Deep neural networks, universal approximation, and nonlinear geometric control.

Paulo Tabuada1 and Bahman Gharesifard2

1Vijay K. Dhir Professor of Engineering
Cyber-Physical Systems Laboratory
Department of Electrical and Computer Engineering
University of California at Los Angeles

2Department of Electrical and Computer Engineering
University of California at Los Angeles
The need to understand the world through vision and LiDAR data has inexorably linked deep learning and autonomy.
The need to understand the world through vision and LiDAR data has inexorably linked deep learning and autonomy.

Here is one example from the automotive domain.
The need to understand the world through vision and LiDAR data has inexorably linked deep learning and autonomy.

Here is one example from the automotive domain.
Autonomy and deep learning

- The need to understand the world through vision and LiDAR data has inexorably linked deep learning and autonomy.
- Here is one example from the robotics domain.
The need to understand the world through vision and LiDAR data has inexorably linked deep learning and autonomy.

Here is one example from the robotics domain.

The Qualcomm Robotics RB5 Platform supports the development of next generation of high-compute, AI-enabled, low power robots and drones for the consumer, enterprise, defense, industrial and professional service sectors that can be connected by 5G.

The platform’s Qualcomm QRB5165 processor, customized for robotics applications, offers a powerful heterogeneous computing architecture coupled with the leading 5th generation Qualcomm® Artificial Intelligence (AI) Engine delivering 15 Trillion Operations Per Second (TOPS) of AI performance to efficiently run complex AI and deep learning workloads and on-device edge inferencing while using lower power, on-device machine learning, and accurate edge inferencing. The processor also offers a powerful image signal processor (ISP) with support for seven concurrent cameras, a dedicated computer
Autonomy and deep learning

- Clearly, industry is ahead of academia.
Autonomy and deep learning

- Clearly, industry is ahead of academia.
- Formal guarantees when deep learning is used within a control loop?
Autonomy and deep learning

- Clearly, industry is ahead of academia.
- Formal guarantees when deep learning is used within a control loop?
- Today:
 1. What are deep residual neural networks (ResNets)?
 2. Control system models of ResNets.
Autonomy and deep learning

- Clearly, industry is ahead of academia.
- Formal guarantees when deep learning is used within a control loop?
- Today:
 1. What are deep residual neural networks (ResNets)?
 2. Control system models of ResNets.
 - Can ResNets memorize finitely many samples?
Autonomy and deep learning

- Clearly, industry is ahead of academia.
- Formal guarantees when deep learning is used within a control loop?

Today:

1. What are deep residual neural networks (ResNets)?
2. Control system models of ResNets.
 - Can ResNets memorize finitely many samples?
 - Can ResNets approximate any continuous function?
Autonomy and deep learning

- Clearly, industry is ahead of academia.
- Formal guarantees when deep learning is used within a control loop?
- Today:
 1. What are deep residual neural networks (ResNets)?
 2. Control system models of ResNets.
 - Can ResNets memorize finitely many samples?
 - Can ResNets approximate any continuous function?
 5. A deterministic generalization bound.
 - Stability guarantees for feedback loops with deep ResNets in the perception pipeline.
Autonomy and deep learning

- Clearly, industry is ahead of academia.
- Formal guarantees when deep learning is used within a control loop?
- Today:
 1. What are deep residual neural networks (ResNets)?
 2. Control system models of ResNets.
 - Can ResNets memorize finitely many samples?
 - Can ResNets approximate any continuous function?
 5. A deterministic generalization bound.
 - Stability guarantees for feedback loops with deep ResNets in the perception pipeline.
 6. Outlook
Residual Neural Networks
What are ResNets?

- A diagrammatic depiction of a neural network:

```
Input
Layer 1 Layer 2 Layer 3
Layer ℓ
Output
```

- Let us denote by $x(k) \in \mathbb{R}^4$ the state of each layer with $k = 1, 2, \ldots, \ell$.

What are ResNets?

- A diagrammatic depiction of a neural network:

Let us denote by \(x(k) \in \mathbb{R}^4 \) the state of each layer with \(k = 1, 2, \ldots, \ell \).

The state of layer \(k + 1 \) is computed from the state of layer \(k \) according to:

\[
x(k + 1) = \Sigma(W(k)x(k) + b(k)),
\]

where \((W, b)\) are the weights of the connections (arrows) and \(\Sigma \) is of the form:

\[
\Sigma(x) = (\sigma(x_1), \sigma(x_2), \ldots, \sigma(x_n)),
\]

for an activation function \(\sigma : \mathbb{R} \rightarrow \mathbb{R} \).
What are ResNets?

- A diagrammatic depiction of a neural network:

![Diagram of a neural network]

- Let us denote by $x(k) \in \mathbb{R}^4$ the state of each layer with $k = 1, 2, \ldots, \ell$.

- For ResNets, the state of layer $k + 1$ is computed from the state of layer k according to:

$$x(k + 1) = x(k) + S(k)\Sigma(W(k)x(k) + b(k)),$$

where (S, W, b) are the weights of the connections (arrows) and Σ is of the form:

$$\Sigma(x) = (\sigma(x_1), \sigma(x_2), \ldots, \sigma(x_n)),$$

for an activation function $\sigma : \mathbb{R} \rightarrow \mathbb{R}$.

Paulo Tabuada (CyPhyLab - UCLA)
It was observed in the last 4 years\(^1\) that the equation:

\[
x(k + 1) = x(k) + s(k)\Sigma(W(k)x(k) + b(k)),
\]

is remarkably similar to the forward Euler discretization of the continuous-time control system:

\[
\dot{x} = s\Sigma(Wx + b),
\]

with state \(x \in \mathbb{R}^n\) and where \((s, W, b) \in \mathbb{R} \times \mathbb{R}^{n \times n} \times \mathbb{R}^n\) are regarded as control inputs.

\(^1\)A proposal on machine learning via dynamical systems

Stable architectures for deep neural networks

Beyond finite layer neural networks: Bridging deep architectures and numerical differential equations
It was observed in the last 4 years\(^1\) that the equation:

\[
x(k + 1) = x(k) + s(k)\Sigma(W(k)x(k) + b(k)),
\]

is remarkably similar to the forward Euler discretization of the continuous-time control system:

\[
\dot{x} = s\Sigma(Wx + b),
\]

with state \(x \in \mathbb{R}^n\) and where \((s, W, b) \in \mathbb{R} \times \mathbb{R}^{n \times n} \times \mathbb{R}^n\) are regarded as control inputs.

Properties of (2) approximately transfer to (1) by time-discretizing solutions.

\(^1\) A proposal on machine learning via dynamical systems

Stable architectures for deep neural networks

Beyond finite layer neural networks: Bridging deep architectures and numerical differential equations
Memorization Capabilities of Residual Neural Networks
Memorization capabilities of ResNets

Problem (Memorization)

Given:

- a function $f : E \rightarrow \mathbb{R}^n$ defined on a compact set $E \subset \mathbb{R}^n$,
- a finite set $E_{\text{samples}} \subset E$,
- the evaluation of f on E_{samples}, i.e., $f(x)$ for each $x \in E_{\text{samples}},$

does there exist a ResNet outputing $f(x)$ for each input $x \in E_{\text{samples}}$?
Problem (Memorization)

Given:

- a function $f : E \to \mathbb{R}^n$ defined on a compact set $E \subset \mathbb{R}^n$,
- a finite set $E_{\text{samples}} \subset E$,
- the evaluation of f on E_{samples}, i.e., $f(x)$ for each $x \in E_{\text{samples}},$

does there exist a ResNet outputing $f(x)$ for each input $x \in E_{\text{samples}}$?

Problem (Memorization)

Does there exist a time $\tau \in \mathbb{R}_0^+$ and an input $(s, W, b) : [0, \tau] \to \mathbb{R} \times \mathbb{R}^{n \times n} \times \mathbb{R}^n$ so that the solution ξ of:

$$\dot{x} = s\Sigma(Wx + b),$$

satisfies $\xi(0) = x$ and $\xi(\tau) = f(x)$ for every $x \in E_{\text{samples}}$.
Memorization capabilities of ResNets

Problem (Memorization)

Given:

- a function $f : E \rightarrow \mathbb{R}^n$ defined on a compact set $E \subset \mathbb{R}^n$,
- a finite set $E_{\text{samples}} \subset E$,
- the evaluation of f on E_{samples}, i.e., $f(x)$ for each $x \in E_{\text{samples}}$,

does there exist a ResNet outputing $f(x)$ for each input $x \in E_{\text{samples}}$?

Problem (Memorization)

Does there exist a time $\tau \in \mathbb{R}_0^+$ and an input $(s, W, b) : [0, \tau] \rightarrow \mathbb{R} \times \mathbb{R}^{n\times n} \times \mathbb{R}^n$ so that the solution ξ of:

$$\dot{x} = s\Sigma(Wx + b),$$

satisfies $\xi(0) = x$ and $\xi(\tau) = f(x)$ for every $x \in E_{\text{samples}}$.

- Is this a controllability problem?
Let’s consider the case where $E_{\text{samples}} = \{x^1, x^2\}$.
Let’s consider the case where $E_{\text{samples}} = \{x^1, x^2\}$.

\[
\begin{align*}
\dot{x}^1 &= s\Sigma(Wx^1 + b) \\
\dot{x}^2 &= s\Sigma(Wx^2 + b)
\end{align*}
\]

The same input needs to control two copies of the same system.
Memorization capabilities of ResNets

Controllability

- Let’s consider the case where $E_{\text{samples}} = \{x^1, x^2\}$.

\[
\begin{align*}
\dot{x}^1 &= s\Sigma (W x^1 + b) \\
\dot{x}^2 &= s\Sigma (W x^2 + b)
\end{align*}
\]

The same input needs to control two copies of the same system.

- Controllability on $\mathbb{R}^n \times \mathbb{R}^n$?
Memorization capabilities of ResNets

Controllability

- Let’s consider the case where $E_{\text{samples}} = \{x^1, x^2\}$.

\[
\begin{align*}
\dot{x}^1 &= s\Sigma(Wx^1 + b) \\
\dot{x}^2 &= s\Sigma(Wx^2 + b)
\end{align*}
\]

The same input needs to control two copies of the same system.

- Controllability on $\mathbb{R}^n \times \mathbb{R}^n$?
Memorization capabilities of ResNets

Controllability

- Let's consider the case where $E_{\text{samples}} = \{x^1, x^2\}$.

\[
\dot{x}^1 = s\Sigma(Wx^1 + b) \\
\dot{x}^2 = s\Sigma(Wx^2 + b)
\]

The same input needs to control two copies of the same system.

- Controllability on $\mathbb{R}^n \times \mathbb{R}^n$?
Memorization capabilities of ResNets

Controllability

- Let's consider the case where $E_{\text{samples}} = \{x^1, x^2\}$.

\[
\begin{align*}
\dot{x}^1 &= s \Sigma(Wx^1 + b) \\
\dot{x}^2 &= s \Sigma(Wx^2 + b)
\end{align*}
\]

The same input needs to control two copies of the same system.

- Controllability on $\mathbb{R}^n \times \mathbb{R}^n$?
Memorization capabilities of ResNets

Controllability

- Let's consider the case where $E_{\text{samples}} = \{x^1, x^2\}$.

\[
\dot{x}^1 = s \Sigma(Wx^1 + b) \\
\dot{x}^2 = s \Sigma(Wx^2 + b)
\]

The same input needs to control two copies of the same system.

- Controllability on $\mathbb{R}^n \times \mathbb{R}^n$?
Memorization capabilities of ResNets

Controllability

- Let’s consider the case where \(E_{\text{samples}} = \{x^1, x^2\} \).

\[
\begin{align*}
\dot{x}^1 &= s\Sigma(Wx^1 + b) \\
\dot{x}^2 &= s\Sigma(Wx^2 + b)
\end{align*}
\]

The same input needs to control two copies of the same system.

- Controllability on \(\mathbb{R}^n \times \mathbb{R}^n \)?
Given a finite set of samples $E_{samples} = \{x^1, x^2, \ldots, x^d\}$ we consider the ensemble control system:

$$\dot{X} = \left[s\Sigma(WX_{\bullet 1} + b)|s\Sigma(WX_{\bullet 2} + b)| \ldots |s\Sigma(WX_{\bullet d} + b) \right], \quad (3)$$

where the state $X(t) \in \mathbb{R}^{n \times d}$ is the matrix:

$$X(t) = [X_{\bullet 1}(t)|X_{\bullet 2}(t)| \ldots |X_{\bullet d}(t)].$$
Memorization capabilities of ResNets

Ensemble controllability

- Given a finite set of samples $E_{\text{samples}} = \{x^1, x^2, \ldots, x^d\}$ we consider the ensemble control system:

$$\dot{X} = \begin{bmatrix} s\Sigma(WX_1 + b) | s\Sigma(WX_2 + b) | \ldots | s\Sigma(WX_d + b) \end{bmatrix},$$ \hspace{1cm} (3)

where the state $X(t) \in \mathbb{R}^{n \times d}$ is the matrix:

$$X(t) = \begin{bmatrix} X_1(t) | X_2(t) | \ldots | X_d(t) \end{bmatrix}.$$

- We can now ask: does there exist an input $(s, W, b) : [0, \tau] \rightarrow \mathbb{R} \times \mathbb{R}^{n \times n} \times \mathbb{R}^n$ so that the solution X of (3) satisfies:

$$X(0) = \begin{bmatrix} x^1 | x^2 | \ldots | x^d \end{bmatrix} \text{ and } X(\tau) = \begin{bmatrix} f(x^1) | f(x^2) | \ldots | f(x^d) \end{bmatrix}?$$
As typically done in geometric control theory, we work with piecewise constant control inputs so that for each choice of input we obtain a vector field:

\[\mathcal{F} = \{Z_1, Z_2, \ldots, Z_k\}. \]

2. **Orbits of families of vector fields and integrability of distributions.**

As typically done in geometric control theory, we work with piecewise constant control inputs so that for each choice of input we obtain a vector field:

\[\mathcal{F} = \{Z_1, Z_2, \ldots, Z_k\}. \]

What is the orbit (the reachable space) of the family \(\mathcal{F} \) of vector fields?

Memorization capabilities of ResNets

Ensemble controllability

- As typically done in geometric control theory, we work with piecewise constant control inputs so that for each choice of input we obtain a vector field:

\[\mathcal{F} = \{Z_1, Z_2, \ldots, Z_k\}. \]

- What is the orbit (the reachable space) of the family \(\mathcal{F} \) of vector fields?

- Difficult problem, in general, that has a simpler answer\(^2\) when \(\mathcal{F} \) is symmetric, i.e.:

\[Z \in \mathcal{F} \implies -Z \in \mathcal{F}. \]

Memorization capabilities of ResNets
Ensemble controllability

- As typically done in geometric control theory, we work with piecewise constant control inputs so that for each choice of input we obtain a vector field:

\[\mathcal{F} = \{ Z_1, Z_2, \ldots, Z_k \}. \]

- What is the orbit (the reachable space) of the family \(\mathcal{F} \) of vector fields?

- Difficult problem, in general, that has a simpler answer\(^2\) when \(\mathcal{F} \) is symmetric, i.e.:

\[Z \in \mathcal{F} \implies -Z \in \mathcal{F}. \]

- It suffices to choose the inputs \(s \in \mathbb{R} \) to range in \(\{-1, 1\} \) to obtain symmetry.

As typically done in geometric control theory, we work with piecewise constant control inputs so that for each choice of input we obtain a vector field:

\[\mathcal{F} = \{Z_1, Z_2, \ldots, Z_k\}. \]

What is the orbit (the reachable space) of the family \(\mathcal{F} \) of vector fields?

Difficult problem, in general, that has a simpler answer\(^2\) when \(\mathcal{F} \) is symmetric, i.e.:

\[Z \in \mathcal{F} \implies -Z \in \mathcal{F}. \]

It suffices to choose the inputs \(s \in \mathbb{R} \) to range in \(\{-1, 1\} \) to obtain symmetry.

The answer is then given by the Lie algebra rank condition:

the dimension of the Lie algebra generated by \(\mathcal{F} \) equals \(nd \) at every \(X \in \mathbb{R}^{n \times d} \).

The Lie algebra generated by \mathcal{F} is the smallest vector subspace of $T_{\mathbb{R}^{n \times d}}$ containing \mathcal{F} and closed under Lie brackets:

$$[Z_1, Z_2] = \frac{\partial Z_2}{\partial A} Z_1 - \frac{\partial Z_1}{\partial A} Z_2.$$
Memorization capabilities of ResNets

Ensemble controllability

- The Lie algebra generated by \mathcal{F} is the smallest vector subspace of $T_{\mathbb{R}^{n\times d}}$ containing \mathcal{F} and closed under Lie brackets:

$$[Z_1, Z_2] = \frac{\partial Z_2}{\partial A} Z_1 - \frac{\partial Z_1}{\partial A} Z_2.$$

- Since the activation function is not known, these brackets are not known.
Memorization capabilities of ResNets

Ensemble controllability

- The Lie algebra generated by \mathcal{F} is the smallest vector subspace of $T_{\mathbb{R}^{n \times d}}$ containing \mathcal{F} and closed under Lie brackets:

 \[
 [Z_1, Z_2] = \frac{\partial Z_2}{\partial A} Z_1 - \frac{\partial Z_1}{\partial A} Z_2.
 \]

- Since the activation function is not known, these brackets are not known.

- Choose the inputs W and b so that the vector fields and their Lie brackets only contain:

 \[
 \sigma, D\sigma, D^2\sigma, \ldots
 \]
Memorization capabilities of ResNets

Ensemble controllability

- The Lie algebra generated by \mathcal{F} is the smallest vector subspace of $T_{\mathbb{R}^{n \times d}}$ containing \mathcal{F} and closed under Lie brackets:

$$[Z_1, Z_2] = \frac{\partial Z_2}{\partial A} Z_1 - \frac{\partial Z_1}{\partial A} Z_2.$$

- Since the activation function is not known, these brackets are not known.

- Choose the inputs W and b so that the vector fields and their Lie brackets only contain:

$$\sigma, D\sigma, D^2\sigma, \ldots$$

- With such choice, and after judicious (and tedious) manipulations, the rank of the Lie algebra is nd provided the rank of the following matrix is n:

$$
\begin{bmatrix}
1 & \sigma(A_{1\ell}) & D\sigma(A_{1\ell}) & \cdots & D^{n-2}\sigma(A_{1\ell}) \\
1 & \sigma(A_{2\ell}) & D\sigma(A_{2\ell}) & \cdots & D^{n-2}\sigma(A_{2\ell}) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \sigma(A_{n\ell}) & D\sigma(A_{n\ell}) & \cdots & D^{n-2}\sigma(A_{n\ell})
\end{bmatrix}.
$$
Memorization capabilities of ResNets

Ensemble controllability

- When is the determinant of this matrix nonzero:

$$\begin{bmatrix}
1 & \sigma(A_{1\ell}) & D\sigma(A_{1\ell}) & \cdots & D^{n-2}\sigma(A_{1\ell}) \\
1 & \sigma(A_{2\ell}) & D\sigma(A_{2\ell}) & \cdots & D^{n-2}\sigma(A_{2\ell}) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \sigma(A_{n\ell}) & D\sigma(A_{n\ell}) & \cdots & D^{n-2}\sigma(A_{n\ell})
\end{bmatrix}$$
Memorization capabilities of ResNets

Ensemble controllability

- When is the determinant of this matrix nonzero:

\[
\begin{bmatrix}
1 & \sigma(A_{1\ell}) & D\sigma(A_{1\ell}) & \cdots & D^{n-2}\sigma(A_{1\ell}) \\
1 & \sigma(A_{2\ell}) & D\sigma(A_{2\ell}) & \cdots & D^{n-2}\sigma(A_{2\ell}) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \sigma(A_{n\ell}) & D\sigma(A_{n\ell}) & \cdots & D^{n-2}\sigma(A_{n\ell})
\end{bmatrix}
\]

- **Key idea:** relation to Vandermonde matrices?
Lemma

Let \(\sigma : \mathbb{R} \rightarrow \mathbb{R} \) be a function that satisfies the quadratic differential equation:

\[
D\sigma(x) = a_0 + a_1 \sigma(x) + a_2 \sigma^2(x),
\]

where \(a_0, a_1, a_2 \in \mathbb{R} \). Suppose that derivatives of \(\sigma \) of up to order \((\ell - 2) \) exist at \(\ell \) points \(x_1, \ldots, x_\ell \in \mathbb{R} \). Then, the determinant of the matrix:

\[
L(x_1, x_2, \ldots, x_\ell) = \begin{bmatrix}
 1 & 1 & \cdots & 1 \\
 \sigma(x_1) & \sigma(x_2) & \cdots & \sigma(x_\ell) \\
 D\sigma(x_1) & D\sigma(x_2) & \cdots & D\sigma(x_\ell) \\
 \vdots & \vdots & \ddots & \vdots \\
 D^{\ell-2}\sigma(x_1) & D^{\ell-2}\sigma(x_2) & \cdots & D^{\ell-2}\sigma(x_\ell)
\end{bmatrix},
\]

is given by:

\[
\det L(x_1, x_2, \ldots, x_\ell) = \prod_{i=1}^{\ell-2} i! a_2^i \prod_{1 \leq i < j \leq \ell} (\sigma(x_i) - \sigma(x_j)).
\]
Memorization capabilities of ResNets

Ensemble controllability

When is this expression non-zero:

$$\det L(x_1, x_2, \ldots, x_\ell) = \prod_{i=1}^{\ell-2} i!a_2^i \prod_{1 \leq i < j \leq \ell} (\sigma(x_i) - \sigma(x_j))$$?
Memorization capabilities of ResNets

Ensemble controllability

- When is this expression non-zero:

$$\det L(x_1, x_2, \ldots, x_\ell) = \prod_{i=1}^{\ell-2} i! a_2^i \prod_{1 \leq i < j \leq \ell} (\sigma(x_i) - \sigma(x_j))?$$

- If $a_2 \neq 0$ and σ is injective, $\prod_{1 \leq i < j \leq \ell} (x_i - x_j) \neq 0$ implies $\det L \neq 0$.
Memorization capabilities of ResNets
Ensemble controllability

- When is this expression non-zero:

$$\det L(x_1, x_2, \ldots, x_\ell) = \prod_{i=1}^{\ell-2} i! a_2^i \prod_{1 \leq i < j \leq \ell} (\sigma(x_i) - \sigma(x_j))$$?

- If $a_2 \neq 0$ and σ is injective, $\prod_{1 \leq i < j \leq \ell} (x_i - x_j) \neq 0$ implies $\det L \neq 0$.

- Two different ensemble elements i and j cannot be in states $X_{\bullet i}$ and $X_{\bullet j}$ that share an entry, i.e., for any ℓ: $X_{\ell i} \neq X_{\ell j}$.
Memorization capabilities of ResNets

Ensemble controllability

- When is this expression non-zero:

\[\det L(x_1, x_2, \ldots, x_\ell) = \prod_{i=1}^{\ell-2} i! a_2^i \prod_{1 \leq i < j \leq \ell} (\sigma(x_i) - \sigma(x_j)) \]?

- If \(a_2 \neq 0 \) and \(\sigma \) is injective, \(\prod_{1 \leq i < j \leq \ell} (x_i - x_j) \neq 0 \) implies \(\det L \neq 0 \).

- Two different ensemble elements \(i \) and \(j \) cannot be in states \(X_{\bullet i} \) and \(X_{\bullet j} \) that share an entry, i.e., for any \(\ell \): \(X_{\ell i} \neq X_{\ell j} \).

- Are there injective activation functions \(\sigma \) satisfying \(D\sigma = a_0 + a_1 \sigma + a_2 \sigma^2 \)?
Memorization capabilities of ResNets

Ensemble controllability

- When is this expression non-zero:
 \[
 \det L(x_1, x_2, \ldots, x_\ell) = \prod_{i=1}^{\ell-2} i! a_2^i \prod_{1 \leq i < j \leq \ell} (\sigma(x_i) - \sigma(x_j))?
 \]

- If \(a_2 \neq 0\) and \(\sigma\) is injective, \(\prod_{1 \leq i < j \leq \ell} (x_i - x_j) \neq 0\) implies \(\det L \neq 0\).

- Two different ensemble elements \(i\) and \(j\) cannot be in states \(X_{\bullet i}\) and \(X_{\bullet j}\) that share an entry, i.e., for any \(\ell\): \(X_{\ell i} \neq X_{\ell j}\).

- Are there injective activation functions \(\sigma\) satisfying \(D\sigma = a_0 + a_1 \sigma + a_2 \sigma^2\) ?

<table>
<thead>
<tr>
<th>Function name</th>
<th>Definition</th>
<th>Satisfied differential equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic function</td>
<td>(\sigma(x) = \frac{1}{1 + e^{-x}})</td>
<td>(D\sigma - \sigma + \sigma^2 = 0)</td>
</tr>
<tr>
<td>Hyperbolic tangent</td>
<td>(\sigma(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}})</td>
<td>(D\sigma - 1 + \sigma^2 = 0)</td>
</tr>
<tr>
<td>Soft plus</td>
<td>(\sigma(x) = \frac{1}{r} \log(1 + e^{rx}))</td>
<td>(D^2\sigma - rD\sigma + r(D\sigma)^2 = 0)</td>
</tr>
</tbody>
</table>
Memorization capabilities of ResNets

Ensemble controllability

- When is this expression non-zero:

\[
\det L(x_1, x_2, \ldots, x_\ell) = \prod_{i=1}^{\ell-2} i! a_i^2 \prod_{1 \leq i < j \leq \ell} (\sigma(x_i) - \sigma(x_j))?
\]

- If \(a_2 \neq 0 \) and \(\sigma \) is injective, \(\prod_{1 \leq i < j \leq \ell} (x_i - x_j) \neq 0 \) implies \(\det L \neq 0 \).

- Two different ensemble elements \(i \) and \(j \) cannot be in states \(X_{\bullet i} \) and \(X_{\bullet j} \) that share an entry, i.e., for any \(\ell \): \(X_{\ell i} \neq X_{\ell j} \).

- Are there injective activation functions \(\sigma \) satisfying \(D\sigma = a_0 + a_1 \sigma + a_2 \sigma^2 \)?

<table>
<thead>
<tr>
<th>Function name</th>
<th>Definition</th>
<th>Satisfied differential equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic function</td>
<td>(\sigma(x) = \frac{1}{1 + e^{-x}})</td>
<td>(D\sigma - \sigma + \sigma^2 = 0)</td>
</tr>
<tr>
<td>Hyperbolic tangent</td>
<td>(\sigma(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}})</td>
<td>(D\sigma - 1 + \sigma^2 = 0)</td>
</tr>
<tr>
<td>Soft plus</td>
<td>(\sigma(x) = \frac{1}{r} \log(1 + e^{rx}))</td>
<td>(D^2\sigma - rD\sigma + r(D\sigma)^2 = 0)</td>
</tr>
</tbody>
</table>

Moreover, \(\lim_{r \to \infty} \frac{1}{r} \log(1 + e^{rx}) = \text{ReLU}(x) = \max\{0, x\} \).
Memorization capabilities of ResNets

Ensemble controllability

Theorem

Let $N \subset \mathbb{R}^{n \times d}$ be the set defined by:

$$N = \left\{ A \in \mathbb{R}^{n \times d} \mid \prod_{1 \leq i < j \leq d} (A_{\ell i} - A_{\ell j}) = 0, \ \ell \in \{1, \ldots, n\} \right\}.$$

Let $n > 1$ and assume the activation function σ is injective, non-negative, and satisfies $D\sigma = a_0 + a_1 \sigma + a_2 \sigma^2$ for some $a_2 \neq 0$. Then the ensemble control system is controllable on the submanifold $M = \mathbb{R}^{n \times d} \setminus N$.
 Memorization capabilities of ResNets

Ensemble controllability

Theorem

Let $N \subset \mathbb{R}^{n \times d}$ be the set defined by:

$$N = \left\{ A \in \mathbb{R}^{n \times d} \mid \prod_{1 \leq i < j \leq d} (A_{\ell i} - A_{\ell j}) = 0, \, \ell \in \{1, \ldots, n\} \right\}.$$

Let $n > 1$ and assume the activation function σ is injective, non-negative, and satisfies $D\sigma = a_0 + a_1 \sigma + a_2 \sigma^2$ for some $a_2 \neq 0$. Then the ensemble control system is controllable on the submanifold $M = \mathbb{R}^{n \times d} \setminus N$.

- When $n > 1$, M is connected, open, and dense in $\mathbb{R}^{n \times d}$.

When $n > 1$, M is connected, open, and dense in $\mathbb{R}^{n \times d}$.

Theorem

Let $N \subset \mathbb{R}^{n \times d}$ be the set defined by:

$$N = \left\{ A \in \mathbb{R}^{n \times d} \mid \prod_{1 \leq i < j \leq d} (A_{\ell i} - A_{\ell j}) = 0, \, \ell \in \{1, \ldots, n\} \right\}.$$

Let $n > 1$ and assume the activation function σ is injective, non-negative, and satisfies $D\sigma = a_0 + a_1 \sigma + a_2 \sigma^2$ for some $a_2 \neq 0$. Then the ensemble control system is controllable on the submanifold $M = \mathbb{R}^{n \times d} \setminus N$.

- When $n > 1$, M is connected, open, and dense in $\mathbb{R}^{n \times d}$.
- If E_{samples} and $f(E_{\text{samples}})$ are subsets of M, a ResNet can memorize them exactly.
Memorization capabilities of ResNets

Ensemble controllability

Theorem

Let \(N \subset \mathbb{R}^{n \times d} \) be the set defined by:

\[
N = \left\{ A \in \mathbb{R}^{n \times d} \mid \prod_{1 \leq i < j \leq d} (A_{\ell i} - A_{\ell j}) = 0, \, \ell \in \{1, \ldots, n\} \right\}.
\]

Let \(n > 1 \) and assume the activation function \(\sigma \) is injective, non-negative, and satisfies \(D\sigma = a_0 + a_1 \sigma + a_2 \sigma^2 \) for some \(a_2 \neq 0 \). Then the ensemble control system is controllable on the submanifold \(M = \mathbb{R}^{n \times d} \setminus N \).

- When \(n > 1 \), \(M \) is connected, open, and dense in \(\mathbb{R}^{n \times d} \).
- If \(E_{\text{samples}} \) and \(f(E_{\text{samples}}) \) are subsets of \(M \), a ResNet can memorize them exactly.
- Otherwise we can perturb \(E_{\text{samples}} \) or/and \(f(E_{\text{samples}}) \) to make them subsets of \(M \).
Approximation Capabilities of Residual Neural Networks
We established controllability on the finite dimensional state space $\mathbb{R}^{n \times d}$.

But we would really like to establish controllability on some infinite dimensional space of functions.\(^3\)

Approximation capabilities of ResNets

- We established controllability on the finite dimensional state space $\mathbb{R}^{n \times d}$.
- But we would really like to establish controllability on some infinite dimensional space of functions\(^3\).
- Let $\phi^t : \mathbb{R}^n \rightarrow \mathbb{R}^n$ be the flow defined by the solution of the control system:
 $$\dot{x} = s \Sigma (Wx + b),$$
 i.e., $\phi^t(x) = \xi(t)$ where ξ is the solution satisfying $\xi(0) = x$.

\(^3\)Control on the manifold of mappings as a setting for deep learning.
We established controllability on the finite dimensional state space $\mathbb{R}^{n \times d}$.

But we would really like to establish controllability on some infinite dimensional space of functions\(^3\).

Let $\phi^t : \mathbb{R}^n \rightarrow \mathbb{R}^n$ be the flow defined by the solution of the control system:

$$\dot{x} = s\Sigma(Wx + b),$$

i.e., $\phi^t(x) = \xi(t)$ where ξ is the solution satisfying $\xi(0) = x$.

Do there exist inputs $(s, W, b) : [0, \tau] \rightarrow \mathbb{R} \times \mathbb{R}^{n \times n} \times \mathbb{R}^n$ resulting in a flow ϕ^t satisfying:

$$\phi^0(x) = x \text{ and } \phi^\tau(x) = f(x)?$$

Approximation capabilities of ResNets

- We established controllability on the finite dimensional state space $\mathbb{R}^{n \times d}$.
- But we would really like to establish controllability on some infinite dimensional space of functions3.
- Let $\phi^t : \mathbb{R}^n \rightarrow \mathbb{R}^n$ be the flow defined by the solution of the control system:
 \[\dot{x} = s \Sigma (Wx + b), \]
 i.e., $\phi^t(x) = \xi(t)$ where ξ is the solution satisfying $\xi(0) = x$.
- Do there exist inputs $(s, W, b) : [0, \tau] \rightarrow \mathbb{R} \times \mathbb{R}^{n \times n} \times \mathbb{R}^n$ resulting in a flow ϕ^t satisfying:
 \[\phi^0(x) = x \text{ and } \phi^\tau(x) = f(x)? \]
- Can we use the previous controllability result as a stepping stone?
 - If we map finitely many points to the right location, can things go wrong for the points we leave out?

Consider the function interpolation problem.

How to control the behavior of the interpolating function between the interpolation points?
Consider the function interpolation problem.

How to control the behavior of the interpolating function between the interpolation points?

Key idea: monotonicity.
What is monotonicity?

Define the ordering \preceq on \mathbb{R}^n by $x \preceq x'$ iff $x_i \leq x'_i$ for all $i = 1, 2, \ldots, n$.

A flow $\phi: \mathbb{R}^n \to \mathbb{R}^n$ is monotone if:

$x \preceq x' \implies \phi(x) \preceq \phi(x')$.

Paulo Tabuada (CyPhyLab - UCLA)
Approximation capabilities of ResNets

Monotonicity

- What is monotonicity?
 - Define the ordering \preceq on \mathbb{R}^n by $x \preceq x'$ iff $x_i \leq x_i'$ for all $i = 1, 2, \ldots, n$.
 - A flow $\phi : \mathbb{R}^n \to \mathbb{R}^n$ is monotone if:

$$x \preceq x' \implies \phi(x) \preceq \phi(x').$$
Approximation capabilities of ResNets

Monotonicity

- What is monotonicity?
 - Define the ordering \(\preceq \) on \(\mathbb{R}^n \) by \(x \preceq x' \) iff \(x_i \leq x'_i \) for all \(i = 1, 2, \ldots, n \).
 - A flow \(\phi : \mathbb{R}^n \to \mathbb{R}^n \) is monotone if:

\[
x \preceq x' \implies \phi(x) \preceq \phi(x').
\]
Approximation capabilities of ResNets

Monotonicity

- What is monotonicity?
- Define the ordering \preceq on \mathbb{R}^n by $x \preceq x'$ iff $x_i \leq x'_i$ for all $i = 1, 2, \ldots, n$.
- A flow $\phi : \mathbb{R}^n \to \mathbb{R}^n$ is monotone if:

$$x \preceq x' \implies \phi(x) \preceq \phi(x').$$
What is monotonicity?

- Define the ordering \(\preceq \) on \(\mathbb{R}^n \) by \(x \preceq x' \) iff \(x_i \leq x'_i \) for all \(i = 1, 2, \ldots, n \).
- A flow \(\phi : \mathbb{R}^n \to \mathbb{R}^n \) is monotone if:

\[
x \preceq x' \implies \phi(x) \preceq \phi(x').
\]
Approximation capabilities of ResNets

Monotonicity

What is monotonicity?

- Define the ordering \(\preceq \) on \(\mathbb{R}^n \) by \(x \preceq x' \) iff \(x_i \leq x'_i \) for all \(i = 1, 2, \ldots, n \).
- A flow \(\phi : \mathbb{R}^n \rightarrow \mathbb{R}^n \) is monotone if:

\[
x \preceq x' \implies \phi(x) \preceq \phi(x').
\]
Approximation capabilities of ResNets

Main result

- When the function f to be learned is monotone, we can construct a monotone flow ϕ^t, by using the previous controllability result, approximating f on E_{samples}.

Theorem

Let $n > 1$ and assume the activation function σ is injective, non-negative, and satisfies $D\sigma = a_0 + a_1\sigma + a_2\sigma^2$ for some $a_2 \neq 0$. Then, for every monotone analytic function $f : \mathbb{R}^n \to \mathbb{R}^n$, for every compact set $E \subset \mathbb{R}^n$, and for every $\varepsilon \in \mathbb{R}^+$ there exist a time $\tau \in \mathbb{R}^+$ and an input $(s, W, b) : [0, \tau] \to \mathbb{R} \times \mathbb{R}^{n \times n} \times \mathbb{R}^n$ so that the flow $\phi^\tau : \mathbb{R}^n \to \mathbb{R}^n$ defined by the solution of $\dot{x} = s\Sigma(Wx + b)$ under the said input satisfies:

$$\|f - \phi^\tau\|_{L^\infty(E)} \leq \varepsilon.$$
Approximation capabilities of ResNets

Main result

- When the function f to be learned is monotone, we can construct a monotone flow ϕ^t, by using the previous controllability result, approximating f on E_{samples}.

Theorem

Let $n > 1$ and assume the activation function σ is injective, non-negative, and satisfies $D\sigma = a_0 + a_1\sigma + a_2\sigma^2$ for some $a_2 \neq 0$. Then, for every monotone analytic function $f : \mathbb{R}^n \to \mathbb{R}^n$, for every compact set $E \subset \mathbb{R}^n$, and for every $\varepsilon \in \mathbb{R}^+$ there exist a time $\tau \in \mathbb{R}^+$ and an input $(s, W, b) : [0, \tau] \to \mathbb{R} \times \mathbb{R}^{n \times n} \times \mathbb{R}^n$ so that the flow $\phi^\tau : \mathbb{R}^n \to \mathbb{R}^n$ defined by the solution of $\dot{x} = s\Sigma(Wx + b)$ under the said input satisfies:

$$\|f - \phi^\tau\|_{L^\infty(E)} \leq \varepsilon.$$

- What happens when f is not monotone?
When the function f to be learned is monotone, we can construct a monotone flow ϕ^t, by using the previous controllability result, approximating f on E_{samples}.

Theorem

Let $n > 1$ and assume the activation function σ is injective, non-negative, and satisfies $D\sigma = a_0 + a_1 \sigma + a_2 \sigma^2$ for some $a_2 \neq 0$. Then, for every monotone analytic function $f : \mathbb{R}^n \to \mathbb{R}^n$, for every compact set $E \subset \mathbb{R}^n$, and for every $\varepsilon \in \mathbb{R}^+$ there exist a time $\tau \in \mathbb{R}^+$ and an input $(s, W, b) : [0, \tau] \to \mathbb{R} \times \mathbb{R}^{n \times n} \times \mathbb{R}^n$ so that the flow $\phi^\tau : \mathbb{R}^n \to \mathbb{R}^n$ defined by the solution of $\dot{x} = s\Sigma(Wx + b)$ under the said input satisfies:

$$\|f - \phi^\tau\|_{L^\infty(E)} \leq \varepsilon.$$

- What happens when f is not monotone?
- Key idea: monotone embedding.
Main result

We seek:

- a linear injection $\alpha : \mathbb{R}^n \to \mathbb{R}^{n+1}$,
- a linear projection $\beta : \mathbb{R}^{n+1} \to \mathbb{R}^n$,
- a monotone function $\tilde{f} : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$,

so that:

$$f = \beta \circ \tilde{f} \circ \alpha.$$
Approximation capabilities of ResNets

Main result

- We seek:
 - a linear injection $\alpha : \mathbb{R}^n \rightarrow \mathbb{R}^{n+1}$,
 - a linear projection $\beta : \mathbb{R}^{n+1} \rightarrow \mathbb{R}^n$,
 - a monotone function $\tilde{f} : \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$,

so that:

$$f = \beta \circ \tilde{f} \circ \alpha.$$

- The functions α and β can be implemented by the first and last layers of a ResNet.
- The intermediate ResNet approximates the monotone function \tilde{f}.
Approximation capabilities of ResNets

Main result

- We seek:
 - a linear injection $\alpha : \mathbb{R}^n \rightarrow \mathbb{R}^{n+1}$,
 - a linear projection $\beta : \mathbb{R}^{n+1} \rightarrow \mathbb{R}^n$,
 - a monotone function $\tilde{f} : \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$,

so that:

$$f = \beta \circ \tilde{f} \circ \alpha.$$

- The functions α and β can be implemented by the first and last layers of a ResNet.

- The intermediate ResNet approximates the monotone function \tilde{f}.

- This can be accomplished with:

 - $\alpha(x) = (x, 1^T x) = (x, x_1 + x_2 + \ldots + x_n)$,
 - $\beta(x, y) = x - \kappa y$,
 - $\tilde{f}(x, y) = (f(x) + \kappa 1 y, y)$.

Approximation capabilities of ResNets

Main result

Corollary

Let $n > 1$ and assume the activation function σ is injective, non-negative, and satisfies $D\sigma = a_0 + a_1 \sigma + a_2 \sigma^2$ for some $a_2 \neq 0$. Then, for every continuous function $f : \mathbb{R}^n \to \mathbb{R}^n$, for every compact set $E \subset \mathbb{R}^n$, and for every $\varepsilon \in \mathbb{R}^+$ there exist a time $\tau \in \mathbb{R}^+$, an injection $\alpha : \mathbb{R}^n \to \mathbb{R}^{n+1}$, a projection $\beta : \mathbb{R}^{n+1} \to \mathbb{R}^n$, and an input $(s, W, b) : [0, \tau] \to \mathbb{R} \times \mathbb{R}^{(n+1) \times (n+1)} \times \mathbb{R}^{n+1}$ so that the flow $\phi^\tau : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ defined by the solution of $\dot{x} = s \Sigma(Wx + b)$ under the said input satisfies:

$$\|f - \beta \circ \phi^\tau \circ \alpha\|_{L^\infty(E)} \leq \varepsilon.$$
A Deterministic Generalization Bound
A deterministic generalization bound

Lemma

Let $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$ be a continuous map defined on a compact set $E \subset \mathbb{R}^n$. Suppose $E_{\text{samples}} \subset \mathbb{R}^n$ is a finite set satisfying:

$$\forall x \in E \quad \exists \underline{x}, \overline{x} \in E_{\text{samples}}, \quad |\underline{x} - \overline{x}|_{\infty} \leq \delta \land \underline{x} \preceq x \preceq \overline{x},$$

with $\delta \in \mathbb{R}^+$. For any monotone map $\phi : \mathbb{R}^n \rightarrow \mathbb{R}^n$ we have:

$$\|f - \phi\|_{L^{\infty}(E)} \leq 2\omega_f(\delta) + 3\|f - \phi\|_{L^{\infty}(E_{\text{samples}})},$$

where ω_f is the modulus\(^a\) of continuity of f.

\(^a\)Note that f, being continuous, is uniformly continuous on any compact set.
Lemma

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a continuous map defined on a compact set $E \subset \mathbb{R}^n$. Suppose $E_{\text{samples}} \subset \mathbb{R}^n$ is a finite set satisfying:

$$\forall x \in E \ \exists \underline{x}, \overline{x} \in E_{\text{samples}}, \quad |\underline{x} - \overline{x}|_\infty \leq \delta \quad \land \quad \underline{x} \leq x \leq \overline{x}, \quad (4)$$

with $\delta \in \mathbb{R}^+$. For any monotone map $\phi : \mathbb{R}^n \to \mathbb{R}^n$ we have:

$$\|f - \phi\|_{L^\infty(E)} \leq 2\omega_f(\delta) + 3\|f - \phi\|_{L^\infty(E_{\text{samples}})},$$

where ω_f is the modulus\(^a\) of continuity of f.

\(^a\)Note that f, being continuous, is uniformly continuous on any compact set.

- Can we use such bound in a control context?
Outlook
Consider a closed-loop system with a ResNet in the perception pipeline.

\[
u(t) = k(\hat{x}(t)) = k(x(t) + e(t))
\]

Assume the controller renders the closed-loop system ISS with respect to estimation errors \(e(t)\), i.e.:

\[
\|x(t)\| \leq \beta(\|x(0)\|, t) + \gamma(\|e\|_{L_\infty}).
\]

Train a ResNet to learn the map from output measurements \(y\) to the state \(x\), i.e., to act as an observer \(\phi(y) = \hat{x}\).

By the generalization lemma, \(e = \hat{x} - x\) is bounded by a constant \(c \in \mathbb{R}^+\) and we directly obtain practical stability:

\[
\|x(t)\| \leq \beta(\|x(0)\|, t) + \gamma(c).
\]
Consider a closed-loop system with a ResNet in the perception pipeline.

Assume the controller $u = k(\hat{x}) = k(x + e)$ renders the closed-loop system ISS with respect to estimation errors e, i.e.:

$$\|x(t)\| \leq \beta(\|x(0)\|, t) + \gamma(\|e\|_{L^\infty}).$$
Consider a closed-loop system with a ResNet in the perception pipeline.

Assume the controller \(u = k(\hat{x}) = k(x + e) \) renders the closed-loop system ISS with respect to estimation errors \(e \), i.e.:

\[
\|x(t)\| \leq \beta(\|x(0)\|, t) + \gamma(\|e\|_{L_\infty}).
\]

Train a ResNet to learn the map from output measurements \(y \) to the state \(x \), i.e., to act as an observer \(\phi(y) = \hat{x} \).
Consider a closed-loop system with a ResNet in the perception pipeline.

Assume the controller $u = k(\hat{x}) = k(x + e)$ renders the closed-loop system ISS with respect to estimation errors e, i.e.:

$$\|x(t)\| \leq \beta(\|x(0)\|, t) + \gamma(\|e\|_{L^\infty}).$$

Train a ResNet to learn the map from output measurements y to the state x, i.e., to act as an observer $\phi(y) = \hat{x}$.

By the generalization lemma, $e = \hat{x} - x$ is bounded by a constant $c \in \mathbb{R}^+$ and we directly obtain practical stability:

$$\|x(t)\| \leq \beta(\|x(0)\|, t) + \gamma(c).$$
Ideas from control can play a big role in understanding deep neural networks.
Ideas from control can play a big role in understanding deep neural networks.

Approximation and generalization guarantees are possible in deterministic settings.
Ideas from control can play a big role in understanding deep neural networks.

Approximation and generalization guarantees are possible in deterministic settings.

We can start to imagine control loops with learning components designed to satisfy formal safety and performance guarantees.
However, there are still many challenges.

- Learning observers from vision/LiDAR data require us to address extrapolation (the generalization lemma is about interpolation).
However, there are still many challenges.

Learning observers from vision/LiDAR data require us to address extrapolation (the generalization lemma is about interpolation).
However, there are still many challenges.

- Learning observers from vision/LiDAR data require us to address extrapolation (the generalization lemma is about interpolation).
However, there are still many challenges.

- Learning observers from vision/LiDAR data require us to address extrapolation (the generalization lemma is about interpolation).
However, there are still many challenges.

- Learning observers from vision/LiDAR data require us to address extrapolation (the generalization lemma is about interpolation).
Acknowledgements

- Students and collaborators;
- SRC, DARPA,
- Prof. Mourão.

For more information:
http://www.cyphylab.ee.ucla.edu/
http://www.ee.ucla.edu/~tabuada