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Autonomy and deep learning

m The need to understand the world through vision and LiDAR data has inexorably
linked deep learning and autonomy.
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m The need to understand the world through vision and LiDAR data has inexorably
linked deep learning and autonomy.

m Here is one example from the automotive domain.
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Autonomy and deep learning
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Autonomy and deep learning

m The need to understand the world through vision and LiDAR data has inexorably
linked deep learning and autonomy.

m Here is one example from the robotics domain.

Intel® RealSense™ Depth Cameras and Intel® Neural Compute Stick 2 Buy

DEPTH SENSING + EDGE Al

Depth sensing meets plug-and-play Al at the edge inferencing with
Intel® RealSense™ stereo depth cameras bundled with the Intel®
Neural Compute Stick 2.

m
H
3

Choose your option

GqPhy,, UCLA
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Autonomy and deep learning

m The need to understand the world through vision and LiDAR data has inexorably
linked deep learning and autonomy.

m Here is one example from the robotics domain.

Qualcomn Products Support Company

@ / Products / Industriol & Commercia Robotics / Robotics RES Platfor

Robotics RB5 Platform

ferencing wi

i i e edge it
Overview Documentation Software Hardware  Support bundied with the Intal*

The Qualcomm Robotics RB5 Platform supports the development of next generation of
high-compute, Al-enabled, low power robots and drones for the consumer, enterprise,
defense, industrial and professional service sectors that can be connected by 5G.

The platform’s Qualcomm QRB5165 processor, customized for robotics applications, offers
a powerful heterogeneous computing architecture coupled with the leading 5th
generation Qualcomm® Artificial Intelligence (Al) Engine delivering 15 Trillion Operations
Per Second (TOPS) of Al performance to efficiently run complex Al and deep learning
workloads and on-device edge inferencing while using lower power , on device machine
learning, and accurate edge inferencing. The processor also offers a powerful image .‘ll.I‘HLab UCLA
signal processor (ISP) with support for seven concurrent cameras, a dedicated computer
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Autonomy and deep learning

m Clearly, industry is ahead of academia.
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Autonomy and deep learning

m Clearly, industry is ahead of academia.
m Formal guarantees when deep learning is used within a control loop?
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Autonomy and deep learning

m Clearly, industry is ahead of academia.
m Formal guarantees when deep learning is used within a control loop?
m Today:

What are deep residual neural networks (ResNets)?
Control system models of ResNets.
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Autonomy and deep learning

m Clearly, industry is ahead of academia.
m Formal guarantees when deep learning is used within a control loop?
m Today:

What are deep residual neural networks (ResNets)?
Control system models of ResNets.
Memorization capability of ResNets.

B Can ResNets memorize finitely many samples?
Approximation capability of ResNets.

B Can ResNets approximate any continuous function?
A deterministic generalization bound.

B Stability guarantees for feedback loops with deep ResNets in the
perception pipeline.
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Autonomy and deep learning

m Clearly, industry is ahead of academia.
m Formal guarantees when deep learning is used within a control loop?
m Today:

What are deep residual neural networks (ResNets)?
Control system models of ResNets.
Memorization capability of ResNets.

B Can ResNets memorize finitely many samples?
Approximation capability of ResNets.

B Can ResNets approximate any continuous function?
A deterministic generalization bound.

B Stability guarantees for feedback loops with deep ResNets in the
perception pipeline.
B Outlook
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Resideal Newal Networks
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What are ResNets?

m A diagrammatic depiction of a neural network:

0\\\ ;0\>< =
E —0 = /,C( ,O/ . oo %O——» :i
= —"O<><,O/§,O——> O+ S
—o oo o
Layer 1 Layer 2 Layer 8 Layer {

m Let us denote by x(k) € R* the state of each layer with k = 1,2, ..., ¢.
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What are ResNets?

m A diagrammatic depiction of a neural network:
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m Let us denote by x(k) € R* the state of each layer with k = 1,2, ..., ¢.
m The state of layer k + 1 is computed from the state of layer k according to:

x(k+ 1) = Z(W(k)x(k) + b(k)),
where (W, b) are the weights of the connections (arrows) and X is of the form:

Y(x) = (o(x1),0(%2),...,0(Xn)),

for an activation function o : R — R. €yphy,, UCLA
al
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What are ResNets?

m A diagrammatic depiction of a neural network:
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m Let us denote by x(k) € R* the state of each layer with k = 1,2,...,£.

m For ResNets, the state of layer k + 1 is computed from the state of layer k
according to:

x(k +1) = x(k) + S(k)Z(W(k)x(k) + b(k)),
where (S, W, b) are the weights of the connections (arrows) and X is of the form:
Y(x) = (o(x1),0(Xx2),...,0(Xn)),

for an activation function o : R — R. €qPhy,,, UCLA
al
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Control system models of ResNets

m |t was observed in the last 4 years' that the equation:
x(k+1) = x(k) + s(k)X(W(k)x(k) + b(k)), (1)

is remarkably similar to the forward Euler discretization of the continuous-time
control system:

x = sX(Wx + b), (2)
with state x € R” and where (s, W, b) € R x R™*" x R" are regarded as control
inputs.

1 A proposal on machine learning via dynamical systems
E. Weinan, Communications in Mathematics and Statistics, 5, 2017.
Stable architectures for deep neural networks

E. Haber and L. Ruthotto, Inverse Problems, 34(1), 2017. Py UCLA
Beyond finite layer neural networks: Bridging deep architectures and numerical differential equations '|| ®YLab

Y. Lu, A. Zhong, Q. Li, and B. Dong, International Conference on Machine Learning, 2018.
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Control system models of ResNets

m |t was observed in the last 4 years' that the equation:
x(k+1) = x(k) + s(k)X(W(k)x(k) + b(k)), (1)

is remarkably similar to the forward Euler discretization of the continuous-time
control system:

x = sX(Wx + b), (2)
with state x € R” and where (s, W, b) € R x R™*" x R" are regarded as control
inputs.

m Properties of (2) approximately transfer to (1) by time-discretizing solutions.

1 A proposal on machine learning via dynamical systems
E. Weinan, Communications in Mathematics and Statistics, 5, 2017.
Stable architectures for deep neural networks

E. Haber and L. Ruthotto, Inverse Problems, 34(1), 2017. Py UCLA
Beyond finite layer neural networks: Bridging deep architectures and numerical differential equations '|| ®YLab

Y. Lu, A. Zhong, Q. Li, and B. Dong, International Conference on Machine Learning, 2018.
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Memorization capabilities of ResNets

Problem (Memorization)
Given:
m afunction f: E — R" defined on a compact set E C R",
m a finite set Esampres C E,
m the evaluation of f on Esampes, i.€., f(x) for each x € Esamples,

does there exist a ResNet outputing f(x) for each input x € Esampies ?
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Memorization capabilities of ResNets

Problem (Memorization)

Given:

m afunction f: E — R" defined on a compact set E C R",

m a finite set Esampres C E,

m the evaluation of f on Esampes, i.€., f(x) for each x € Esamples,
does there exist a ResNet outputing f(x) for each input x € Esampies ?

Problem (Memorization)

Does there exist a time € R{ and an input (s, W, b) : [0, 7] — R x R™" x R" so that
the solution ¢ of:
x =sx(Wx+b),

satisfies £(0) = x and {(r) = f(x) for every x € Esamples-
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Memorization capabilities of ResNets

Problem (Memorization)

Given:

m afunction f: E — R" defined on a compact set E C R",

m a finite set Esampres C E,

m the evaluation of f on Esampes, i.€., f(x) for each x € Esamples,
does there exist a ResNet outputing f(x) for each input x € Esampies ?

Problem (Memorization)

Does there exist a time € R{ and an input (s, W, b) : [0, 7] — R x R™" x R" so that
the solution ¢ of:
x =sx(Wx+b),

satisfies £(0) = x and {(r) = f(x) for every x € Esamples-

m Is this a controllability problem?
Gyphy,, UCLA
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Memorization capabilities of ResNets

Controllability

m Let's consider the case where Egmpies = {x', X?}.
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Memorization capabilities of ResNets

Controllability

m Let's consider the case where Egmpies = {x', X?}.

il = sD(Wa' +b)

i? = sS(Wz? +b)

The same input needs to control two copies of the same system.
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Memorization capabilities of ResNets

Ensemble controllability

m Given a finite set of samples Esamples = {X', X%, ..., x?} we consider the
ensemble control system:

X = [ST(WXu1 + b)|SE(WXaz + B)| ... |ST(WXag + b)] | 3)
where the state X(t) € R"*¢ is the matrix:

X(t) = [Xor () Xea ()] ... [ Xea(1)]

€qPhq,,, UCLA
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Memorization capabilities of ResNets

Ensemble controllability

m Given a finite set of samples Esamples = {X', X%, ..., x?} we consider the
ensemble control system:

X = [SE(WXe1 + b)[SE(WXe2 + b)| ... [SE(WXeq + b)], (3)
where the state X(t) € R"*¢ is the matrix:
X(t) = [Xet1 (D) Xa2(D)] - - - [Xea(D)] -

m We can now ask: does there exist an input (s, W,b) : [0,7] — R x R™" x R" so
that the solution X of (3) satisfies:

X(0) = [x"|x?]...|x%] and X(7) = [f(x")|[f(x®)|...|f(x?)]?
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Memorization capabilities of ResNets

Ensemble controllability

m As typically done in geometric control theory, we work with piecewise constant
control inputs so that for each choice of input we obtain a vector field:

F = {217227"'azk}'

€qPhq,,, UCLA

2Orbils of families of vector fields and integrability of distributions.
Héctor Sussmann. Transactions of the American Mathematical Society, 1973.
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Memorization capabilities of ResNets

Ensemble controllability

m As typically done in geometric control theory, we work with piecewise constant
control inputs so that for each choice of input we obtain a vector field:

F = {217227"'azk}'

m What is the orbit (the reachable space) of the family F of vector fields?
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Memorization capabilities of ResNets

Ensemble controllability

m As typically done in geometric control theory, we work with piecewise constant
control inputs so that for each choice of input we obtain a vector field:

F=1{Z,2, ..., Z}.

m What is the orbit (the reachable space) of the family F of vector fields?

m Difficult problem, in general, that has a simpler answer? when F is symmetric,
ie.
ZeF = —ZeF.

2 Orbits of families of vector fields and integrability of distributions. .'ll'I‘WLab UCLA
Héctor Sussmann. Transactions of the American Mathematical Society, 1973.
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Memorization capabilities of ResNets

Ensemble controllability

m As typically done in geometric control theory, we work with piecewise constant
control inputs so that for each choice of input we obtain a vector field:

F = {217227"'azk}'

m What is the orbit (the reachable space) of the family F of vector fields?

m Difficult problem, in general, that has a simpler answer? when F is symmetric,
ie.
ZeF = —ZeF.

m It suffices to choose the inputs s € R to range in {—1, 1} to obtain symmetry.

2 Orbits of families of vector fields and integrability of distributions. .'ll'I‘WLab UCLA
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Memorization capabilities of ResNets

Ensemble controllability

As typically done in geometric control theory, we work with piecewise constant
control inputs so that for each choice of input we obtain a vector field:

F = {217227"'azk}'

What is the orbit (the reachable space) of the family F of vector fields?

Difficult problem, in general, that has a simpler answer? when F is symmetric,
ie.
ZeF = —ZeF.

It suffices to choose the inputs s € R to range in {—1, 1} to obtain symmetry.

The answer is then given by the Lie algebra rank condition:

the dimension of the Lie algebra generated by F equals nd at every X € R"*9.

2 Orbits of families of vector fields and integrability of distributions. .'ll'I‘WLab UCLA
Héctor Sussmann. Transactions of the American Mathematical Society, 1973.
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Memorization capabilities of ResNets

Ensemble controllability

m The Lie algebra generated by F is the smallest vector subspace of TR™¢
containing F and closed under Lie brackets:

02, 0z

[Z‘],ZZ] == 8721 8A Zz.
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Ensemble controllability

m The Lie algebra generated by F is the smallest vector subspace of TR™¢
containing F and closed under Lie brackets:

02, 0z

[Z‘],ZZ] == 8721 8A Zz.

m Since the activation function is not known, these brackets are not known.
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Memorization capabilities of ResNets

Ensemble controllability

m The Lie algebra generated by F is the smallest vector subspace of TR™¢
containing F and closed under Lie brackets:

02, 0z

[Z‘],ZZ] == 8721 8A Zz.

m Since the activation function is not known, these brackets are not known.

m Choose the inputs W and b so that the vector fields and their Lie brackets only
contain:
o, Do, Do, . ..
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Memorization capabilities of ResNets

Ensemble controllability

m The Lie algebra generated by F is the smallest vector subspace of TR™¢
containing F and closed under Lie brackets:

02, 0z

[Z‘],ZZ] == 8721 8A Zz.

m Since the activation function is not known, these brackets are not known.

m Choose the inputs W and b so that the vector fields and their Lie brackets only
contain:
o, Do, Do, . ..

m With such choice, and after judicious (and tedious) manipulations, the rank of the
Lie algebra is nd provided the rank of the following matrix is n:

1 O’(AM) DO’(AM) Dn_ZO'(Aw)
1 O'(Agg) DO'(AQ[) e DniZU(Agg)
1 o(Aw) Do(Aw) - D"20(Aw)

€qPhq,,, UCLA
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Memorization capabilities of ResNets

Ensemble controllability

m When is the determinant of this matrix nonzero:

1 O'(Am) DO’(Am) Dn_zo'(Am)
1 O'(Agg) DO’(Azz) cee Dn_ZU(Agg) ,
‘i U(/‘.\n[) DO’(AnZ) . . DniZO'(Ang)

€qPhq,,, UCLA
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Memorization capabilities of ResNets

Ensemble controllability

m When is the determinant of this matrix nonzero:

1 O'(Am) DO’(Am) Dn_zo'(Am)
1 O'(Agg) DO’(Azz) cee Dn_ZU(Agg) ,
‘i U(/‘.\n[) DO’(AnZ) . . DniZO'(Ang)

m Key idea: relation to Vandermonde matrices?

€qPhq,,, UCLA
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Memorization capabilities of ResNets

Ensemble controllability

Lemma

Leto : R — R be a function that satisfies the quadratic differential equation:

Do(x) = ap + a10(x) + axo?(x),

where ay, a1, a> € R. Suppose that derivatives of o of up to order (¢ — 2) exist at ¢

points x1, ..., X, € R. Then, the determinant of the matrix:
1 1 e 1
0'(X1) O'(Xg) O'(Xg)
L(X17X27~~~7XZ) _ DO’(X1) DO’(XQ) DO’(Xg) ,
Defza(x1) DliZU(XZ) . DliZU(Xg)
is given by:
detL(x1, Xz, . . Hlla2 II (e(x)=a(x)).
1<i<j<e
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Memorization capabilities of ResNets

Ensemble controllability

m When is this expression non-zero:

detL(x1, Xz, . .. Xe)—H"az H (o(xi) —o(x))?

1<i<j<e

€qPhq,,, UCLA
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Memorization capabilities of ResNets

Ensemble controllability

m When is this expression non-zero:

detL(x1, Xz, . .. Xe)—H"az H (o(xi) —o(x))?

1<i<j<e

m If @ # 0 and o is injective, J[;.;;<,(Xi — x;) # 0 implies det L # 0.
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Memorization capabilities of ResNets

Ensemble controllability

m When is this expression non-zero:

detL(x1, Xz, . .. Xe)—H"az H (o(xi) —o(x))?

1<i<j<e

m If @ # 0 and o is injective, J[;.;;<,(Xi — x;) # 0 implies det L # 0.

m Two different ensemble elements / and j cannot be in states X,; and X,; that
share an entry, i.e., for any £: Xy # Xy.
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Memorization capabilities of ResNets

Ensemble controllability

m When is this expression non-zero:

-2

detL(x1,xz,...,xe):Hi!a§ H (o(xi) —a(x))?

i=1 1<i<j<e

m If @ # 0 and o is injective, J[;.;;<,(Xi — x;) # 0 implies det L # 0.

m Two different ensemble elements / and j cannot be in states X,; and X,; that
share an entry, i.e., for any £: Xy # Xy.

m Are there injective activation functions o satisfying Do = ap + a0 + a02?
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Memorization capabilities of ResNets

Ensemble controllability

m When is this expression non-zero:

detL(x1,Xz,...,Xe) = H ilah H (o(xi) — a(x))?
1<i<j<e
m If @ # 0 and o is injective, J[;.;;<,(Xi — x;) # 0 implies det L # 0.

m Two different ensemble elements / and j cannot be in states X,; and X,; that
share an entry, i.e., for any £: Xy # Xy.

m Are there injective activation functions o satisfying Do = ap + a0 + a02?

Function name Definition Satisfied differential equation
Logistic function o(X) = o= Do—c+0°=0
Hyperbolic tangent o(x) = &= Do—1+02=0
Soft plus o(x) = 1log(1+ &™) D?¢ — rDo + r(Do)? = 0

€qPhq,,, UCLA

Paulo Tabuada (CyPhyLab - UCLA) Universal Approximation IST 7/21/2022 171732



Memorization capabilities of ResNets

Ensemble controllability

m When is this expression non-zero:

detL(x1,Xz,...,Xe) = H ilah H (o(xi) — a(x))?
1<i<j<e
m If @ # 0 and o is injective, J[;.;;<,(Xi — x;) # 0 implies det L # 0.

m Two different ensemble elements / and j cannot be in states X,; and X,; that
share an entry, i.e., for any £: Xy # Xy.

m Are there injective activation functions o satisfying Do = ap + a0 + a02?

Function name Definition Satisfied differential equation
Logistic function o(X) = o= Do—c+0°=0
Hyperbolic tangent o(x) = &= Do—1+02=0
Soft plus o(x) = 1log(1+ &™) D?c — rDo + r(Do)? =0
Moreover, lim_, X log(1 + &™) = ReLU(x) = max{0, x}. Gyphy,, UCLA
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Memorization capabilities of ResNets

Ensemble controllability

Let N c R™Y pe the set defined by:

N=SAcR™ | TJ[ (Au—Ag)=0,¢c{1,....n}¢.
1<i<j<d

Let n > 1 and assume the activation function o is injective, non-negative, and satisfies

Do = ay + ai0 + axo? for some a» # 0. Then the ensemble control system is

controllable on the submanifold M = R™ 9\ N.
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Let n > 1 and assume the activation function o is injective, non-negative, and satisfies

Do = ay + ai0 + axo? for some a» # 0. Then the ensemble control system is

controllable on the submanifold M = R™ 9\ N.

m When n> 1, M is connected, open, and dense in R"<9.
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Memorization capabilities of ResNets

Ensemble controllability

Let N c R™Y pe the set defined by:

N{AGR”XC’| II (AZ,A[,-)O,EG{L...,n}}.

1<i<j<d

Let n > 1 and assume the activation function o is injective, non-negative, and satisfies
Do = ay + ai0 + axo? for some a» # 0. Then the ensemble control system is
controllable on the submanifold M = R™ 9\ N.

m When n> 1, M is connected, open, and dense in R"<9.

B f Esamples @nd f( Esamples) are subsets of M, a ResNet can memorize them exactly.
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Memorization capabilities of ResNets

Ensemble controllability

Let N c R™Y pe the set defined by:

N{AGR”XC’| II (AZ,AZ,-)O,EG{L...,n}}.

1<i<j<d

Let n > 1 and assume the activation function o is injective, non-negative, and satisfies
Do = ay + ai0 + axo? for some a» # 0. Then the ensemble control system is
controllable on the submanifold M = R™ 9\ N.

m When n> 1, M is connected, open, and dense in R"<9.
B f Esamples @nd f( Esamples) are subsets of M, a ResNet can memorize them exactly.
m Otherwise we can perturb Esampies Or/and f(Esampies) 10 make them subsets of M.

€qPhq,,, UCLA
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Approximation capabilities of ResNets

m We established controllability on the finite dimensional state space R"*°.

m But we would really like to establish controllability on some infinite dimensional
space of functions®.

€qPhq,,, UCLA

3Control on the manifold of mappings as a setting for deep learning.
A. Agrachev and A. Sarychev. arXiv preprint arXiv:2008.12702, 2020.
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Approximation capabilities of ResNets

m We established controllability on the finite dimensional state space R"*°.

m But we would really like to establish controllability on some infinite dimensional
space of functions®.

m Let ¢' : R" — R" be the flow defined by the solution of the control system:
x = sy (Wx +b),

i.e., ¢'(x) = &(t) where ¢ is the solution satisfying £(0) = x.

3 Control on the manifold of mappings as a setting for deep learning. .'ll'I‘WLab UCLA
A. Agrachev and A. Sarychev. arXiv preprint arXiv:2008.12702, 2020.
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Approximation capabilities of ResNets

m We established controllability on the finite dimensional state space R"*°.
m But we would really like to establish controllability on some infinite dimensional
space of functions®.
m Let ¢' : R" — R" be the flow defined by the solution of the control system:
x = sy (Wx +b),
i.e., ¢'(x) = &(t) where ¢ is the solution satisfying £(0) = x.
m Do there exist inputs (s, W, b) : [0,7] — R x R™" x R resulting in a flow ¢'
satisfying:
#°(x) = x and ¢” (x) = f(x)?
3 Control on the manifold of mappings as a setting for deep learning. .'ll'I‘WLab UCLA

A. Agrachev and A. Sarychev. arXiv preprint arXiv:2008.12702, 2020.
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Approximation capabilities of ResNets

m We established controllability on the finite dimensional state space R"*°.

m But we would really like to establish controllability on some infinite dimensional
space of functions®.

m Let ¢' : R" — R" be the flow defined by the solution of the control system:
x = sy (Wx +b),

i.e., ¢'(x) = &(t) where ¢ is the solution satisfying £(0) = x.

m Do there exist inputs (s, W, b) : [0,7] — R x R™" x R" resulting in a flow ¢'
satisfying:
#°(x) = x and ¢” (x) = f(x)?

m Can we use the previous controllability result as a stepping stone?

m If we map finitely many points to the right location, can things go wrong for
the points we leave out?

3 Control on the manifold of mappings as a setting for deep learning. .'ll'I‘WLab UCLA
A. Agrachev and A. Sarychev. arXiv preprint arXiv:2008.12702, 2020.
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Approximation capabilities of ResNets

Inspiration from function interpolation

m Consider the function interpolation problem.

€qPhq,,, UCLA
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Approximation capabilities of ResNets

Inspiration from function interpolation

m Consider the function interpolation problem.

m How to control the behavior of the interpolating function between the
interpolation points?
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Approximation capabilities of ResNets

Inspiration from function interpolation

m Consider the function interpolation problem.

m How to control the behavior of the interpolating function between the

interpolation points?
m Key idea: monotonicity.

Paulo Tabuada (CyPhyLab - UCLA) Universal Approximation
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Approximation capabilities of ResNets

Monotonicity

m What is monotonicity?
m Define the ordering < on R" by x < x’ iff x; < x{ foralli=1,2,... n.

€qPhq,,, UCLA
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Monotonicity

m What is monotonicity?

m Define the ordering < on R" by x < x’ iff x; < x{ foralli=1,2,... n.
m Aflow ¢ : R” — R" is monotone if:

x =X = o(x) =2 (x).
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Approximation capabilities of ResNets

Main result

m When the function f to be learned is monotone, we can construct a monotone
flow ¢, by using the previous controllability result, approximating f on Esamples-

Theorem

Let n > 1 and assume the activation function o is injective, non-negative, and satisfies
Do = ap + a10 + axo? for some a, # 0. Then, for every monotone analytic function
f:R" — R", for every compact set E C R", and for every ¢ € R" there exist a time

T € R" and an input (s, W, b) : [0,7] — R x R™" x R" so that the flow ¢™ : R" — R"
defined by the solution of x = s¥(Wx + b) under the said input satisfies:

If — @7 [lioo(ey < e

€qPhq,,, UCLA
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Approximation capabilities of ResNets

Main result

m When the function f to be learned is monotone, we can construct a monotone
flow ¢, by using the previous controllability result, approximating f on Esamples-

Theorem

Let n > 1 and assume the activation function o is injective, non-negative, and satisfies
Do = ap + a10 + axo? for some a, # 0. Then, for every monotone analytic function
f:R" — R", for every compact set E C R", and for every ¢ € R" there exist a time

T € R" and an input (s, W, b) : [0,7] — R x R™" x R" so that the flow ¢™ : R" — R"
defined by the solution of x = s¥(Wx + b) under the said input satisfies:

If — @7 [lioo(ey < e

m What happens when f is not monotone?
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Approximation capabilities of ResNets

Main result

m When the function f to be learned is monotone, we can construct a monotone
flow ¢, by using the previous controllability result, approximating f on Esamples-

Theorem

Let n > 1 and assume the activation function o is injective, non-negative, and satisfies
Do = ap + a10 + axo? for some a, # 0. Then, for every monotone analytic function
f:R" — R", for every compact set E C R", and for every ¢ € R" there exist a time

T € R" and an input (s, W, b) : [0,7] — R x R™" x R" so that the flow ¢™ : R" — R"
defined by the solution of x = s¥(Wx + b) under the said input satisfies:

If — @7 [lioo(ey < e

m What happens when f is not monotone?
m Key idea: monotone embedding.
qphy,, UCLA
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Approximation capabilities of ResNets

Main result

m We seek:

B alinear injection o : R” — R,
m a linear projection 8 : R™' — R”,
B a monotone function f : R — R™1,

so that: B
f=Bofoa.
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Approximation capabilities of ResNets

Main result

m We seek:

B alinear injection o : R” — R,
m a linear projection 8 : R™' — R”,
B a monotone function f : R — R™1,

so that: B
f=Bofoa.

m The functions « and 3 can be implemented by the first and last layers of a
ResNet.

m The intermediate ResNet approximates the monotone function 1.
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Approximation capabilities of ResNets

Main result

We seek:

B alinear injection o : R” — R,
m a linear projection 8 : R™' — R”,
B a monotone function f : R — R™1,

so that: B
f=Bofoa.

m The functions « and 3 can be implemented by the first and last layers of a
ResNet.

The intermediate ResNet approximates the monotone function 1.

This can be accomplished with:
Boox)=017X)=0x +X +...+ Xn),
B B(x,y) =Xx—kYy,
m f(x,y) = (f(x) + 1y, y).
Gyphy,, UCLA
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Approximation capabilities of ResNets

Main result

Corollary

Let n > 1 and assume the activation function o is injective, non-negative, and satisfies
Do = ap + a10 + apo? for some a, # 0. Then, for every continuous function

f:R" — R", for every compact set E C R", and for every ¢ € R" there exist a time

7 € R*, an injection « : R” — R™", a projection 8 : R™" — R”, and an input

(s, W,b) : [0,7] = R x R™DX(H) o R+ 50 that the flow ¢ : R™' — R™" defined
by the solution of x = s¥(Wx + b) under the said input satisfies:

Hf— ﬂo (Z)T oa||Lao(E) <e.
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A deterministic generalization bound

Lemma

Letf:R" — R" be a continuous map defined on a compact set E C R". Suppose
Esampies C R" is a finite set satisfying:

Vx € E 3X,X € Esamples, X —Xloo <6 A XXX, (4)
with 6 € R™. For any monotone map ¢ : R” — R" we have:

[ = @lleo(e) < 2wr(8) + 3If = @llioe

Esamples) ?

where wy is the modulus? of continuity of f.

aNote that f, being continuous, is uniformly continuous on any compact set.
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A deterministic generalization bound

Lemma

Letf:R" — R" be a continuous map defined on a compact set E C R". Suppose
Esampies C R" is a finite set satisfying:

Vx € E 3X,X € Esamples, X —Xloo <6 A XXX, (4)
with 6 € R™. For any monotone map ¢ : R” — R" we have:

[ = @lleo(e) < 2wr(8) + 3If = @llioe

Esamples) ?

where wy is the modulus? of continuity of f.

aNote that f, being continuous, is uniformly continuous on any compact set.

m Can we use such bound in a control context?
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Outlook

Stability guarantees with deep perception pipelines

m Consider a closed-loop system with a ResNet in the perception pipeline.

T 1y
COntrouerijoggg@K:pQ
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Outlook

Stability guarantees with deep perception pipelines

m Consider a closed-loop system with a ResNet in the perception pipeline.

T 1y
COntrouerijoggg@K:pQ

~

m Assume the controller u = k(x) = k(x + e) renders the closed-loop system ISS
with respect to estimation errors e, i.e.:

[IX(OI < BUIXO)I], £) + ([l elle=).
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Outlook

Stability guarantees with deep perception pipelines

m Consider a closed-loop system with a ResNet in the perception pipeline.

Plant

|

v

ControllerK:#O%%%K#l Q

m Assume the controller u = k(X) =

~

with respect to estimation errors e, i.e.:

[IX(OI < BUIXO)I], £) + ([l elle=).

k(x + e) renders the closed-loop system ISS

m Train a ResNet to learn the map from output measurements y to the state x, i.e.,
to act as an observer ¢(y) = X.
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Outlook

Stability guarantees with deep perception pipelines

m Consider a closed-loop system with a ResNet in the perception pipeline.

Plant

|

v

ControllerK:#O%%%K#l Q

m Assume the controller u = k(X) =

~

with respect to estimation errors e, i.e.:

[IX(OI < BUIXO)I], £) + ([l elle=).

k(x + e) renders the closed-loop system ISS

m Train a ResNet to learn the map from output measurements y to the state x, i.e.,
to act as an observer ¢(y) = X.
m By the generalization lemma, e = X — x is bounded by a constant ¢ € R* and
we directly obtain practical stability:

Paulo Tabuada (CyPhyLab - UCLA)

Ix()I < BUIX(O)I], £) +~(c)-

Universal Approximation
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m Ideas from control can play a big role in understanding deep neural networks.

€qPhq,,, UCLA

Paulo Tabuada (CyPhyLab - UCLA) Universal Approximation IST 7/21/2022 30/32



m Ideas from control can play a big role in understanding deep neural networks.

m Approximation and generalization guarantees are possible in deterministic
settings.
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m Ideas from control can play a big role in understanding deep neural networks.

m Approximation and generalization guarantees are possible in deterministic
settings.

m We can start to imagine control loops with learning components designed to
satisfy formal safety and performance guarantees.
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m However, there are still many challenges.

B Learning observers from vision/LiDAR data require us to address
extrapolation (the generalization lemma is about interpolation).
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