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Classical mechanics

» Newton: mg(t) = F(q(t))= -V U(q(t)),
q(t) e R”
» Hamiltonian formulation:
> (q(t), p(t)) € R" x R”

N { q(t) = p(t)
p(t) = —VU(q(1))
> H(q,p)zilp\”U(q)
_ OH
T
>
OH
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v

(g,p) € R" x R" = R?",
» Hamiltonian: H € C>®(R?").
Let Xy = (M —%)

v

Jp’ Oq

-1 0
dH(Xy) = (VH, Xy) = (VH,JVH) =0.
Flow of Xy preserves H.
Let w(v, w) = (v, Jw).

» Xy = JVH, where J = <O I>.
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Hamiltonian dynamics

v

(g,p) € R" x R" = R?",
» Hamiltonian: H € C>®(R?").

> Let Xy = (%, —%).

» Xy = JVH, where J = <_OI é)

» dH(Xy) = (VH,Xy) = (VH,JVH) = 0.
» Flow of Xy preserves H.

> Let w(v,w) = (v, Jw).

P> w is closed non-degenerate 2-form.

> w=>7,dqg Adp;.
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Symplectic topology

Question 1
Given X1, Xo C R?", does there exist a diffeomorphism
@ : X1 — X5 such that

Ow=w?

2
{qf+p%<1}g{3;+a2p§<1}c1&2, for all a > 0.

Question 2
Given X1, Xo C R?", does there exist an embedding p: Xy = Xo
such that ¢*w = w?

If it exists, we write X; < Xo.
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Symplectic embeddings

Ww'=wA---Aw=nldgs Adpy A --- A dgn A dpp.

n

If *w = w, then p*(w") = wW".
Let

B2"(r) = {(
z2(r) = {(

) € R* | |g|* + |pf* < r?}

q,p
q,p) €R?™ | ¢ + p? < r?} = B?(r) x R*"2,
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Nonsqueezing
Gromov’s nonsqueezing theorem, 1985

B?(r) < Z?"(R) < r<R.

() =)
ASNERZEEEEE '
H . i :
L = ] >aR?

B2'(r) < Z2"(e) = {(q.p) € R*" | ¢ + g3 <2},  Vr,e > 0.

w = qu,' A dp;.
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Symplectic capacities

Definition
A symplectic capacity is a function ¢ : P(R?") — [0, +o0]
satisfying
> c(rX) = r?¢(X) for all r >0,
> X < X = c(X1) < ¢(X2),
» ¢(B2"(r)) > 0 and c(Z?"(r)) < cc.
c is said to be normalized if

c(B>(r)) = c(Z"(r)) = wr*.

The existence of a normalized symplectic capacity is equivalent to
Gromov's nonsqueezing theorem.
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Symplectic capacities

The simplest capacities are

cer(X) = sup{nr? | B*(r) < X} (Gromov width),
cz(X) = inf{nr? | X < Z2"(r)}  (cylindrical capacity).

It is easy to check that if ¢ is a normalized capacity, then
cer(X) < ¢(X) < cz(X).

Other examples of normalized capacities:
> First Ekeland-Hofer capacity ¢ (1989),
» Hofer-Zehnder capacity cyz (1994),
» Floer-Hofer capacity csy (1994),
» First contact homology capacity c1CH (Gutt-Hutchings 2018),
» First embedded contact homology capacity ClECH (Hutchings
2011) - only in dimension 4.
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The Viterbo conjecture

Exercise
For any compact set X,

CG,(X)"

n!

< vol(X).

Idea: If c,(X) = 7r2, then (1 — €)B2(r) < X.
So vol((1 — €)B27(r)) < vol(X).
Conjecture (Viterbo)

If X C R?" is a compact and convex set and ¢ is a normalized
symplectic capacity, then

C(I)f!)n < vol(X).

Moreover equality holds if, and only if, X is symplectomorphic to a
ball.
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Minimal action

If X is a compact and convex set of R?” with smooth boundary, let
Amin(X) denote the shortest period of a closed characteristic on
0X.

Theorem (EH, HZ, Abbondandolo—Kang, Irie)

If X is a compact and convex set with smooth boundary, then

ot (X) = crz(X) = csu(X) = cf(X) = Amin(X).

Weak Viterbo conjecture
If X is a compact and convex set of R?” with smooth boundary,

then
Amin(X)n

n!

< vol(X).

Strong Viterbo conjecture
All normalized capacities coincide on convex sets.
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Mabhler’s conjecture

Conjecture (Mahler)

Let K be a centrally symmetric, compact and convex set in
R".Then

vol(K) - vol(K®) > %r'w

Moreover, equality is attained if, and only if, K is a Hanner
polytope.

Theorem (Artstein-Avidan, Karasev, Ostrover 2014)
The weak Viterbo conjecture implies the Mahler conjecture.
Main idea: cyz(K x K°) = 4.

Strong Viterbo = Viterbo = Weak Viterbo = Mabhler
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Toric domains

Definition

A toric domain Xq C C" is a set of the form Xq = p~1(2) where
QcC RY, is star-shaped with respect with 0 and

pw:C"—=R" u(z,...

Example (Cylinder)

7| 22]?

5 7|z1|?

Z(a) = {(z1,22) € C*|m|z1|* < a}

,2,) = (7|zi)?, ..., 7| za)?)
Example (Ellipsoid)

7| z2[?

b

> m|z1|?

2 2
E(a,b) := {(zl,Z2) ec?|mal y mal <4




Monotone toric domains

Definition
A toric domain Xq C R?" is called monotone if for each point
p € 0\ {x; =0, for some i}, the normal vector v = (v1,...,vp)

satifies v; > 0 for every i.



Monotone toric domains

Definition
A toric domain Xq C R?" is called monotone if for each point
p € 0\ {x; =0, for some i}, the normal vector v = (v1,...,vp)

satifies v; > 0 for every i.



Monotone toric domains

Definition
A toric domain Xq C R?" is called monotone if for each point
p € 0\ {x; =0, for some i}, the normal vector v = (v1,...,vp)

satifies v; > 0 for every i.

Remark

If Xq is monotone, then it can be approximated by a toric domains
which are bounded by the coordinate hyperplanes and a the graph
of a non-negative smooth function f : Q' C RZ, — R>( whose
partial derivatives are all negative. -
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Remark
Monotone toric domains are
not necessarily convex.

Proposition

A 4-dimensional toric domain Xgq is (strictly) monotone if, and
only if, (0Xq, ap) is dynamically convex.
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Theorem (Gutt—Hutchings—R. 2020)

For a monotone toric domain Xq C R* all symplectic capacities
coincide.

Theorem
For a monotone toric domain Xq C R?",

cor(Xa) = o (Xa)-
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Proof

(a, b)

The second theorem follows from this picture and a result by
Gutt—Hutchings.
In dimension 4, let

Z>(a, b) :={(z1, ) € C? | 7|z1|? < a or 7|z|? < b}.
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Proof

Zy(a, b) is a concave toric
domain with weight sequence
(a+ b,a,b,a,b,a,b,...).

1 —

Theorem (Cristofaro-Gardiner)
If Xq is a concave toric domain with weight sequence (wy, ws, .. .).
Then

Xo < Z4r) <= | |B(w;) < Z%(r).
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Corollary

Zo(a, b) < Z*(a+b).
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So
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Proof

So
B*(a+ b) C Xo C Za(a, b) <> Z*(a+ b).

Therefore
cer(Xq) = cz(Xq) = a+ b.

at+b
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Lagrangian products

KxT={(q,p)eC"|geKandpe T}.

Characteristic flow:
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Toric domains in disguise

Specific examples:
» The Lagrangian bidisk D? x D?> C R* is symplectomorphic to
a concave toric domain. (R. 2017)

» The LP sum of two disks is symplectomorphic to a toric
domain. (Ostrover— R. 2020)

» The unit disk bundles D*S2 and D*(52\ {x}) are

symplectomorphic to B(27) and P(27,27), respectively.
(Ferreira— R. 2021)

Large classes of examples:

» The Lagrangian product of a hypercube and a symmetric
region in R?" is symplectomorphic to a toric domain. (R.—
Sepe, 2019)

» The Lagrangian product of a regular simplex A” and a

region in R" is symplectomorphic to a toric
domain. (Ostrover— R.— Sepe, 2022)
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The Arnold-Liouville theorem
Fix (M?", w) and let F = (H,...,H") : M — R" whose
components Poisson commute.
> If ¢ € R" is a regular value of F and F~(c) is compact and
connected, then F~1(c) = T".
» Let U be a simply-connected open set of regular points. For

ce€ F(U), let {7f,...,75} be simple closed curves generating
Hi(F~(c); Z) and suppose w = d\ on U. Let

¢(c):</ﬁA,...,/ﬁA>.



The Arnold-Liouville theorem
Fix (M?", w) and let F = (H,...,H") : M — R" whose
components Poisson commute.
> If ¢ € R" is a regular value of F and F~(c) is compact and
connected, then F~1(c) = T".
» Let U be a simply-connected open set of regular points. For
ce€ F(U), let {7f,...,75} be simple closed curves generating
H1(F~1(c); Z) and suppose w = dX on U. Let

¢(c):</ﬁA,...,/ﬁA>.

Then there exists a symplectomorphism
¢ (U,w) — (¢(U) x T",wp) such that the following diagram
commutes.

U —2 ¢(U) x T"
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The Arnold-Liouville theorem in action

1 €
He(q,p)=§!p|2+w, J(a,p) =g xp.

D? x D? is symplectomorphic to a toric domain Xq, where Q is the
domain bounded by the coordinate axis and the curve parametrized
by:

e a .« a
(2sm§ —acos§,2sm§+(27T—oz)cos§>, a € [0,27]
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Theorem (Ostrover—R.—Sepe)
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First idea: 1
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The Arnold-Liouville Theorem in action

Theorem (Ostrover—R.—Sepe)

A x O~ B

First idea: 1
H(a,p) = 5pl* + U(q).

KmMZ%%@5+vaW®.
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The Toda lattice

H(q,p) = Zpl + Z edi—Ait1 | gdn—a1

Flaschka coordinates:

Lig—q:
aj = eg(ql ql+1), bi = —pj.

1 n
=§Zb?+23?
i=1 i=1



The Toda lattice

H(q,p) = Zp, + Z eI it1 4 g1

Flaschka coordinates:

ligi—a:
aj = eQ(ql q:+1), bi = —p;.

18 n
i=1 i=1

Hamiltonian system:

L, .22 2
b,'—a-—a,-_l

1

) 1
3i = 5 ai(biy1 — bi).
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Lax pair formulation

There exists a Lax pair (L, B) such that the Hamiltonian system
above is equivalent to L = [B, L],

b1 a1 0 an
dl b2 a ... 0
L=]0 a b3 0
a. 0 0 ... b,
Theorem (Toda)

The spectrum of L is invariant under the flow.
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Action-angle coordinates

Theorem (Flaschka—McLaughlin, van Moerbeke, Moser)

Let A(N) = det(L — A)?> —2 and let A\; < Ao < --- < \o, be the
roots of A(\)2 — 4.Then the reduced manifold

{(q,p) € R?" | 3. pi = 0}/ ~ is symplectomorphic to a toric
manifold with moment map coordinates given by

A2iy1 A(\
/ cosh™! Q
Aoj 2

Theorem (Ostrover—R.-Sepe)

dA.

A" 1 x R"™1 has a toric action whose moment map is given by
A R REG
(q,p) = (Pi, — Pips Piy = Pis -+ Pip_y — Pin);

where pj > pi, > -+ = pj,.
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The ball

Corollary
The ball is symplectomorphic to the Lagrangian product of

AN
AN
/ / \\
y. |
¢
N b
AV
- and
(n-simplex) (rhombic dodecahedron)

Observation: One can independently verify that the Lagrangian
product above satisfies the equality in Viterbo's conjecture.



