The Toda lattice and the Viterbo conjecture

Vinicius G. B. Ramos

Instituto de Matemática Pura e Aplicada, Rio de Janeiro

Newton: $m\ddot{q}(t) = F(q(t))$

Newton: $m\ddot{q}(t) = F(q(t)) = -\nabla U(q(t)),$ $q(t) \in \mathbb{R}^n$

Newton: $m\ddot{q}(t) = F(q(t)) = -\nabla U(q(t)),$ $q(t) \in \mathbb{R}^n$

- Newton: $m\ddot{q}(t) = F(q(t)) = -\nabla U(q(t)),$ $q(t) \in \mathbb{R}^n$
- ► Hamiltonian formulation:
 - $\blacktriangleright (q(t), p(t)) \in \mathbb{R}^n \times \mathbb{R}^n$

- Newton: $m\ddot{q}(t) = F(q(t)) = -\nabla U(q(t)),$ $q(t) \in \mathbb{R}^n$
- Hamiltonian formulation:

$$ightharpoonup (q(t), p(t)) \in \mathbb{R}^n \times \mathbb{R}^n$$

- Newton: $m\ddot{q}(t) = F(q(t)) = -\nabla U(q(t)),$ $q(t) \in \mathbb{R}^n$
- ► Hamiltonian formulation:

$$(q(t), p(t)) \in \mathbb{R}^n \times \mathbb{R}^n$$

•
$$H(q,p) = \frac{1}{2m}|p|^2 + U(q)$$

- Newton: $m\ddot{q}(t) = F(q(t)) = -\nabla U(q(t)),$ $q(t) \in \mathbb{R}^n$
- Hamiltonian formulation:

$$\qquad (q(t),p(t)) \in \mathbb{R}^n \times \mathbb{R}^n$$

$$H(q,p) = \frac{1}{2m} |p|^2 + U(q)$$

$$\begin{cases}
\dot{q} = \frac{\partial H}{\partial p} \\
\dot{p} = -\frac{\partial H}{\partial r}
\end{cases}$$

 $(q,p) \in \mathbb{R}^n \times \mathbb{R}^n = \mathbb{R}^{2n}.$

- $(q,p) \in \mathbb{R}^n \times \mathbb{R}^n = \mathbb{R}^{2n}.$
- ▶ Hamiltonian: $H \in C^{\infty}(\mathbb{R}^{2n})$.

- $(q,p) \in \mathbb{R}^n \times \mathbb{R}^n = \mathbb{R}^{2n}.$
- ▶ Hamiltonian: $H \in C^{\infty}(\mathbb{R}^{2n})$.
- ▶ Let $X_H = \left(\frac{\partial H}{\partial p}, -\frac{\partial H}{\partial q}\right)$.

- $(q,p) \in \mathbb{R}^n \times \mathbb{R}^n = \mathbb{R}^{2n}.$
- ▶ Hamiltonian: $H \in C^{\infty}(\mathbb{R}^{2n})$.
- $\blacktriangleright \text{ Let } X_H = \left(\frac{\partial H}{\partial p}, -\frac{\partial H}{\partial q}\right).$
- $ightharpoonup X_H = J \nabla H$, where $J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$.

- $(q,p) \in \mathbb{R}^n \times \mathbb{R}^n = \mathbb{R}^{2n}.$
- ▶ Hamiltonian: $H \in C^{\infty}(\mathbb{R}^{2n})$.
- ▶ Let $X_H = \left(\frac{\partial H}{\partial p}, -\frac{\partial H}{\partial q}\right)$.
- $ightharpoonup X_H = J \nabla H$, where $J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$.

- $(q,p) \in \mathbb{R}^n \times \mathbb{R}^n = \mathbb{R}^{2n}.$
- ▶ Hamiltonian: $H \in C^{\infty}(\mathbb{R}^{2n})$.
- ▶ Let $X_H = \left(\frac{\partial H}{\partial p}, -\frac{\partial H}{\partial q}\right)$.
- $ightharpoonup X_H = J \nabla H$, where $J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$.
- Flow of X_H preserves H.

- $(q,p) \in \mathbb{R}^n \times \mathbb{R}^n = \mathbb{R}^{2n}.$
- ▶ Hamiltonian: $H \in C^{\infty}(\mathbb{R}^{2n})$.
- ▶ Let $X_H = \left(\frac{\partial H}{\partial p}, -\frac{\partial H}{\partial q}\right)$.
- $ightharpoonup X_H = J \nabla H$, where $J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$.
- ightharpoonup Flow of X_H preserves H.
- $\blacktriangleright \text{ Let } \omega(v, w) = \langle v, Jw \rangle.$

- $(q,p) \in \mathbb{R}^n \times \mathbb{R}^n = \mathbb{R}^{2n}.$
- ▶ Hamiltonian: $H \in C^{\infty}(\mathbb{R}^{2n})$.
- ▶ Let $X_H = \left(\frac{\partial H}{\partial p}, -\frac{\partial H}{\partial q}\right)$.
- $ightharpoonup X_H = J \nabla H$, where $J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$.
- \triangleright Flow of X_H preserves H.
- $\blacktriangleright \text{ Let } \omega(v, w) = \langle v, Jw \rangle.$
- $\blacktriangleright \omega$ is closed non-degenerate 2-form.

- $(q,p) \in \mathbb{R}^n \times \mathbb{R}^n = \mathbb{R}^{2n}.$
- ▶ Hamiltonian: $H \in C^{\infty}(\mathbb{R}^{2n})$.
- ▶ Let $X_H = \left(\frac{\partial H}{\partial p}, -\frac{\partial H}{\partial q}\right)$.
- $ightharpoonup X_H = J \nabla H$, where $J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$.
- \triangleright Flow of X_H preserves H.
- $\blacktriangleright \text{ Let } \omega(v,w) = \langle v, Jw \rangle.$
- $ightharpoonup \omega$ is closed non-degenerate 2-form.
- $\omega = \sum_{i=1}^n dq_i \wedge dp_i$.

Question 1

Given $X_1, X_2 \subset \mathbb{R}^{2n}$, does there exist a diffeomorphism

$$\varphi: X_1 \to X_2$$
 such that

$$\varphi^*\omega = \omega$$
?

Question 1

Given $X_1, X_2 \subset \mathbb{R}^{2n}$, does there exist a diffeomorphism

$$\varphi: X_1 \to X_2$$
 such that

$$\varphi^*\omega = \omega$$
?

$$\left\{q_1^2 + p_1^2 < 1\right\} \cong \left\{rac{q_1^2}{a^2} + a^2p_1^2 < 1
ight\} \subset \mathbb{R}^2, \quad ext{for all } a > 0.$$

Question 1

Given $X_1, X_2 \subset \mathbb{R}^{2n}$, does there exist a diffeomorphism $\varphi: X_1 \to X_2$ such that

$$\varphi^*\omega = \omega?$$

$$\left\{q_1^2+p_1^2<1\right\}\cong \left\{rac{q_1^2}{a^2}+a^2p_1^2<1
ight\}\subset \mathbb{R}^2, \quad ext{for all } a>0.$$

Question 2

Given $X_1, X_2 \subset \mathbb{R}^{2n}$, does there exist an embedding $\varphi: X_1 \hookrightarrow X_2$ such that $\varphi^*\omega = \omega$?

Question 1

Given $X_1, X_2 \subset \mathbb{R}^{2n}$, does there exist a diffeomorphism $\varphi: X_1 \to X_2$ such that

$$\varphi^*\omega = \omega?$$

$$\left\{q_1^2+p_1^2<1\right\}\cong \left\{rac{q_1^2}{a^2}+a^2p_1^2<1
ight\}\subset \mathbb{R}^2, \quad ext{for all } a>0.$$

Question 2

Given $X_1, X_2 \subset \mathbb{R}^{2n}$, does there exist an embedding $\varphi: X_1 \hookrightarrow X_2$ such that $\varphi^*\omega = \omega$?

If it exists, we write $X_1 \stackrel{s}{\hookrightarrow} X_2$.

$$\omega^n = \omega \wedge \cdots \wedge \omega = n! dq_1 \wedge dp_1 \wedge \cdots \wedge dq_n \wedge dp_n.$$

$$\omega^n = \omega \wedge \cdots \wedge \omega = n! \, dq_1 \wedge dp_1 \wedge \cdots \wedge dq_n \wedge dp_n.$$

If
$$\varphi^*\omega = \omega$$
, then $\varphi^*(\omega^n) = \omega^n$.

$$\omega^n = \omega \wedge \cdots \wedge \omega = n! \, dq_1 \wedge dp_1 \wedge \cdots \wedge dq_n \wedge dp_n.$$

If
$$\varphi^*\omega=\omega$$
, then $\varphi^*(\omega^n)=\omega^n$. Let

$$B^{2n}(r) = \{(q, p) \in \mathbb{R}^{2n} \mid |q|^2 + |p|^2 < r^2\}$$

$$\omega^n = \omega \wedge \cdots \wedge \omega = n! \, dq_1 \wedge dp_1 \wedge \cdots \wedge dq_n \wedge dp_n.$$

If
$$\varphi^*\omega = \omega$$
, then $\varphi^*(\omega^n) = \omega^n$.
Let
$$B^{2n}(r) = \{(q,p) \in \mathbb{R}^{2n} \mid |q|^2 + |p|^2 < r^2\}$$

$$Z^{2n}(r) = \{(q,p) \in \mathbb{R}^{2n} \mid q_1^2 + p_1^2 < r^2\}$$

$$\omega^n = \omega \wedge \cdots \wedge \omega = n! dq_1 \wedge dp_1 \wedge \cdots \wedge dq_n \wedge dp_n.$$

If
$$\varphi^*\omega = \omega$$
, then $\varphi^*(\omega^n) = \omega^n$.
Let
$$B^{2n}(r) = \{(q,p) \in \mathbb{R}^{2n} \mid |q|^2 + |p|^2 < r^2\}$$

$$Z^{2n}(r) = \{(q,p) \in \mathbb{R}^{2n} \mid q_1^2 + p_1^2 < r^2\} = B^2(r) \times \mathbb{R}^{2n-2}.$$

$$\omega^n = \omega \wedge \cdots \wedge \omega = n! dq_1 \wedge dp_1 \wedge \cdots \wedge dq_n \wedge dp_n.$$

If
$$\varphi^*\omega = \omega$$
, then $\varphi^*(\omega^n) = \omega^n$. Let

$$B^{2n}(r) = \{(q, p) \in \mathbb{R}^{2n} \mid |q|^2 + |p|^2 < r^2\}$$

$$Z^{2n}(r) = \{(q, p) \in \mathbb{R}^{2n} \mid q_1^2 + p_1^2 < r^2\} = B^2(r) \times \mathbb{R}^{2n-2}.$$

$$B^{2n}(r) \stackrel{s}{\hookrightarrow} Z^{2n}(R) \iff r \leq R.$$

$$B^{2n}(r) \stackrel{s}{\hookrightarrow} Z^{2n}(R) \iff r \leq R.$$

$$B^{2n}(r) \overset{s}{\hookrightarrow} Z^{2n}(R) \iff r \leq R.$$

$$B^{2n}(r) \stackrel{s}{\hookrightarrow} Z^{2n}(R) \iff r \leq R.$$

$$B^{2n}(r) \stackrel{s}{\hookrightarrow} \widetilde{Z}^{2n}(\varepsilon) = \{(q,p) \in \mathbb{R}^{2n} \mid q_1^2 + q_2^2 < \varepsilon^2\}, \qquad \forall r, \varepsilon > 0.$$

$$B^{2n}(r) \stackrel{s}{\hookrightarrow} Z^{2n}(R) \iff r \leq R.$$

$$B^{2n}(r) \stackrel{s}{\hookrightarrow} \widetilde{Z}^{2n}(\varepsilon) = \{(q, p) \in \mathbb{R}^{2n} \mid q_1^2 + q_2^2 < \varepsilon^2\}, \qquad \forall r, \varepsilon > 0.$$

$$\omega = \sum_{i} dq_{i} \wedge dp_{i}.$$

Symplectic capacities

Definition

A symplectic capacity is a function $c:\mathcal{P}(\mathbb{R}^{2n}) \to [0,+\infty]$ satisfying

Symplectic capacities

Definition

A symplectic capacity is a function $c:\mathcal{P}(\mathbb{R}^{2n}) \to [0,+\infty]$ satisfying

 $ightharpoonup c(rX) = r^2c(X)$ for all r > 0,

Definition

A symplectic capacity is a function $c:\mathcal{P}(\mathbb{R}^{2n}) \to [0,+\infty]$ satisfying

- $ightharpoonup c(rX) = r^2c(X)$ for all r > 0,
- $X_1 \stackrel{s}{\hookrightarrow} X_2 \Rightarrow c(X_1) \leq c(X_2),$

Definition

A symplectic capacity is a function $c:\mathcal{P}(\mathbb{R}^{2n}) \to [0,+\infty]$ satisfying

- $ightharpoonup c(rX) = r^2c(X)$ for all r > 0,
- $\blacktriangleright X_1 \stackrel{s}{\hookrightarrow} X_2 \Rightarrow c(X_1) \leq c(X_2),$
- $ightharpoonup c(B^{2n}(r))>0$ and $c(Z^{2n}(r))<\infty.$

Definition

A symplectic capacity is a function $c:\mathcal{P}(\mathbb{R}^{2n}) \to [0,+\infty]$ satisfying

- $ightharpoonup c(rX) = r^2c(X)$ for all r > 0,
- $\blacktriangleright X_1 \stackrel{s}{\hookrightarrow} X_2 \Rightarrow c(X_1) \leq c(X_2),$
- ▶ $c(B^{2n}(r)) > 0$ and $c(Z^{2n}(r)) < \infty$.

c is said to be normalized if

Definition

A symplectic capacity is a function $c:\mathcal{P}(\mathbb{R}^{2n}) \to [0,+\infty]$ satisfying

- $ightharpoonup c(rX) = r^2c(X)$ for all r > 0,
- $X_1 \stackrel{s}{\hookrightarrow} X_2 \Rightarrow c(X_1) \leq c(X_2),$
- ▶ $c(B^{2n}(r)) > 0$ and $c(Z^{2n}(r)) < \infty$.

c is said to be normalized if

$$c(B^{2n}(r)) = c(Z^{2n}(r)) = \pi r^2.$$

Definition

A symplectic capacity is a function $c:\mathcal{P}(\mathbb{R}^{2n}) \to [0,+\infty]$ satisfying

- $ightharpoonup c(rX) = r^2c(X)$ for all r > 0,
- $X_1 \stackrel{s}{\hookrightarrow} X_2 \Rightarrow c(X_1) \leq c(X_2),$
- ▶ $c(B^{2n}(r)) > 0$ and $c(Z^{2n}(r)) < \infty$.

c is said to be normalized if

$$c(B^{2n}(r)) = c(Z^{2n}(r)) = \pi r^2.$$

The existence of a normalized symplectic capacity is equivalent to Gromov's nonsqueezing theorem.

The simplest capacities are

The simplest capacities are

$$c_{Gr}(X) = \sup\{\pi r^2 \mid B^{2n}(r) \stackrel{s}{\hookrightarrow} X\}$$
 (Gromov width),

The simplest capacities are

$$c_{Gr}(X) = \sup\{\pi r^2 \mid B^{2n}(r) \stackrel{s}{\hookrightarrow} X\}$$
 (Gromov width),
 $c_Z(X) = \inf\{\pi r^2 \mid X \stackrel{s}{\hookrightarrow} Z^{2n}(r)\}$ (cylindrical capacity).

The simplest capacities are

$$c_{Gr}(X) = \sup\{\pi r^2 \mid B^{2n}(r) \stackrel{s}{\hookrightarrow} X\}$$
 (Gromov width),
 $c_Z(X) = \inf\{\pi r^2 \mid X \stackrel{s}{\hookrightarrow} Z^{2n}(r)\}$ (cylindrical capacity).

It is easy to check that if c is a normalized capacity, then

$$c_{Gr}(X) \leq c(X) \leq c_{Z}(X).$$

The simplest capacities are

$$c_{Gr}(X) = \sup\{\pi r^2 \mid B^{2n}(r) \stackrel{s}{\hookrightarrow} X\}$$
 (Gromov width),
 $c_Z(X) = \inf\{\pi r^2 \mid X \stackrel{s}{\hookrightarrow} Z^{2n}(r)\}$ (cylindrical capacity).

It is easy to check that if c is a normalized capacity, then

$$c_{Gr}(X) \leq c(X) \leq c_{Z}(X).$$

The simplest capacities are

$$c_{Gr}(X) = \sup\{\pi r^2 \mid B^{2n}(r) \stackrel{s}{\hookrightarrow} X\}$$
 (Gromov width),
 $c_Z(X) = \inf\{\pi r^2 \mid X \stackrel{s}{\hookrightarrow} Z^{2n}(r)\}$ (cylindrical capacity).

It is easy to check that if c is a normalized capacity, then

$$c_{Gr}(X) \leq c(X) \leq c_{Z}(X)$$
.

Other examples of normalized capacities:

First Ekeland-Hofer capacity c_1^{EH} (1989),

The simplest capacities are

$$c_{Gr}(X) = \sup\{\pi r^2 \mid B^{2n}(r) \stackrel{s}{\hookrightarrow} X\}$$
 (Gromov width),
 $c_Z(X) = \inf\{\pi r^2 \mid X \stackrel{s}{\hookrightarrow} Z^{2n}(r)\}$ (cylindrical capacity).

It is easy to check that if c is a normalized capacity, then

$$c_{Gr}(X) \leq c(X) \leq c_{Z}(X)$$
.

- First Ekeland-Hofer capacity c_1^{EH} (1989),
- ▶ Hofer-Zehnder capacity c_{HZ} (1994),

The simplest capacities are

$$c_{Gr}(X) = \sup\{\pi r^2 \mid B^{2n}(r) \stackrel{s}{\hookrightarrow} X\}$$
 (Gromov width),
 $c_Z(X) = \inf\{\pi r^2 \mid X \stackrel{s}{\hookrightarrow} Z^{2n}(r)\}$ (cylindrical capacity).

It is easy to check that if c is a normalized capacity, then

$$c_{Gr}(X) \leq c(X) \leq c_{Z}(X)$$
.

- First Ekeland-Hofer capacity c_1^{EH} (1989),
- ▶ Hofer-Zehnder capacity c_{HZ} (1994),
- ▶ Floer-Hofer capacity c_{SH} (1994),

The simplest capacities are

$$c_{Gr}(X) = \sup\{\pi r^2 \mid B^{2n}(r) \stackrel{s}{\hookrightarrow} X\}$$
 (Gromov width),
 $c_Z(X) = \inf\{\pi r^2 \mid X \stackrel{s}{\hookrightarrow} Z^{2n}(r)\}$ (cylindrical capacity).

It is easy to check that if c is a normalized capacity, then

$$c_{Gr}(X) \leq c(X) \leq c_{Z}(X)$$
.

- First Ekeland-Hofer capacity c_1^{EH} (1989),
- ▶ Hofer-Zehnder capacity c_{HZ} (1994),
- ▶ Floer-Hofer capacity c_{SH} (1994),
- ▶ First contact homology capacity c_1^{CH} (Gutt-Hutchings 2018),

The simplest capacities are

$$c_{Gr}(X) = \sup\{\pi r^2 \mid B^{2n}(r) \stackrel{s}{\hookrightarrow} X\}$$
 (Gromov width),
 $c_Z(X) = \inf\{\pi r^2 \mid X \stackrel{s}{\hookrightarrow} Z^{2n}(r)\}$ (cylindrical capacity).

It is easy to check that if c is a normalized capacity, then

$$c_{Gr}(X) \leq c(X) \leq c_{Z}(X).$$

- First Ekeland-Hofer capacity c_1^{EH} (1989),
- ► Hofer-Zehnder capacity c_{HZ} (1994),
- ► Floer-Hofer capacity c_{SH} (1994),
- First contact homology capacity c_1^{CH} (Gutt-Hutchings 2018),
- First embedded contact homology capacity c_1^{ECH} (Hutchings 2011) only in dimension 4.

Exercise

For any compact set X,

$$\frac{c_{Gr}(X)^n}{n!} \leq \operatorname{vol}(X).$$

Exercise

For any compact set X,

$$\frac{c_{Gr}(X)^n}{n!} \leq \operatorname{vol}(X).$$

Idea: If
$$c_{Gr}(X) = \pi r^2$$
, then $(1 - \epsilon)B^{2n}(r) \stackrel{s}{\hookrightarrow} X$.

Exercise

For any compact set X,

$$\frac{c_{Gr}(X)^n}{n!} \leq \operatorname{vol}(X).$$

Idea: If
$$c_{Gr}(X) = \pi r^2$$
, then $(1 - \epsilon)B^{2n}(r) \stackrel{s}{\hookrightarrow} X$. So $vol((1 - \epsilon)B^{2n}(r)) \le vol(X)$.

Exercise

For any compact set X,

$$\frac{c_{Gr}(X)^n}{n!} \leq \operatorname{vol}(X).$$

Idea: If $c_{Gr}(X) = \pi r^2$, then $(1 - \epsilon)B^{2n}(r) \stackrel{s}{\hookrightarrow} X$. So $vol((1 - \epsilon)B^{2n}(r)) \le vol(X)$.

Conjecture (Viterbo)

If $X\subset\mathbb{R}^{2n}$ is a compact and convex set and c is a normalized symplectic capacity, then

$$\frac{c(X)^n}{n!} \le \operatorname{vol}(X).$$

Exercise

For any compact set X,

$$\frac{c_{Gr}(X)^n}{n!} \leq \operatorname{vol}(X).$$

Idea: If $c_{Gr}(X) = \pi r^2$, then $(1 - \epsilon)B^{2n}(r) \stackrel{s}{\hookrightarrow} X$. So $vol((1 - \epsilon)B^{2n}(r)) \le vol(X)$.

Conjecture (Viterbo)

If $X\subset\mathbb{R}^{2n}$ is a compact and convex set and c is a normalized symplectic capacity, then

$$\frac{c(X)^n}{n!} \leq \operatorname{vol}(X).$$

Moreover equality holds if, and only if, X is symplectomorphic to a ball.

If X is a compact and convex set of \mathbb{R}^{2n} with smooth boundary, let $A_{min}(X)$ denote the shortest period of a closed characteristic on ∂X .

If X is a compact and convex set of \mathbb{R}^{2n} with smooth boundary, let $A_{min}(X)$ denote the shortest period of a closed characteristic on ∂X .

Theorem (EH, HZ, Abbondandolo-Kang, Irie)

If X is a compact and convex set with smooth boundary, then

$$c_1^{EH}(X) = c_{HZ}(X) = c_{SH}(X) = c_1^{CH}(X) = A_{min}(X).$$

If X is a compact and convex set of \mathbb{R}^{2n} with smooth boundary, let $A_{min}(X)$ denote the shortest period of a closed characteristic on ∂X .

Theorem (EH, HZ, Abbondandolo-Kang, Irie)

If X is a compact and convex set with smooth boundary, then

$$c_1^{EH}(X) = c_{HZ}(X) = c_{SH}(X) = c_1^{CH}(X) = A_{min}(X).$$

Weak Viterbo conjecture

If X is a compact and convex set of \mathbb{R}^{2n} with smooth boundary, then

$$\frac{A_{min}(X)^n}{n!} \leq \text{vol}(X).$$

If X is a compact and convex set of \mathbb{R}^{2n} with smooth boundary, let $A_{min}(X)$ denote the shortest period of a closed characteristic on ∂X .

Theorem (EH, HZ, Abbondandolo-Kang, Irie)

If X is a compact and convex set with smooth boundary, then

$$c_1^{EH}(X) = c_{HZ}(X) = c_{SH}(X) = c_1^{CH}(X) = A_{min}(X).$$

Weak Viterbo conjecture

If X is a compact and convex set of \mathbb{R}^{2n} with smooth boundary, then

$$\frac{A_{min}(X)^n}{n!} \leq \operatorname{vol}(X).$$

Strong Viterbo conjecture

All normalized capacities coincide on convex sets.

Conjecture (Mahler)

Let K be a centrally symmetric, compact and convex set in \mathbb{R}^n .

Conjecture (Mahler)

Let K be a centrally symmetric, compact and convex set in \mathbb{R}^n . Then

$$\operatorname{vol}(K) \cdot \operatorname{vol}(K^{\circ}) \geq \frac{4^n}{n!}.$$

Conjecture (Mahler)

Let K be a centrally symmetric, compact and convex set in \mathbb{R}^n . Then

$$\operatorname{vol}(K) \cdot \operatorname{vol}(K^{\circ}) \geq \frac{4^n}{n!}.$$

Moreover, equality is attained if, and only if, K is a Hanner polytope.

Conjecture (Mahler)

Let K be a centrally symmetric, compact and convex set in \mathbb{R}^n . Then

$$\operatorname{vol}(K) \cdot \operatorname{vol}(K^{\circ}) \geq \frac{4^n}{n!}$$
.

Moreover, equality is attained if, and only if, K is a Hanner polytope.

Theorem (Artstein-Avidan, Karasev, Ostrover 2014)

The weak Viterbo conjecture implies the Mahler conjecture.

Conjecture (Mahler)

Let K be a centrally symmetric, compact and convex set in \mathbb{R}^n . Then

$$\operatorname{vol}(K) \cdot \operatorname{vol}(K^{\circ}) \geq \frac{4^n}{n!}$$
.

Moreover, equality is attained if, and only if, K is a Hanner polytope.

Theorem (Artstein-Avidan, Karasev, Ostrover 2014)

The weak Viterbo conjecture implies the Mahler conjecture.

Main idea: $c_{HZ}(K \times K^{\circ}) = 4$.

Conjecture (Mahler)

Let K be a centrally symmetric, compact and convex set in \mathbb{R}^n . Then

$$\operatorname{vol}(K) \cdot \operatorname{vol}(K^{\circ}) \geq \frac{4^n}{n!}.$$

Moreover, equality is attained if, and only if, K is a Hanner polytope.

Theorem (Artstein-Avidan, Karasev, Ostrover 2014)

The weak Viterbo conjecture implies the Mahler conjecture.

Main idea:
$$c_{HZ}(K \times K^{\circ}) = 4$$
.

Strong Viterbo \Rightarrow Viterbo \Rightarrow Weak Viterbo \Rightarrow Mahler

Toric domains

Definition

A toric domain $X_{\Omega} \subset \mathbb{C}^n$ is a set of the form $X_{\Omega} = \mu^{-1}(\Omega)$ where $\Omega \subset \mathbb{R}^n_{\geq 0}$ is star-shaped with respect with 0 and

$$\mu: \mathbb{C}^n \to \mathbb{R}^n \quad \mu(z_1, \dots, z_n) = (\pi |z_1|^2, \dots, \pi |z_n|^2)$$

Toric domains

Definition

A toric domain $X_{\Omega} \subset \mathbb{C}^n$ is a set of the form $X_{\Omega} = \mu^{-1}(\Omega)$ where $\Omega \subset \mathbb{R}^n_{\geq 0}$ is star-shaped with respect with 0 and

$$\mu: \mathbb{C}^n \to \mathbb{R}^n \quad \mu(z_1, \dots, z_n) = (\pi |z_1|^2, \dots, \pi |z_n|^2)$$

Example (Cylinder)

$$Z(a) := \{(z_1, z_2) \in \mathbb{C}^2 \mid \pi | z_1 |^2 \leq a \}$$

Toric domains

Definition

A toric domain $X_{\Omega} \subset \mathbb{C}^n$ is a set of the form $X_{\Omega} = \mu^{-1}(\Omega)$ where $\Omega \subset \mathbb{R}^n_{>0}$ is star-shaped with respect with 0 and

$$\mu: \mathbb{C}^n \to \mathbb{R}^n \quad \mu(z_1, \ldots, z_n) = (\pi |z_1|^2, \ldots, \pi |z_n|^2)$$

Example (Cylinder)

$$Z(a) := \left\{ (z_1, z_2) \in \mathbb{C}^2 \, | \, \pi |z_1|^2 \leq a
ight\}$$

Example (Ellipsoid)

$$E(a,b):=\left\{(z_1,z_2)\in\mathbb{C}^2\left|\left.\frac{\pi|z_1|^2}{a}+\frac{\pi|z_2|^2}{b}\leq 1\right.\right\}\right.$$

Monotone toric domains

Definition

A toric domain $X_{\Omega} \subset \mathbb{R}^{2n}$ is called *monotone* if for each point $p \in \partial \Omega \setminus \{x_i = 0, \text{ for some i}\}$, the normal vector $\nu = (\nu_1, \dots, \nu_n)$ satifies $\nu_i \geq 0$ for every i.

Monotone toric domains

Definition

A toric domain $X_{\Omega} \subset \mathbb{R}^{2n}$ is called *monotone* if for each point $p \in \partial \Omega \setminus \{x_i = 0, \text{ for some i}\}$, the normal vector $\nu = (\nu_1, \dots, \nu_n)$ satifies $\nu_i \geq 0$ for every i.

Monotone toric domains

Definition

A toric domain $X_{\Omega} \subset \mathbb{R}^{2n}$ is called *monotone* if for each point $p \in \partial \Omega \setminus \{x_i = 0, \text{ for some i}\}$, the normal vector $\nu = (\nu_1, \dots, \nu_n)$ satisfies $\nu_i \geq 0$ for every i.

Remark

If X_{Ω} is monotone, then it can be approximated by a toric domains which are bounded by the coordinate hyperplanes and a the graph of a non-negative smooth function $f:\Omega'\subset\mathbb{R}^n_{\geq 0}\to\mathbb{R}_{\geq 0}$ whose partial derivatives are all negative.

Monotone toric domains

Remark

Monotone toric domains are not necessarily convex.

Monotone toric domains

Remark

Monotone toric domains are not necessarily convex.

Proposition

A 4-dimensional toric domain X_{Ω} is (strictly) monotone if, and only if, $(\partial X_{\Omega}, \alpha_0)$ is dynamically convex.

Strong Viterbo conjecture

Theorem (Gutt-Hutchings-R. 2020)

For a monotone toric domain $X_{\Omega} \subset \mathbb{R}^4$ all symplectic capacities coincide.

Strong Viterbo conjecture

Theorem (Gutt-Hutchings-R. 2020)

For a monotone toric domain $X_{\Omega} \subset \mathbb{R}^4$ all symplectic capacities coincide.

Theorem

For a monotone toric domain $X_{\Omega} \subset \mathbb{R}^{2n}$,

$$c_{Gr}(X_{\Omega})=c_1^{CH}(X_{\Omega}).$$

The second theorem follows from this picture and a result by Gutt–Hutchings.

The second theorem follows from this picture and a result by Gutt–Hutchings.

In dimension 4, let

$$Z_2(a,b) := \{(z_1,z_2) \in \mathbb{C}^2 |\pi|z_1|^2 \le a \text{ or } \pi|z_2|^2 \le b\}.$$

 $Z_2(a, b)$ is a concave toric domain with weight sequence $(a + b, a, b, a, b, a, b, \dots)$.

 $Z_2(a, b)$ is a concave toric domain with weight sequence (a + b, a, b, a, b, a, b, ...).

Theorem (Cristofaro-Gardiner)

If X_{Ω} is a concave toric domain with weight sequence (w_1, w_2, \dots) . Then

$$X_{\Omega} \stackrel{s}{\hookrightarrow} Z^4(r) \iff \bigsqcup_{i} B(w_i) \stackrel{s}{\hookrightarrow} Z^4(r).$$

Corollary

$$Z_2(a,b) \stackrel{s}{\hookrightarrow} Z^4(a+b).$$

Proof So

$$B^4(a+b) \subset X_{\Omega} \subset Z_2(a,b) \stackrel{s}{\hookrightarrow} Z^4(a+b).$$

So

$$B^4(a+b) \subset X_{\Omega} \subset Z_2(a,b) \stackrel{s}{\hookrightarrow} Z^4(a+b).$$

Therefore

$$c_{Gr}(X_{\Omega}) = c_{Z}(X_{\Omega}) = a + b.$$

So

$$B^4(a+b) \subset X_{\Omega} \subset Z_2(a,b) \stackrel{s}{\hookrightarrow} Z^4(a+b).$$

Therefore

$$c_{Gr}(X_{\Omega}) = c_{Z}(X_{\Omega}) = a + b.$$

$$K \times T = \{(q, p) \in \mathbb{C}^n \mid q \in K \text{ and } p \in T\}.$$

$$K \times T = \{(q, p) \in \mathbb{C}^n \mid q \in K \text{ and } p \in T\}.$$

$$\sum_{i} \nu_{p}^{i} \frac{\partial}{\partial q_{i}} \text{ on } K \times \partial T$$

$$-\sum_{i} \nu_{q}^{i} \frac{\partial}{\partial p_{i}} \text{ on } \partial K \times T.$$

$$K \times T = \{(q, p) \in \mathbb{C}^n \mid q \in K \text{ and } p \in T\}.$$

$$\sum_{i} \nu_{p}^{i} \frac{\partial}{\partial q_{i}} \text{ on } K \times \partial T$$

$$-\sum_{i} \nu_{q}^{i} \frac{\partial}{\partial p_{i}} \text{ on } \partial K \times T.$$

$$K \times T = \{(q, p) \in \mathbb{C}^n \mid q \in K \text{ and } p \in T\}.$$

$$\sum_{i} \nu_{p}^{i} \frac{\partial}{\partial q_{i}} \text{ on } K \times \partial T$$

$$-\sum_{i} \nu_{q}^{i} \frac{\partial}{\partial p_{i}} \text{ on } \partial K \times T.$$

$$K \times T = \{(q, p) \in \mathbb{C}^n \mid q \in K \text{ and } p \in T\}.$$

$$\sum_{i} \nu_{p}^{i} \frac{\partial}{\partial q_{i}} \text{ on } K \times \partial T$$

$$-\sum_{i} \nu_{q}^{i} \frac{\partial}{\partial p_{i}} \text{ on } \partial K \times T.$$

$$K \times T = \{(q, p) \in \mathbb{C}^n \mid q \in K \text{ and } p \in T\}.$$

$$\sum_{i} \nu_{p}^{i} \frac{\partial}{\partial q_{i}} \text{ on } K \times \partial T$$

$$-\sum_{i} \nu_{q}^{i} \frac{\partial}{\partial p_{i}} \text{ on } \partial K \times T.$$

$$K \times T = \{(q, p) \in \mathbb{C}^n \mid q \in K \text{ and } p \in T\}.$$

$$\sum_{i} \nu_{p}^{i} \frac{\partial}{\partial q_{i}} \text{ on } K \times \partial T$$

$$-\sum_{i} \nu_{q}^{i} \frac{\partial}{\partial p_{i}} \text{ on } \partial K \times T.$$

Specific examples:

▶ The Lagrangian bidisk $D^2 \times D^2 \subset \mathbb{R}^4$ is symplectomorphic to a concave toric domain. (R. 2017)

Specific examples:

- ▶ The Lagrangian bidisk $D^2 \times D^2 \subset \mathbb{R}^4$ is symplectomorphic to a concave toric domain. (R. 2017)
- ► The L^p sum of two disks is symplectomorphic to a toric domain. (Ostrover– R. 2020)

Specific examples:

- ▶ The Lagrangian bidisk $D^2 \times D^2 \subset \mathbb{R}^4$ is symplectomorphic to a concave toric domain. (R. 2017)
- ► The L^p sum of two disks is symplectomorphic to a toric domain. (Ostrover– R. 2020)
- The unit disk bundles $D^*S_+^2$ and $D^*(S^2 \setminus \{x\})$ are symplectomorphic to $B(2\pi)$ and $P(2\pi, 2\pi)$, respectively. (Ferreira– R. 2021)

Specific examples:

- ▶ The Lagrangian bidisk $D^2 \times D^2 \subset \mathbb{R}^4$ is symplectomorphic to a concave toric domain. (R. 2017)
- ► The L^p sum of two disks is symplectomorphic to a toric domain. (Ostrover– R. 2020)
- The unit disk bundles $D^*S_+^2$ and $D^*(S^2 \setminus \{x\})$ are symplectomorphic to $B(2\pi)$ and $P(2\pi, 2\pi)$, respectively. (Ferreira– R. 2021)

Large classes of examples:

The Lagrangian product of a hypercube and a symmetric region in \mathbb{R}^{2n} is symplectomorphic to a toric domain. (R.–Sepe, 2019)

Specific examples:

- ▶ The Lagrangian bidisk $D^2 \times D^2 \subset \mathbb{R}^4$ is symplectomorphic to a concave toric domain. (R. 2017)
- ► The *L^p* sum of two disks is symplectomorphic to a toric domain. (Ostrover– R. 2020)
- The unit disk bundles $D^*S_+^2$ and $D^*(S^2 \setminus \{x\})$ are symplectomorphic to $B(2\pi)$ and $P(2\pi, 2\pi)$, respectively. (Ferreira– R. 2021)

Large classes of examples:

- The Lagrangian product of a hypercube and a symmetric region in \mathbb{R}^{2n} is symplectomorphic to a toric domain. (R.–Sepe, 2019)
- The Lagrangian product of a regular simplex Δ^n and a symmetric region in \mathbb{R}^n is symplectomorphic to a toric domain. (Ostrover– R.– Sepe, 2022)

Fix (M^{2n}, ω) and let $F = (H^1, \dots, H^n) : M \to \mathbb{R}^n$ whose components Poisson commute.

Fix (M^{2n}, ω) and let $F = (H^1, \dots, H^n) : M \to \mathbb{R}^n$ whose components Poisson commute.

▶ If $c \in \mathbb{R}^n$ is a regular value of F and $F^{-1}(c)$ is compact and connected, then $F^{-1}(c) \cong \mathbb{T}^n$.

Fix (M^{2n}, ω) and let $F = (H^1, \dots, H^n) : M \to \mathbb{R}^n$ whose components Poisson commute.

- If $c \in \mathbb{R}^n$ is a regular value of F and $F^{-1}(c)$ is compact and connected, then $F^{-1}(c) \cong \mathbb{T}^n$.
- Let U be a simply-connected open set of regular points. For $c \in F(U)$, let $\{\gamma_1^c, \ldots, \gamma_n^c\}$ be simple closed curves generating $H_1(F^{-1}(c); \mathbb{Z})$ and suppose $\omega = d\lambda$ on U. Let

$$\phi(c) = \left(\int_{\gamma_{\epsilon}^c} \lambda, \ldots, \int_{\gamma_{\epsilon}^c} \lambda\right).$$

Fix (M^{2n}, ω) and let $F = (H^1, \dots, H^n) : M \to \mathbb{R}^n$ whose components Poisson commute.

- If $c \in \mathbb{R}^n$ is a regular value of F and $F^{-1}(c)$ is compact and connected, then $F^{-1}(c) \cong \mathbb{T}^n$.
- Let U be a simply-connected open set of regular points. For $c \in F(U)$, let $\{\gamma_1^c, \ldots, \gamma_n^c\}$ be simple closed curves generating $H_1(F^{-1}(c); \mathbb{Z})$ and suppose $\omega = d\lambda$ on U. Let

$$\phi(c) = \left(\int_{\gamma_1^c} \lambda, \ldots, \int_{\gamma_n^c} \lambda\right).$$

Then there exists a symplectomorphism

 $\Phi: (U,\omega) \to (\phi(U) \times \mathbb{T}^n, \omega_0)$ such that the following diagram commutes.

$$\begin{array}{ccc}
U & \stackrel{\Phi}{\longrightarrow} \phi(U) \times \mathbb{T}^n \\
\downarrow^F & & \downarrow^{\pi_1} \\
F(U) & \stackrel{\phi}{\longrightarrow} & \phi(U)
\end{array}$$

The Arnold-Liouville theorem in action

$$H_{\epsilon}(\mathsf{q},\mathsf{p}) = rac{1}{2}|\mathsf{p}|^2 + rac{\epsilon}{1-|\mathsf{q}|^2}, \qquad J(\mathsf{q},\mathsf{p}) = \mathsf{q} imes \mathsf{p}.$$

The Arnold-Liouville theorem in action

$$H_{\epsilon}(\mathsf{q},\mathsf{p}) = rac{1}{2}|\mathsf{p}|^2 + rac{\epsilon}{1-|\mathsf{q}|^2}, \qquad J(\mathsf{q},\mathsf{p}) = \mathsf{q} imes \mathsf{p}.$$

 $D^2 \times D^2$ is symplectomorphic to a toric domain X_{Ω} , where Ω is the domain bounded by the coordinate axis and the curve parametrized by:

$$\left(2\sin\frac{\alpha}{2} - \alpha\cos\frac{\alpha}{2}, 2\sin\frac{\alpha}{2} + (2\pi - \alpha)\cos\frac{\alpha}{2}\right), \ \alpha \in [0, 2\pi]$$

The Arnold-Liouville theorem in action

$$H_{\epsilon}(\mathsf{q},\mathsf{p}) = rac{1}{2}|\mathsf{p}|^2 + rac{\epsilon}{1-|\mathsf{q}|^2}, \qquad J(\mathsf{q},\mathsf{p}) = \mathsf{q} imes \mathsf{p}.$$

 $D^2 \times D^2$ is symplectomorphic to a toric domain X_{Ω} , where Ω is the domain bounded by the coordinate axis and the curve parametrized by:

$$\left(2\sin\frac{\alpha}{2} - \alpha\cos\frac{\alpha}{2}, 2\sin\frac{\alpha}{2} + (2\pi - \alpha)\cos\frac{\alpha}{2}\right), \ \alpha \in [0, 2\pi]$$

The Arnold-Liouville Theorem in action

Theorem (Ostrover-R.-Sepe)

$$\triangle \times \bigcirc \cong B^4$$
.

The Arnold-Liouville Theorem in action

Theorem (Ostrover-R.-Sepe)

$$\triangle \times \bigcirc \cong B^4$$
.

First idea:

$$H(q,p)=rac{1}{2}|p|^2+ ext{reflection law}.$$

$$J(q,p)=rac{1}{3} ext{Re}(p^3)$$

The Arnold-Liouville Theorem in action

Theorem (Ostrover-R.-Sepe)

$$\triangle \times \bigcirc \cong B^4$$
.

First idea:

$$H(q, p) = \frac{1}{2}|p|^2 + U(q).$$

$$J(q, p) = \frac{1}{3}Re(p^3) + \mathbf{p} \times \nabla U(q).$$

$$H(q,p) = \frac{1}{2} \sum_{i=1}^{n} p_i^2 + \sum_{i=1}^{n-1} e^{q_i - q_{i+1}} + e^{q_n - q_1}.$$

$$H(q,p) = \frac{1}{2} \sum_{i=1}^{n} p_i^2 + \sum_{i=1}^{n-1} e^{q_i - q_{i+1}} + e^{q_n - q_1}.$$

Flaschka coordinates:

$$a_i = e^{\frac{1}{2}(q_i - q_{i+1})}, \quad b_i = -p_i.$$

$$H(q,p) = \frac{1}{2} \sum_{i=1}^{n} p_i^2 + \sum_{i=1}^{n-1} e^{q_i - q_{i+1}} + e^{q_n - q_1}.$$

Flaschka coordinates:

$$a_i = e^{\frac{1}{2}(q_i - q_{i+1})}, \quad b_i = -p_i.$$

$$H(a,b) = \frac{1}{2} \sum_{i=1}^{n} b_i^2 + \sum_{i=1}^{n} a_i^2$$

$$H(q,p) = \frac{1}{2} \sum_{i=1}^{n} p_i^2 + \sum_{i=1}^{n-1} e^{q_i - q_{i+1}} + e^{q_n - q_1}.$$

Flaschka coordinates:

$$a_i = e^{\frac{1}{2}(q_i - q_{i+1})}, \quad b_i = -p_i.$$

$$H(a,b) = \frac{1}{2} \sum_{i=1}^{n} b_i^2 + \sum_{i=1}^{n} a_i^2$$

Hamiltonian system:

$$\dot{b}_i = a_i^2 - a_{i-1}^2$$

 $\dot{a}_i = \frac{1}{2} a_i (b_{i+1} - b_i).$

Lax pair formulation

There exists a Lax pair (L,B) such that the Hamiltonian system above is equivalent to $\dot{L}=[B,L]$,

$$L = \begin{pmatrix} b_1 & a_1 & 0 & \dots & a_n \\ a_1 & b_2 & a_2 & \dots & 0 \\ 0 & a_2 & b_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_n & 0 & 0 & \dots & b_n \end{pmatrix}.$$

Lax pair formulation

There exists a Lax pair (L,B) such that the Hamiltonian system above is equivalent to $\dot{L}=[B,L]$,

$$L = \begin{pmatrix} b_1 & a_1 & 0 & \dots & a_n \\ a_1 & b_2 & a_2 & \dots & 0 \\ 0 & a_2 & b_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_n & 0 & 0 & \dots & b_n \end{pmatrix}.$$

Theorem (Toda)

The spectrum of L is invariant under the flow.

Action-angle coordinates

Theorem (Flaschka-McLaughlin, van Moerbeke, Moser)

Let $\Delta(\lambda) = \det(L - \lambda I)^2 - 2$ and let $\lambda_1 \le \lambda_2 \le \cdots \le \lambda_{2n}$ be the roots of $\Delta(\lambda)^2 - 4$.

Action-angle coordinates

Theorem (Flaschka-McLaughlin, van Moerbeke, Moser)

Let $\Delta(\lambda) = \det(L - \lambda I)^2 - 2$ and let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_{2n}$ be the roots of $\Delta(\lambda)^2 - 4$. Then the reduced manifold $\{(q,p) \in \mathbb{R}^{2n} \mid \sum_i p_i = 0\} / \sim$ is symplectomorphic to a toric manifold with moment map coordinates given by

$$\int_{\lambda_{2i}}^{\lambda_{2i+1}} \cosh^{-1} \left| \frac{\Delta(\lambda)}{2} \right| d\lambda.$$

Action-angle coordinates

Theorem (Flaschka-McLaughlin, van Moerbeke, Moser)

Let $\Delta(\lambda) = \det(L - \lambda I)^2 - 2$ and let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_{2n}$ be the roots of $\Delta(\lambda)^2 - 4$. Then the reduced manifold $\{(q,p) \in \mathbb{R}^{2n} \mid \sum_i p_i = 0\} / \sim$ is symplectomorphic to a toric manifold with moment map coordinates given by

$$\int_{\lambda_{2i}}^{\lambda_{2i+1}} \cosh^{-1} \left| \frac{\Delta(\lambda)}{2} \right| d\lambda.$$

Theorem (Ostrover-R.-Sepe)

 $\Delta^{n-1} imes \mathbb{R}^{n-1}$ has a toric action whose moment map is given by

$$egin{aligned} \Delta^{n-1} imes \mathbb{R}^{n-1} & o \mathbb{R}^{n-1}_{\geq 0} \ (q,p) &\mapsto (p_{i_1} - p_{i_2}, p_{i_2} - p_{i_3}, \dots, p_{i_{n-1}} - p_{i_n}), \end{aligned}$$

where $p_{i_1} \geq p_{i_2} \geq \cdots \geq p_{i_n}$.

The ball

Corollary

The ball is symplectomorphic to the Lagrangian product of

The ball

Corollary

The ball is symplectomorphic to the Lagrangian product of

Observation: One can independently verify that the Lagrangian product above satisfies the equality in Viterbo's conjecture.