f) + (1 — A)Loss(g)

This follows from the chain rule:
HOX.p) + (L= A)(Y.q) = Hy + AH(X.p) + (1— \H(Y.q)

where

HA:—(AIn)\ + (1—)\)In(1—)\)>

is the entropy of a coin with probability A of landing heads-up.
This extra term cancels when we compute entropy loss.



FinProb and [0, c0) are also topological categories: they have
topological spaces of objects and morphisms, and composition of
morphisms is continuous.

Loss: FinProb — [0, c0) is a continuous functor: it is continuous
on objects and morphisms.



Theorem (Baez, Fritz, Leinster). Any continuous convex-linear
functor
F: FinProb — [0, 00)

is a constant multiple of the entropy loss: for some ¢ > 0,

g: (X,p) > (Y,q9) = F(g)=cLoss(g)

The easy part of the proof: show that

F(g) = ®(X,p) — (X, q)

for some quantity ®(X, p). The hard part: show that

®(X,p) =—c > _ pcInp,
xeX

This boils down to Faddeev's theorem.


http://arxiv.org/abs/1106.1791

There are many generalizations!

There is precisely a one-parameter family of convex structures on
the category [0, 00). For each one, there is an entropy loss functor

Lossg : FinProb — [0, c0)

that is continuous and convex-linear. It is defined using Tsallis

entropy: .
Ho(X, p) = Oé—].(l ZP)?)

xeX



http://math.ucr.edu/home/baez/information_loss.pdf#9
http://math.ucr.edu/home/baez/information_loss.pdf#9

The entropy of one probability distribution on X relative to
another:

I(p,q) = pxln (Zi)

xeX

is the expected amount of information you gain when you thought
the right probability distribution was g and you discover it's really

p.
There is a category-theoretic characterization of relative entropy:

» John Baez and Tobias Fritz, A Bayesian characterization of
relative entropy, 2014.

Later Leinster gave a simplified proof in the case where
gx = 0 = p, = 0, and some generalizations:

» Tom Leinster, A short characterization of relative entropy,
2017.


https://arxiv.org/abs/1402.3067
https://arxiv.org/abs/1402.3067
https://arxiv.org/abs/1712.04903

Relative entropy generalizes nicely to infinite measurable spaces:

I(,u,y):/xln <Z/Ij> dp

where i, v are probability measures, u is absolutely continuous
with respect to v, and du/dv is the Radon—-Nikodym derivative.

Gagné and Panagaden generalized the categorical characterization
of relative entropy to this case:

» Nicolas Gagné and Prakash Panangaden, A categorical
characterization of relative entropy on standard Borel spaces,
2017.


https://arxiv.org/abs/1703.08853
https://arxiv.org/abs/1703.08853

Parzygnat generalized the categorical characterization of Shannon
information to the quantum case:

» Arthur Parzygnat, A functorial characterization of von
Neumann entropy, 2020.

He is now working toward a categorical characterization of the
quantum version of relative entropy:

» Arthur Parzygnat, Towards a functorial description of
quantum relative entropy, 2021.


https://arxiv.org/abs/2009.07125
https://arxiv.org/abs/2009.07125
https://arxiv.org/abs/2105.04059
https://arxiv.org/abs/2105.04059

Also, this picture should remind you of ‘operads’, a formalism for
composing operations in a tree-like way:

Leinster's thoughts on this topic led him to characterize Shannon
entropy using operads:

» Tom Leinster, An operadic introduction to entropy, 2011.

Our work with Tobias Fritz was an attempt to simplify this
beautiful but rather abstract result.


https://golem.ph.utexas.edu/category/2011/05/an_operadic_introduction_to_en.html

Bradley has recently given another characterization of entropy
using operads:

» Tai-Danae Bradley, Entropy as a topological operad
derivation, 2021.

And this is what she'll talk about next!


https://arxiv.org/abs/2107.09581
https://arxiv.org/abs/2107.09581

