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packing density =π4 ≈ 0.7854
packing density = π

2
√

3
≈ 0.9069
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packing density = π
3
√

2
≈ 0.7405
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L = 4 +
√

3 r = 1 + 1
sin π

9

p7 = 7π
L2 ≈ 0.6693 p11 = 11

r2 ≈ 0.7145
What transformations do we allow?

Euclidean transformations: rotations and translations OR
Volume preserving transfomations OR
Symplectic transformations

volume preserving ≤ symplectic ≤ Euclidean
4 / 24
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What does “symplectic” mean?
ω0 = dx1 ∧ dy1 + . . .+ dxn ∧ dyn is a symplectic form on
R2n.
For U,V ⊂ R2n open, ϕ : U → V is a symplectomorphism
if ϕ∗ω0 = ω0.
More geometrically, in R2 : A(γ) = ±area(D), where D is
the disc bounded by the curve γ.

9

There are also three new results. In §9.2 we give the list of symplectic packings of a
4-ball B4 by at most 8 balls B4(ai) of possibly different size that fill all of the volume
of B4. The relevance of this problem and its proof were explained to me by Dusa Mc-
Duff. In §14.2 we show that for any linear symplectic form ω on the torus T 4 = 4/ 4

and any ellipsoid E(a, b) there exists a symplectic embedding E(a, b) → (T 4, ω) whenever
Vol(E(a, b)) < Vol(T 4). In Appendix B we improve a result of A. Abbondandolo and R.
Matveyev on the non-existence of intermediate symplectic shadows (Corollary 15.6) and
show that intermediate shadows of a ball can be reduced with arbitrary little Hofer energy
(Theorem 15.8).

Acknowledgments. I learned from Dusa McDuff most of what I know on symplectic
embeddings. Thank you Dusa! I thank Alberto Abbondandolo for asking me the ques-
tion answered in Theorem 15.8. I’m grateful to Alain Albouy for interesting historical
explanations, and to Yura Chekanov, Dan Cristofaro–Gardiner, Jean-Pierre Demailly, Urs
Frauenfelder, Vinicius Gripp Barros Ramos, Jean Gutt, Richard Hind, Helmut Hofer,
Michael Hutchings, Otto van Koert, Janko Latschev, Jo Nelson and Leonid Polterovich
for helpful and exciting conversations. I wish to thank Lucas Dahinden, David Frenkel,
Carsten Haug, Dusa McDuff and Pedram Safaee for carefully reading previous versions
and for many good discussions.

2. Meanings of ‘symplectic’

Since already “Hamiltonian mechanics cannot be understood without differential forms”
[6, p. 177], we start with the classical

Definition 1 (differential forms). A symplectic structure on a smooth manifold M is a
non-degenerate closed 2-form ω.4 A symplectomorphism ϕ of (M,ω) is a diffeomorphism
preserving this structure: ϕ∗ω = ω.

This definition may not be very appealing at first sight5. We thus give a more geometric
definition. Let γ be a closed oriented piecewise smooth curve in 2. If γ is embedded,
assign to γ the signed area of the disc D bounded by γ, namely area(D) or − area(D), as
in Figure 2.1.

+ −

Figure 2.1. The sign of the signed area of an embedded closed curve in 2

4‘non-degenerate’ means that ωx(u, v) = 0 for all v ∈ TxM implies u = 0, and ‘closed’ means that the
exterior derivative vanishes, dω = 0

5in particular not to students at universities where both classical mechanics and exterior calculus have
been removed from the syllabus

10 FELIX SCHLENK

If γ is not embedded, successively decompose γ into closed embedded pieces as illustrated
in Figure 2.2, and define A(γ) as the sum of the signed areas of these pieces.

Figure 2.2. Splitting a closed curve into embedded pieces

Definition 2 (signed area of closed curves). The standard symplectic structure of 2n

is the map

A(γ) =
n∑

i=1

A(γi), γ = (γ1, . . . , γn) ⊂ n.

A symplectomorphism ϕ of 2n is a diffeomorphism that preserves the signed area of closed
curves:

A(ϕ(γ)) = A(γ) for all closed curves γ ⊂ 2n.

A symplectic structure on a manifold M is an atlas whose transition functions are (lo-
cal) symplectomorphisms, and a symplectomorphism of M is then a diffeomorphism that
preserves this local structure.

The standard symplectic structure of 2n is thus given by assigning to a closed curve γ
the sum of the signed areas of the projections of a disc spanning γ onto the n coordinate
planes 2(xi, yi). And a symplectic structure on a manifold is a coherent way of assigning
a signed area to sufficiently local closed curves.

Definitions 1 and 2 are equivalent, because for an oriented smooth disc D ⊂ 2n with
oriented boundary γ = (γ1, . . . , γn) and with Πi :

n → (zi) the projection on the i’th
coordinate,

(2.1)

∫

D

ω0 =
n∑

i=1

∫

D

dxi ∧ dyi =
n∑

i=1

∫

ΠiD

dxi ∧ dyi =
n∑

i=1

A(γi) = A(γ),

and because a symplectic structure on a manifold (in Definition 1) is the same thing as
an atlas whose transition functions are local symplectomorphisms of 2n, by Darboux’s
theorem 1.3.

I learned Definition 2 from [6, §44 D] and [80]. In many texts, such as Arnold’s book [6],
the quantities A(γ) are called ‘Poincaré’s relative integral invariants’. The invariance
of A(γ) under Hamiltonian flows was known to Lagrange, who also knew of Hamilton’s
equations, the symplectic form and Darboux’s theorem, see [5, p. 273] and [101, 133]. This
is in accordance with Arnold’s Principle that mathematical results are almost never called
by the names of their discoverers.

In R2n : A(γ) =
∑n

i=1 A(γi), where γ = (γ1, γ2, . . . , γn).
A symplectomorphism ϕ : U → V is a diffeomorphism that
preserves the signed area of closed curves.

∫

D
ω0 =

∫

D

(
n∑

i=1

dxi ∧ dyi

)
=

n∑

i=1

(∫

Di

dxi ∧ dyi

)
=

n∑

i=1

A(γi) = A(γ)
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ϕ symplectic =⇒ ϕ volume preserving

ϕ∗Ω = ϕ∗ (ωn) = ϕ∗ (ω ∧ . . . ∧ ω) = (ϕ∗ω)∧. . .∧(ϕ∗ω) = ω∧. . .∧ω = Ω,

but symplectic is much more special:

(Gromov 1985) Nonsqueezing theorem

,! () R  r

B2n(R) B2(r) ⇥ R2n�2

(Biran 1996) Symplectic packing density
pk = percentage of volume of B4 ⊂ R4 that can be
symplectically filled by k disjoint equal balls

k 1 2 3 4 5 6 7 8 ≥ 9

pk 1 1
2

3
4 1 20

25
24
25

63
64

288
289 1
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(Biran 1996) Symplectic packing density
pk = percentage of volume of B4 ⊂ R4 that can be
symplectically filled by k disjoint equal balls

k 1 2 3 4 5 6 7 8 ≥ 9

pk 1 1
2

3
4 1 20

25
24
25

63
64

288
289 1

What are these numbers?

(McDuff 2008)
∐

k

B4(1) ↪→ B4(R) ⇐⇒ E(1, k) ↪→ B4(R),

where E(a,b) = {(z1, z2) ∈ C2 : π |z1|2
a + π |z2|2

b < 1} is an
ellipsoid.
(McDuff-Schlenk 2009) Study the embedding capacity
function:

fB4(a) = inf{λ|E(1,a) ↪→ B4(λ)}.
7 / 24
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fB4(a) = inf{λ|E(1,a) ↪→ B4(λ)} ≥
√

a

4 DUSA MCDUFF

Embedding ellipsoids into balls
Let E(a, 1) = {(x1, . . . , x4) 2 R4 :

x2
1+x2

2
a + x2

3 + x2
4  1}.

Consider the embedding capacity function of [2] for a � 1:

c(a) := inf{µ : E(a, 1)
s
,!B(µ)}.

Note: c(a) � p
a because vol E(a, 1) = vol B(

p
a).

Figure 0.3. The graph of c(a)

Theorem [McDu↵–Schlenk] Let ⌧ = 1+
p

5
2 . The graph of c(a)

divides into three parts:

• if 1  a < ⌧ 4 the graph is piecewise linear – an infinite
Fibonacci staircase converging to (⌧ 4, ⌧ 2); (mostly proven)

• ⌧ 4  a < 8 1
36 is a transitional region; c(a) =

p
a except on a

finite number of short intervals; (mostly proven)

• if a � 8 1
36 =

�
17
6

�
2 then c(a) =

p
a. (proven)

Fibonacci stairs: Let g0 = g1 = 1, g2 = 2, g3 = 5, g4 = 13, . . . ,
the odd Fibonacci numbers; set an :=

�
gn+1/gn

�
2, bn := gn+2/gn so

that an < bn < an+1, and an ! ⌧ 4.

Then c(x) = x/
p

an on [an, bn] and c(x) =
p

an+1 on [bn, an+1].

k 1 2 3 4 5 6 7 8 ≥ 9

pk = k
(fB4 (k))

2 1 1
2

3
4 1 20

25
24
25

63
64

288
289 1
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8
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6

√
k
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fX (a) = inf{λ|E(1,a) ↪→ λX} ≥
√

a
vol(X )

4 DUSA MCDUFF

Embedding ellipsoids into balls
Let E(a, 1) = {(x1, . . . , x4) 2 R4 :

x2
1+x2

2
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3 + x2
4  1}.

Consider the embedding capacity function of [2] for a � 1:

c(a) := inf{µ : E(a, 1)
s
,!B(µ)}.

Note: c(a) � p
a because vol E(a, 1) = vol B(

p
a).

Figure 0.3. The graph of c(a)

Theorem [McDu↵–Schlenk] Let ⌧ = 1+
p

5
2 . The graph of c(a)

divides into three parts:

• if 1  a < ⌧ 4 the graph is piecewise linear – an infinite
Fibonacci staircase converging to (⌧ 4, ⌧ 2); (mostly proven)

• ⌧ 4  a < 8 1
36 is a transitional region; c(a) =

p
a except on a

finite number of short intervals; (mostly proven)

• if a � 8 1
36 =

�
17
6

�
2 then c(a) =

p
a. (proven)

Fibonacci stairs: Let g0 = g1 = 1, g2 = 2, g3 = 5, g4 = 13, . . . ,
the odd Fibonacci numbers; set an :=

�
gn+1/gn

�
2, bn := gn+2/gn so

that an < bn < an+1, and an ! ⌧ 4.

Then c(x) = x/
p

an on [an, bn] and c(x) =
p

an+1 on [bn, an+1].

Ball: X = B4(1), Fibonacci staircase (McDuff–Schlenk
2009)
Polydisk: X = B2(1)× B2(1), Pell staircase
(Frenkel–Müller 2012)
A particular ellipsoid: X = E(1, 3

2),
(Cristofaro-Gardiner–Kleinman 2013)
But in general, the graph of fX (a) does not have an infinite
staircase.
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Region Ω ⊂ R2  toric domain
X =

{
(z1, z2) ∈ C2|π(|z1|2, |z2|2) ∈ Ω

}
⊂ C2.

Theorem (Cristofaro-Gardiner–Holm–Mandini–P.)
For the toric domains corresponding to these twelve regions,
the embedding capacity function fX (a) = inf{λ|E(1,a) ↪→ λX}
has an infinite staircase.

382 Chapter 8. The Canonical Divisor of a Toric Variety

Lemma 8.3.6. Let m,m′ be distinct lattice points on the boundary of a reflexive
polytope P. Then exactly one of the following holds:
(a) m and m′ lie in a common edge of P,
(b) m+m′ = 0, or
(c) m+m′ is also on the boundary of P.

The proof is left to the reader as Exercise 8.3.3.

The 2-Dimensional Case. The following theorem classifies reflexive polygons in
the plane MR ≃ R2, up to lattice equivalence. Figure 2 shows 16 lattice polygons,
where the open circle in the center of each polygon is the origin and the solid circles
are the lattice points on the boundary. The numbers in the labels give the number
of boundary lattice points. Polygons 3 and 9 are the dual pair from Example 8.3.2.
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Figure 2. The 16 equivalence classes of reflexive lattice polygons in R2
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Lemma 8.3.6. Let m,m′ be distinct lattice points on the boundary of a reflexive
polytope P. Then exactly one of the following holds:
(a) m and m′ lie in a common edge of P,
(b) m+m′ = 0, or
(c) m+m′ is also on the boundary of P.

The proof is left to the reader as Exercise 8.3.3.

The 2-Dimensional Case. The following theorem classifies reflexive polygons in
the plane MR ≃ R2, up to lattice equivalence. Figure 2 shows 16 lattice polygons,
where the open circle in the center of each polygon is the origin and the solid circles
are the lattice points on the boundary. The numbers in the labels give the number
of boundary lattice points. Polygons 3 and 9 are the dual pair from Example 8.3.2.

! ❞! !✁
✁
✁
✁

✟✟✟✟

❅
❅

3

! !❞! !$
$

❅
❅

❅
❅

$
$

4a

! !❞
! !

❆
❆
❆
❆

❅
❅

$
$

4b

! ! !❞!
❆
❆
❆
❆✁

✁
✁
✁

4c
! !! ❞ !!
❅

❅

❅
❅

$
$

5a

! ! !! ❞!❅
❅✁

✁
✁
✁

5b

! !! ❞ !! !
❅

❅

❅
❅

6a

! ! !! ❞ !!
❅

❅$
$

6b
! ! !! ❞ !!✟✟✟✟

6c

! ! !! ❞!!✡✡
✡
✡

✡
✡✡

6d

! ! !! ❞ !! !$
$

7a

! ! !! ❞! !!$
$

✁
✁
✁
✁

7b

!!
!

!❞
!

!!
!8a

!!
!!

!❞
!

!!
$

$
$

$

8b

!!
!!
!

!❞ !
!

✁
✁
✁
✁
✁
✁
✁
✁

8c !!!!

!❞!
!! !

❅
❅

❅
❅

❅
❅

9

Figure 2. The 16 equivalence classes of reflexive lattice polygons in R2

382 Chapter 8. The Canonical Divisor of a Toric Variety

Lemma 8.3.6. Let m,m′ be distinct lattice points on the boundary of a reflexive
polytope P. Then exactly one of the following holds:
(a) m and m′ lie in a common edge of P,
(b) m+m′ = 0, or
(c) m+m′ is also on the boundary of P.

The proof is left to the reader as Exercise 8.3.3.

The 2-Dimensional Case. The following theorem classifies reflexive polygons in
the plane MR ≃ R2, up to lattice equivalence. Figure 2 shows 16 lattice polygons,
where the open circle in the center of each polygon is the origin and the solid circles
are the lattice points on the boundary. The numbers in the labels give the number
of boundary lattice points. Polygons 3 and 9 are the dual pair from Example 8.3.2.

! ❞! !✁
✁
✁
✁

✟✟✟✟

❅
❅

3

! !❞! !$
$

❅
❅

❅
❅

$
$

4a

! !❞
! !

❆
❆
❆
❆

❅
❅

$
$

4b

! ! !❞!
❆
❆
❆
❆✁

✁
✁
✁

4c
! !! ❞ !!
❅

❅

❅
❅

$
$

5a

! ! !! ❞!❅
❅✁

✁
✁
✁

5b

! !! ❞ !! !
❅

❅

❅
❅

6a

! ! !! ❞ !!
❅

❅$
$

6b
! ! !! ❞ !!✟✟✟✟

6c

! ! !! ❞!!✡✡
✡
✡

✡
✡✡

6d

! ! !! ❞ !! !$
$

7a

! ! !! ❞! !!$
$

✁
✁
✁
✁

7b

!!
!

!❞
!

!!
!8a

!!
!!

!❞
!

!!
$

$
$

$

8b

!!
!!
!

!❞ !
!

✁
✁
✁
✁
✁
✁
✁
✁

8c !!!!

!❞!
!! !

❅
❅

❅
❅

❅
❅

9

Figure 2. The 16 equivalence classes of reflexive lattice polygons in R2

382 Chapter 8. The Canonical Divisor of a Toric Variety

Lemma 8.3.6. Let m,m′ be distinct lattice points on the boundary of a reflexive
polytope P. Then exactly one of the following holds:
(a) m and m′ lie in a common edge of P,
(b) m+m′ = 0, or
(c) m+m′ is also on the boundary of P.

The proof is left to the reader as Exercise 8.3.3.

The 2-Dimensional Case. The following theorem classifies reflexive polygons in
the plane MR ≃ R2, up to lattice equivalence. Figure 2 shows 16 lattice polygons,
where the open circle in the center of each polygon is the origin and the solid circles
are the lattice points on the boundary. The numbers in the labels give the number
of boundary lattice points. Polygons 3 and 9 are the dual pair from Example 8.3.2.

! ❞! !✁
✁
✁
✁

✟✟✟✟

❅
❅

3

! !❞! !$
$

❅
❅

❅
❅

$
$

4a

! !❞
! !

❆
❆
❆
❆

❅
❅

$
$

4b

! ! !❞!
❆
❆
❆
❆✁

✁
✁
✁

4c
! !! ❞ !!
❅

❅

❅
❅

$
$

5a

! ! !! ❞!❅
❅✁

✁
✁
✁

5b

! !! ❞ !! !
❅

❅

❅
❅

6a

! ! !! ❞ !!
❅

❅$
$

6b
! ! !! ❞ !!✟✟✟✟

6c

! ! !! ❞!!✡✡
✡
✡

✡
✡✡

6d

! ! !! ❞ !! !$
$

7a

! ! !! ❞! !!$
$

✁
✁
✁
✁

7b

!!
!

!❞
!

!!
!8a

!!
!!

!❞
!

!!
$

$
$

$

8b

!!
!!
!

!❞ !
!

✁
✁
✁
✁
✁
✁
✁
✁

8c !!!!

!❞!
!! !

❅
❅

❅
❅

❅
❅

9

Figure 2. The 16 equivalence classes of reflexive lattice polygons in R2

382 Chapter 8. The Canonical Divisor of a Toric Variety

Lemma 8.3.6. Let m,m′ be distinct lattice points on the boundary of a reflexive
polytope P. Then exactly one of the following holds:
(a) m and m′ lie in a common edge of P,
(b) m+m′ = 0, or
(c) m+m′ is also on the boundary of P.

The proof is left to the reader as Exercise 8.3.3.

The 2-Dimensional Case. The following theorem classifies reflexive polygons in
the plane MR ≃ R2, up to lattice equivalence. Figure 2 shows 16 lattice polygons,
where the open circle in the center of each polygon is the origin and the solid circles
are the lattice points on the boundary. The numbers in the labels give the number
of boundary lattice points. Polygons 3 and 9 are the dual pair from Example 8.3.2.

! ❞! !
✁
✁
✁
✁

✟✟✟✟

❅
❅

3

! !❞
! !$

$

❅
❅

❅
❅

$
$

4a

! !❞! !❆
❆
❆
❆

❅
❅

$
$

4b

! ! !❞!
❆
❆
❆
❆✁

✁
✁
✁

4c! !! ❞ !!❅
❅

❅
❅

$
$

5a

! ! !! ❞!❅
❅✁

✁
✁
✁

5b

! !! ❞ !! !❅
❅

❅
❅

6a

! ! !! ❞ !!❅
❅$

$

6b! ! !! ❞ !!✟✟✟✟

6c

! ! !! ❞!!✡✡
✡
✡

✡
✡✡

6d

! ! !! ❞ !! !$$

7a

! ! !! ❞! !!$$
✁
✁
✁
✁

7b

!!!
!❞!

!!!
8a

!!!!

!❞!
!!

$
$

$
$

8b

!!!!!

!❞ !
!

✁
✁
✁
✁
✁
✁
✁
✁

8c !!
!!

!❞
!

!! !
❅

❅
❅

❅
❅

❅

9

Figure 2. The 16 equivalence classes of reflexive lattice polygons in R2

382 Chapter 8. The Canonical Divisor of a Toric Variety

Lemma 8.3.6. Let m,m′ be distinct lattice points on the boundary of a reflexive
polytope P. Then exactly one of the following holds:
(a) m and m′ lie in a common edge of P,
(b) m+m′ = 0, or
(c) m+m′ is also on the boundary of P.

The proof is left to the reader as Exercise 8.3.3.

The 2-Dimensional Case. The following theorem classifies reflexive polygons in
the plane MR ≃ R2, up to lattice equivalence. Figure 2 shows 16 lattice polygons,
where the open circle in the center of each polygon is the origin and the solid circles
are the lattice points on the boundary. The numbers in the labels give the number
of boundary lattice points. Polygons 3 and 9 are the dual pair from Example 8.3.2.

! ❞! !✁
✁
✁
✁

✟✟✟✟

❅
❅

3

! !❞! !$
$

❅
❅

❅
❅

$
$

4a

! !❞
! !

❆
❆
❆
❆

❅
❅

$
$

4b

! ! !❞!
❆
❆
❆
❆✁

✁
✁
✁

4c
! !! ❞ !!
❅

❅

❅
❅

$
$

5a

! ! !! ❞!❅
❅✁

✁
✁
✁

5b

! !! ❞ !! !
❅

❅

❅
❅

6a

! ! !! ❞ !!
❅

❅$
$

6b
! ! !! ❞ !!✟✟✟✟

6c

! ! !! ❞!!✡✡
✡
✡

✡
✡✡

6d

! ! !! ❞ !! !$
$

7a

! ! !! ❞! !!$
$

✁
✁
✁
✁

7b

!!
!

!❞
!

!!
!8a

!!
!!

!❞
!

!!
$

$
$

$

8b

!!
!!
!

!❞ !
!

✁
✁
✁
✁
✁
✁
✁
✁

8c !!!!

!❞!
!! !

❅
❅

❅
❅

❅
❅

9

Figure 2. The 16 equivalence classes of reflexive lattice polygons in R2

382 Chapter 8. The Canonical Divisor of a Toric Variety

Lemma 8.3.6. Let m,m′ be distinct lattice points on the boundary of a reflexive
polytope P. Then exactly one of the following holds:
(a) m and m′ lie in a common edge of P,
(b) m+m′ = 0, or
(c) m+m′ is also on the boundary of P.

The proof is left to the reader as Exercise 8.3.3.

The 2-Dimensional Case. The following theorem classifies reflexive polygons in
the plane MR ≃ R2, up to lattice equivalence. Figure 2 shows 16 lattice polygons,
where the open circle in the center of each polygon is the origin and the solid circles
are the lattice points on the boundary. The numbers in the labels give the number
of boundary lattice points. Polygons 3 and 9 are the dual pair from Example 8.3.2.

! ❞! !✁
✁
✁
✁

✟✟✟✟

❅
❅

3

! !❞! !$
$

❅
❅

❅
❅

$
$

4a

! !❞
! !

❆
❆
❆
❆

❅
❅

$
$

4b

! ! !❞!
❆
❆
❆
❆✁

✁
✁
✁

4c
! !! ❞ !!
❅

❅

❅
❅

$
$

5a

! ! !! ❞!❅
❅✁

✁
✁
✁

5b

! !! ❞ !! !
❅

❅

❅
❅

6a

! ! !! ❞ !!
❅

❅$
$

6b
! ! !! ❞ !!✟✟✟✟

6c

! ! !! ❞!!✡✡
✡
✡

✡
✡✡

6d

! ! !! ❞ !! !$
$

7a

! ! !! ❞! !!$
$

✁
✁
✁
✁

7b

!!
!

!❞
!

!!
!8a

!!
!!

!❞
!

!!
$

$
$

$

8b

!!
!!
!

!❞ !
!

✁
✁
✁
✁
✁
✁
✁
✁

8c !!!!

!❞!
!! !

❅
❅

❅
❅

❅
❅

9

Figure 2. The 16 equivalence classes of reflexive lattice polygons in R2

382 Chapter 8. The Canonical Divisor of a Toric Variety

Lemma 8.3.6. Let m,m′ be distinct lattice points on the boundary of a reflexive
polytope P. Then exactly one of the following holds:
(a) m and m′ lie in a common edge of P,
(b) m+m′ = 0, or
(c) m+m′ is also on the boundary of P.

The proof is left to the reader as Exercise 8.3.3.

The 2-Dimensional Case. The following theorem classifies reflexive polygons in
the plane MR ≃ R2, up to lattice equivalence. Figure 2 shows 16 lattice polygons,
where the open circle in the center of each polygon is the origin and the solid circles
are the lattice points on the boundary. The numbers in the labels give the number
of boundary lattice points. Polygons 3 and 9 are the dual pair from Example 8.3.2.

! ❞! !
✁
✁
✁
✁

✟✟✟✟

❅
❅

3

! !❞
! !$

$

❅
❅

❅
❅

$
$

4a

! !❞! !❆
❆
❆
❆

❅
❅

$
$

4b

! ! !❞!
❆
❆
❆
❆✁

✁
✁
✁

4c! !! ❞ !!❅
❅

❅
❅

$
$

5a

! ! !! ❞!❅
❅✁

✁
✁
✁

5b

! !! ❞ !! !❅
❅

❅
❅

6a

! ! !! ❞ !!❅
❅$

$

6b! ! !! ❞ !!✟✟✟✟

6c

! ! !! ❞!!✡✡
✡
✡

✡
✡✡

6d

! ! !! ❞ !! !$$

7a

! ! !! ❞! !!$$
✁
✁
✁
✁

7b

!!!
!❞!

!!!
8a

!!!!

!❞!
!!

$
$

$
$

8b

!!!!!

!❞ !
!

✁
✁
✁
✁
✁
✁
✁
✁

8c !!
!!

!❞
!

!! !
❅

❅
❅

❅
❅

❅

9

Figure 2. The 16 equivalence classes of reflexive lattice polygons in R2

(3;1,1,1,1) (3;1,1,1,1) (3;1,1,1) (3;1,1,1) (3;1,1,1) (3;1,1,1)

(3;1,1) (3;1,1) (4;2,2) (3;1)(4;2,2) (3)
11 / 24



Packing density “Symplectic” Fibonacci staircase Other infinite staircases Search and proof

Region Ω ⊂ R2  toric domain
X =

{
(z1, z2) ∈ C2|π(|z1|2, |z2|2) ∈ Ω

}
⊂ C2.

Theorem (Cristofaro-Gardiner–Holm–Mandini–P.)
For the toric domains corresponding to these twelve regions,
the embedding capacity function fX (a) = inf{λ|E(1,a) ↪→ λX}
has an infinite staircase.

382 Chapter 8. The Canonical Divisor of a Toric Variety

Lemma 8.3.6. Let m,m′ be distinct lattice points on the boundary of a reflexive
polytope P. Then exactly one of the following holds:
(a) m and m′ lie in a common edge of P,
(b) m+m′ = 0, or
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The proof is left to the reader as Exercise 8.3.3.
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Lemma8.3.6.Letm,m′bedistinctlatticepointsontheboundaryofareflexive
polytopeP.Thenexactlyoneofthefollowingholds:
(a)mandm′lieinacommonedgeofP,
(b)m+m′=0,or
(c)m+m′isalsoontheboundaryofP.

TheproofislefttothereaderasExercise8.3.3.

The2-DimensionalCase.Thefollowingtheoremclassifiesreflexivepolygonsin
theplaneMR≃R2,uptolatticeequivalence.Figure2shows16latticepolygons,
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Lemma 8.3.6. Let m,m′ be distinct lattice points on the boundary of a reflexive
polytope P. Then exactly one of the following holds:
(a) m and m′ lie in a common edge of P,
(b) m+m′ = 0, or
(c) m+m′ is also on the boundary of P.

The proof is left to the reader as Exercise 8.3.3.

The 2-Dimensional Case. The following theorem classifies reflexive polygons in
the plane MR ≃ R2, up to lattice equivalence. Figure 2 shows 16 lattice polygons,
where the open circle in the center of each polygon is the origin and the solid circles
are the lattice points on the boundary. The numbers in the labels give the number
of boundary lattice points. Polygons 3 and 9 are the dual pair from Example 8.3.2.
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Lemma 8.3.6. Let m,m′ be distinct lattice points on the boundary of a reflexive
polytope P. Then exactly one of the following holds:
(a) m and m′ lie in a common edge of P,
(b) m+m′ = 0, or
(c) m+m′ is also on the boundary of P.

The proof is left to the reader as Exercise 8.3.3.

The 2-Dimensional Case. The following theorem classifies reflexive polygons in
the plane MR ≃ R2, up to lattice equivalence. Figure 2 shows 16 lattice polygons,
where the open circle in the center of each polygon is the origin and the solid circles
are the lattice points on the boundary. The numbers in the labels give the number
of boundary lattice points. Polygons 3 and 9 are the dual pair from Example 8.3.2.
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Lemma8.3.6.Letm,m′bedistinctlatticepointsontheboundaryofareflexive
polytopeP.Thenexactlyoneofthefollowingholds:
(a)mandm′lieinacommonedgeofP,
(b)m+m′=0,or
(c)m+m′isalsoontheboundaryofP.
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382 Chapter 8. The Canonical Divisor of a Toric Variety

Lemma 8.3.6. Let m,m′ be distinct lattice points on the boundary of a reflexive
polytope P. Then exactly one of the following holds:
(a) m and m′ lie in a common edge of P,
(b) m+m′ = 0, or
(c) m+m′ is also on the boundary of P.

The proof is left to the reader as Exercise 8.3.3.

The 2-Dimensional Case. The following theorem classifies reflexive polygons in
the plane MR ≃ R2, up to lattice equivalence. Figure 2 shows 16 lattice polygons,
where the open circle in the center of each polygon is the origin and the solid circles
are the lattice points on the boundary. The numbers in the labels give the number
of boundary lattice points. Polygons 3 and 9 are the dual pair from Example 8.3.2.
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(3;1,1,1,1) (3;1,1,1,1) (3;1,1,1) (3;1,1,1) (3;1,1,1) (3;1,1,1)

(3;1,1) (3;1,1) (4;2,2) (3;1)(4;2,2) (3)

Conjecture (Cristofaro-Gardiner–Holm–Mandini–P.)
Among the rational convex toric domains, only for these twelve
(and their scalings) does fX (a) have an infinite staircase. 13 / 24
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(Nk (a,b))k≥0: sequence formed by arranging the linear
combinations ma + nb with m,n ≥ 0 in nondecreasing
order, with repetitions.

(Nk (1,4))k≥0 = (0,1,2,3,4,4,5,5,6,6,7,7,8,8,8,9,9,9, . . .)
(Nk (2,2))k≥0 = (0,2,2,4,4,4,6,6,6,6,8,8,8,8,8,8,10,10 . . .)

(McDuff 2011)

E(a,b) ↪→ E(c,d) ⇐⇒ ∀k Nk (a,b) ≤ Nk (c,d)

So for instance, E(1,4) ↪→ E(2,2) = B(2).

(Hutchings 2010) ck (M4): numerical invariants associated
to a 4-dimensional symplectic manifold – ECH capacities.
They obstruct symplectic embeddings:

M1 ↪→ M2 =⇒ ∀k ck (M1) ≤ ck (M2)

(Cristofaro-Gardiner 2014) Furthermore, for certain types
of M1 and M2, ECH capacities are sharp obstructions to
symplectic embeddings:
=⇒ becomes ⇐⇒ .

14 / 24
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Combinatorial description of fX (a):

Since E(1,a) ↪→ λX ⇐⇒ ∀k ck (E(1,a)) ≤ ck (λX )

⇐⇒ ∀k Nk (1,a) ≤ λ ck (X ),

we have fX (a) = supk
Nk (1,a)
ck (X) .

1 2 3 4 5 6 7

0.2

0.4

0.6

0.8
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 Search Hints

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

A007826 Numbered stops on the Market-Frankford rapid transit (SEPTA) railway line in Philadelphia, PA

USA.

6

2, 5, 8, 11, 13, 15, 30, 34, 40, 46, 52, 56, 60, 63, 69 (list; graph; refs; listen; history; text; internal format)

OFFSET 1,1

COMMENTS Formally abbreviated as The Blue Line (and known informally as 'The El'),

the Market-Frankford Line extends East to West from slightly to the east

of 2nd Street through the city line to the western suburbs at 63rd Street

and then on to 69th Street Transportation Center, lined up almost entirely

with the major dividing thoroughfare Market Street.  It is actually a

subway at the eastern end of this portion and through to beyond the 40th

Street stop (a(1)-a(9) represent subway stops), passing under the

Schuylkill River (along with trolley lines 10, 11, 13, 34 and 36) closer

to 30th than to 15th Street.  The only non-numbered stop on this end is

suburban Milbourne between 63rd and 69th. The 'Frankford end' runs in a

somewhat northeasterly direction and has all stops only with non-number

names (and is entirely above ground).  The semi-express A and B versions

of the train both skip certain stops at peak travel times, and the only

regular trains are unmarked or one of these two versions. The train is

substituted for with bus service during overnight hours. - James G.

Merickel, Mar 19 2014

REFERENCES Ayshe Ozbekhan, Letter to N. J. A. Sloane, Oct 04, 1994.

LINKS Table of n, a(n) for n=1..15.

Wikipedia, Market-Frankford Line

FORMULA a(n) = 2 + 3 n - binomial(n, 4) + 3 binomial(n, 5) + 7 binomial(n, 6) - 66

binomial(n, 7) + 248 binomial(n, 8) - 679 binomial(n, 9) + 1554

binomial(n, 10) - 3158 binomial(n, 11) + 5897 binomial(n, 12) - 10352

binomial(n, 13) + 17384 binomial(n, 14).

CROSSREFS Cf. A000053, A000054, A001049.

Sequence in context: A167409 A082406 A215938 * A108589 A187341 A206911

Adjacent sequences:  A007823 A007824 A007825 * A007827 A007828 A007829

KEYWORD nonn,fini,full

AUTHOR N. J. A. Sloane

STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam 

Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages 

The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 3 07:00 EST 2016. Contains 269183 sequences.
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Nk (a,b) as lattice point counting:

1/b

1/a T/a

T/b

0 0

Let 4 1
a , 1

b
= and T · 4 1

a , 1
b

=

Note that
#
(

T · 4 1
a ,

1
b

⋂
Z2
)

= # {(m,n) ∈ N0 × N0|ma + nb ≤ T} .
Since (Nk (a,b))k≥0 is nondecreasing,

Nk (a,b) = inf
{

T |#
(

T · 4 1
a ,

1
b
∩ Z2

)
≥ k + 1

}
.

Ehrhart theory:
Ehrhart function of a polygon P = number of lattice points in a
scaling of P

LP(T ) = #
(

T · P ∩ Z2
)
, for T ∈ Z
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Ehrhart theory:
Ehrhart function of a polygon P = number of lattice points in a
scaling of P

LP(T ) = #
(

T · P ∩ Z2
)
, for T ∈ Z

The function L4u,v (T ) is a polynomial if u, v ∈ Z and in a few
more cases*,

a quasipolynomial if u, v ∈ Q and a few
more cases*,

and a horrible function if u, v 6∈ Q.
(* These “few more cases” of period collapse is when infinite
staircases can happen!)
For example,

L41,1(T ) = 1
2T 2 + 3

2T + 1

L4 1
3 ,

1
3

(T ) =





1
18

(
T 2 + 9T + 18

)
if T ≡ 0

1
18

(
T 2 + 7T + 10

)
if T ≡ 1

1
18

(
T 2 + 5T + 4

)
if T ≡ 2

(mod 3)

and...
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...for u, v /∈ Q, define α := u + v and β := 1
u + 1

v . Then:

L4 1
u ,

1
v

(T ) =



b T
α c∑

m=0

bβ(T −mα)c


+σ(T )+#

{
0 ≤ m ≤ bT

α
c|{β(T −mα)} > {T −mα

u
}
}

where σ(T ) = 1 if T
α ∈ Z and 0 otherwise.

This turns out to be:

L4 1
u ,

1
v

(T ) =
1

2uv
T 2 +

1
2

(
1
u

+
1
v

)
T + o(T )

and under certain conditions:

L4 1
u ,

1
v

(T ) =
1

2uv
T 2+

1
2

(
1
u

+
1
v

)
T +1+

T
α∑

m=1

(
{m u

v
} − 1

2

)
+

T
α∑

m=1

(
{m v

u
} − 1

2

)
.
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Thank you.
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