Symplectic embedding problems and infinite staircases

Ana Rita Pires (Fordham University) joint work with Dan Cristofaro-Gardiner, Tara Holm, and Alessia Mandini

July 13-14, 2017
Matemáticos Portugueses no Mundo IST Lisboa

square packing hexagonal packing

packing density $=\frac{\pi}{4} \approx 0.7854$ packing density $=\frac{\pi}{2 \sqrt{3}} \approx 0.9069$

packing density $=\frac{\pi}{3 \sqrt{2}} \approx 0.7405$

$$
\begin{gathered}
L=4+\sqrt{3} \\
p_{7}=\frac{7 \pi}{L \cdot} \approx 0.6693
\end{gathered}
$$

$$
\begin{gathered}
r=1+\frac{1}{\sin \frac{\pi}{9}} \\
p_{11}=\frac{11}{r^{2}} \approx 0.7145
\end{gathered}
$$

What transformations do we allow?

- Euclidean transformations: rotations and translations OR
- Volume preserving transfomations OR
- Symplectic transformations
volume preserving \leq symplectic \leq Euclidean

What does "symplectic" mean?

- $\omega_{0}=d x_{1} \wedge d y_{1}+\ldots+d x_{n} \wedge d y_{n}$ is a symplectic form on $\mathbb{R}^{2 n}$.
For $U, V \subset \mathbb{R}^{2 n}$ open, $\varphi: U \rightarrow V$ is a symplectomorphism if $\varphi^{*} \omega_{0}=\omega_{0}$.
- More geometrically, in $\mathbb{R}^{2}: \boldsymbol{A}(\gamma)= \pm \operatorname{area}(D)$, where D is the disc bounded by the curve γ.

In $\mathbb{R}^{2 n}: \boldsymbol{A}(\gamma)=\sum_{i=1}^{n} \boldsymbol{A}\left(\gamma_{i}\right)$, where $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right)$. A symplectomorphism $\varphi: U \rightarrow V$ is a diffeomorphism that preserves the signed area of closed curves.

$$
\int_{D} \omega_{0}=\int_{D}\left(\sum_{i=1}^{n} d x_{i} \wedge d y_{i}\right)=\sum_{i=1}^{n}\left(\int_{D_{i}} d x_{i} \wedge d y_{i}\right)=\sum_{i=1}^{n} A\left(\gamma_{i}\right)=A(\gamma)
$$

φ symplectic $\Longrightarrow \varphi$ volume preserving
$\varphi^{*} \Omega=\varphi^{*}\left(\omega^{n}\right)=\varphi^{*}(\omega \wedge \ldots \wedge \omega)=\left(\varphi^{*} \omega\right) \wedge \ldots \wedge\left(\varphi^{*} \omega\right)=\omega \wedge \ldots \wedge \omega=\Omega$,
but symplectic is much more special:

- (Gromov 1985) Nonsqueezing theorem

- (Biran 1996) Symplectic packing density $p_{k}=$ percentage of volume of $B^{4} \subset \mathbb{R}^{4}$ that can be symplectically filled by k disjoint equal balls

k	1	2	3	4	5	6	7	8	≥ 9
p_{k}	1	$\frac{1}{2}$	$\frac{3}{4}$	1	$\frac{20}{25}$	$\frac{24}{25}$	$\frac{63}{64}$	$\frac{288}{289}$	1

- (Biran 1996) Symplectic packing density $p_{k}=$ percentage of volume of $B^{4} \subset \mathbb{R}^{4}$ that can be symplectically filled by k disjoint equal balls

k	1	2	3	4	5	6	7	8	≥ 9
p_{k}	1	$\frac{1}{2}$	$\frac{3}{4}$	1	$\frac{20}{25}$	$\frac{24}{25}$	$\frac{63}{64}$	$\frac{288}{289}$	1

What are these numbers?

- (McDuff 2008)

$$
\coprod_{k} B^{4}(1) \hookrightarrow B^{4}(R) \Longleftrightarrow E(1, k) \hookrightarrow B^{4}(R),
$$

where $E(a, b)=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}: \pi \frac{\left|z_{1}\right|^{2}}{a}+\pi \frac{\left|z_{2}\right|^{2}}{b}<1\right\}$ is an ellipsoid.

- (McDuff-Schlenk 2009) Study the embedding capacity function:

$$
f_{B^{4}}(a)=\inf \left\{\lambda \mid E(1, a) \hookrightarrow B^{4}(\lambda)\right\}
$$

$f_{B^{4}}(a)=\inf \left\{\lambda \mid E(1, a) \hookrightarrow B^{4}(\lambda)\right\} \geq \sqrt{a}$

k	1	2	3	4	5	6	7	8	≥ 9
$p_{k}=\frac{k}{\left(f_{6^{4}}(k)\right)^{2}}$	1	$\frac{1}{2}$	$\frac{3}{4}$	1	$\frac{20}{25}$	$\frac{24}{25}$	$\frac{63}{64}$	$\frac{288}{289}$	1

$f_{B^{4}}(a)=\inf \left\{\lambda \mid E(1, a) \hookrightarrow B^{4}(\lambda)\right\} \geq \sqrt{a}$

- Ball: $X=B^{4}(1)$, Fibonacci staircase (McDuff-Schlenk 2009)
- Polydisk: $X=B^{2}(1) \times B^{2}(1)$, Pell staircase (Frenkel-Müller 2012)
- A particular ellipsoid: $X=E\left(1, \frac{3}{2}\right)$,

Region $\Omega \subset \mathbb{R}^{2} \rightsquigarrow$ toric domain

$$
X=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \mid \pi\left(\left|z_{1}\right|^{2},\left|z_{2}\right|^{2}\right) \in \Omega\right\} \subset \mathbb{C}^{2}
$$

Theorem (Cristofaro-Gardiner-Holm-Mandini-P.)

For the toric domains corresponding to these twelve regions, the embedding capacity function $f_{X}(a)=\inf \{\lambda \mid E(1, a) \hookrightarrow \lambda X\}$ has an infinite staircase.

Region $\Omega \subset \mathbb{R}^{2} \rightsquigarrow$ toric domain

$$
X=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \mid \pi\left(\left|z_{1}\right|^{2},\left|z_{2}\right|^{2}\right) \in \Omega\right\} \subset \mathbb{C}^{2}
$$

Theorem (Cristofaro-Gardiner-Holm-Mandini-P.)

For the toric domains corresponding to these twelve regions, the embedding capacity function $f_{X}(a)=\inf \{\lambda \mid E(1, a) \hookrightarrow \lambda X\}$ has an infinite staircase.

Theorem (Cristofaro-Gardiner-Holm-Mandini-P.)

For the toric domains corresponding to these twelve regions, the embedding capacity function $f_{X}(a)=\inf \{\lambda \mid E(1, a) \hookrightarrow \lambda X\}$ has an infinite staircase.

Conjecture (Cristofaro-Gardiner-Holm-Mandini-P.)
Among the rational convex toric domains, only for these twelve (and their scalings) does $f_{X}(a)$ have an infinite staircase.

- $\left(N_{k}(a, b)\right)_{k>0}$: sequence formed by arranging the linear combinations $m a+n b$ with $m, n \geq 0$ in nondecreasing order, with repetitions.

$$
\begin{aligned}
& \left(N_{k}(1,4)\right)_{k \geq 0}=(0,1,2,3,4,4,5,5,6,6,7,7,8,8,8,9,9,9, \ldots) \\
& \left(N_{k}(2,2)\right)_{k \geq 0}=(0,2,2,4,4,4,6,6,6,6,8,8,8,8,8,8,10,10 \ldots)
\end{aligned}
$$

- (McDuff 2011)

$$
E(a, b) \hookrightarrow E(c, d) \Longleftrightarrow \forall_{k} N_{k}(a, b) \leq N_{k}(c, d)
$$

So for instance, $E(1,4) \hookrightarrow E(2,2)=B(2)$.

- (Hutchings 2010) $c_{k}\left(M^{4}\right)$: numerical invariants associated to a 4-dimensional symplectic manifold - ECH capacities. They obstruct symplectic embeddings:

$$
M_{1} \hookrightarrow M_{2} \Longrightarrow \forall_{k} c_{k}\left(M_{1}\right) \leq c_{k}\left(M_{2}\right)
$$

- (Cristofaro-Gardiner 2014) Furthermore, for certain types of M_{1} and M_{2}, ECH capacities are sharp obstructions to symplectic embeddings:
- Combinatorial description of $f_{X}(a)$:

Since $E(1, a) \hookrightarrow \lambda X \Longleftrightarrow \forall_{k} c_{k}(E(1, a)) \leq c_{k}(\lambda X)$

$$
\Longleftrightarrow \forall_{k} N_{k}(1, a) \leq \lambda c_{k}(X)
$$

we have $f_{X}(a)=\sup _{k} \frac{N_{k}(1, a)}{c_{k}(X)}$.

THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES ${ }^{\circledR}$

founded in 1964 by N. J. A. Sloane

Numbered stops on the Market-Frankford rapid transit (SEPTA) railway line in Philadelphia, PA USA.
2, 5, 8, 11, 13, 15, 30, 34, 40, 46, 52, 56, 60, 63, 69 (list; graph; refs; listen; history; text; internal format) offset 1,1
COMMENTS Formally abbreviated as The Blue Line (and known informally as 'The El'), the Market-Frankford Line extends East to West from slightly to the east of 2 nd Street through the city line to the western suburbs at 63rd Street and then on to 69th Street Transportation Center, lined up almost entirely with the major dividing thoroughfare Market Street. It is actually a subway at the eastern end of this portion and through to beyond the 40th Street stop (a(1)-a(9) represent subway stops), passing under the Schuylkill River (along with trolley lines 10, 11, 13, 34 and 36) closer to 30th than to 15th Street. The only non-numbered stop on this end is suburban Milbourne between 63rd and 69th. The 'Frankford end' runs in a somewhat northeasterly direction and has all stops only with non-number names (and is entirely above ground). The semi-express A and B versions of the train both skip certain stops at peak travel times, and the only regular trains are unmarked or one of these two versions. The train is substituted for with bus service during overnight hours. - James G. Merickel, Mar 192014

REFERENCES
LINKS

FORMULA

Ayshe Ozbekhan, Letter to N. J. A. Sloane, Oct 04, 1994.
Table of $n, a(n)$ for $n=1 . .15$. Wikipedia, Market-Frankford Line
$a(n)=2+3 n-\operatorname{binomial}(n, 4)+3 \operatorname{binomial}(n, 5)+7$ binomial $(n, 6)-66$ binomial $(\mathrm{n}, 7)+248$ binomial $(\mathrm{n}, 8)-679$ binomial $(\mathrm{n}, 9)+1554$ binomial(n, 10) - 3158 binomial $(\mathrm{n}, 11)+5897$ binomial $(\mathrm{n}, 12)-10352$

- $N_{k}(a, b)$ as lattice point counting:

Note that
$\#\left(T \cdot \triangle_{\frac{1}{a}, \frac{1}{b}} \cap \mathbb{Z}^{2}\right)=\#\left\{(m, n) \in \mathbb{N}_{0} \times \mathbb{N}_{0} \mid m a+n b \leq T\right\}$.
Since $\left(N_{k}(a, b)\right)_{k \geq 0}$ is nondecreasing,

$$
N_{k}(a, b)=\inf \left\{T \left\lvert\, \#\left(T \cdot \triangle_{\frac{1}{a}, \frac{1}{b}} \cap \mathbb{Z}^{2}\right) \geq k+1\right.\right\}
$$

- Ehrhart theory:

Ehrhart function of a polygon $P=$ number of lattice points in a scaling of P

$$
L_{P}(T)=\#\left(T \cdot P \cap \mathbb{Z}^{2}\right), \quad \text { for } T \in \mathbb{Z}
$$

- Ehrhart theory:

Ehrhart function of a polygon $P=$ number of lattice points in a scaling of P

$$
L_{P}(T)=\#\left(T \cdot P \cap \mathbb{Z}^{2}\right), \quad \text { for } T \in \mathbb{Z}
$$

The function $L_{\triangle_{u, v}}(T)$ is a polynomial if $u, v \in \mathbb{Z}$ and in a few more cases*,

$$
\text { a quasipolynomial if } u, v \in \mathbb{Q} \text { and a few }
$$

more cases*,
and a horrible function if $u, v \notin \mathbb{Q}$.
(* These "few more cases" of period collapse is when infinite staircases can happen!)
For example,

$$
\begin{aligned}
& L_{\triangle_{1,1}}(T)=\frac{1}{2} T^{2}+\frac{3}{2} T+1 \\
& L_{\triangle_{\frac{1}{3}, \frac{1}{3}}}(T)=\left\{\begin{array}{ll}
\frac{1}{18}\left(T^{2}+9 T+18\right) & \text { if } T \equiv 0 \\
\frac{1}{18}\left(T^{2}+7 T+10\right) & \text { if } T \equiv 1 \\
\frac{1}{1}\left(T^{2}+5 T+4\right) & \text { if } T=2
\end{array} \quad(\bmod 3)\right.
\end{aligned}
$$

...for $u, v \notin \mathbb{Q}$, define $\alpha:=u+v$ and $\beta:=\frac{1}{u}+\frac{1}{v}$. Then:

$$
L_{\triangle_{\frac{1}{U}, \frac{1}{v}}}(T)=\left(\sum_{m=0}^{\left\lfloor\frac{T}{\alpha}\right\rfloor}\lfloor\beta(T-m \alpha)\rfloor\right)+\sigma(T)+\#\left\{\left.0 \leq m \leq\left\lfloor\frac{T}{\alpha}\right\rfloor \right\rvert\,\{\beta(T-m \alpha)\}>\right.
$$

where $\sigma(T)=1$ if $\frac{T}{\alpha} \in \mathbb{Z}$ and 0 otherwise.
This turns out to be:

$$
L_{\Delta_{\frac{1}{U}, \frac{1}{v}}}(T)=\frac{1}{2 u v} T^{2}+\frac{1}{2}\left(\frac{1}{u}+\frac{1}{v}\right) T+o(T)
$$

and under certain conditions:
$L_{\Delta_{\frac{1}{U}, \frac{1}{v}}}(T)=\frac{1}{2 u v} T^{2}+\frac{1}{2}\left(\frac{1}{u}+\frac{1}{v}\right) T+1+\sum_{m=1}^{\frac{T}{\alpha}}\left(\left\{m \frac{u}{v}\right\}-\frac{1}{2}\right)+\sum_{m=1}^{\frac{T}{\alpha}}(\{m$

Thank you.

