The Toda lattice and the Viterbo conjecture

Vinicius G. B. Ramos
Instituto de Matemática Pura e Aplicada, Rio de Janeiro

Classical mechanics

- Newton: $m \ddot{q}(t)=F(q(t))$

Classical mechanics

- Newton: $m \ddot{q}(t)=F(q(t))=-\nabla U(q(t))$, $q(t) \in \mathbb{R}^{n}$

Classical mechanics

- Newton: $m \ddot{q}(t)=F(q(t))=-\nabla U(q(t))$, $q(t) \in \mathbb{R}^{n}$

Classical mechanics

- Newton: $m \ddot{q}(t)=F(q(t))=-\nabla U(q(t))$, $q(t) \in \mathbb{R}^{n}$
- Hamiltonian formulation:
- $(q(t), p(t)) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$

Classical mechanics

- Newton: $m \ddot{q}(t)=F(q(t))=-\nabla U(q(t))$, $q(t) \in \mathbb{R}^{n}$
- Hamiltonian formulation:
- $(q(t), p(t)) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$
- $\left\{\begin{array}{lll}\dot{q}(t) & =\frac{1}{m} p(t) \\ \dot{p}(t) & = & -\nabla U(q(t))\end{array}\right.$

Classical mechanics

- Newton: $m \ddot{q}(t)=F(q(t))=-\nabla U(q(t))$, $q(t) \in \mathbb{R}^{n}$
- Hamiltonian formulation:
- $(q(t), p(t)) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$
- $\left\{\begin{array}{lll}\dot{q}(t) & = & \frac{1}{m} p(t) \\ \dot{p}(t) & = & -\nabla U(q(t))\end{array}\right.$
- $H(q, p)=\frac{1}{2 m}|p|^{2}+U(q)$

Classical mechanics

- Newton: $m \ddot{q}(t)=F(q(t))=-\nabla U(q(t))$, $q(t) \in \mathbb{R}^{n}$
- Hamiltonian formulation:
$\nabla(q(t), p(t)) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$
$>\left\{\begin{array}{lll}\dot{q}(t)= & \frac{1}{m} p(t) \\ \dot{p}(t) & = & -\nabla U(q(t))\end{array}\right.$
- $H(q, p)=\frac{1}{2 m}|p|^{2}+U(q)$
$-\left\{\begin{array}{l}\dot{q}=\frac{\partial H}{\partial p} \\ \dot{p}=-\frac{\partial H}{\partial q}\end{array}\right.$

Hamiltonian dynamics

- $(q, p) \in \mathbb{R}^{n} \times \mathbb{R}^{n}=\mathbb{R}^{2 n}$.

Hamiltonian dynamics

- $(q, p) \in \mathbb{R}^{n} \times \mathbb{R}^{n}=\mathbb{R}^{2 n}$.
- Hamiltonian: $H \in C^{\infty}\left(\mathbb{R}^{2 n}\right)$.

Hamiltonian dynamics

- $(q, p) \in \mathbb{R}^{n} \times \mathbb{R}^{n}=\mathbb{R}^{2 n}$.
- Hamiltonian: $H \in C^{\infty}\left(\mathbb{R}^{2 n}\right)$.
- Let $X_{H}=\left(\frac{\partial H}{\partial p},-\frac{\partial H}{\partial q}\right)$.

Hamiltonian dynamics

- $(q, p) \in \mathbb{R}^{n} \times \mathbb{R}^{n}=\mathbb{R}^{2 n}$.
- Hamiltonian: $H \in C^{\infty}\left(\mathbb{R}^{2 n}\right)$.
- Let $X_{H}=\left(\frac{\partial H}{\partial p},-\frac{\partial H}{\partial q}\right)$.
- $X_{H}=J \nabla H$, where $J=\left(\begin{array}{cc}0 & I \\ -I & 0\end{array}\right)$.

Hamiltonian dynamics

- $(q, p) \in \mathbb{R}^{n} \times \mathbb{R}^{n}=\mathbb{R}^{2 n}$.
- Hamiltonian: $H \in C^{\infty}\left(\mathbb{R}^{2 n}\right)$.
- Let $X_{H}=\left(\frac{\partial H}{\partial p},-\frac{\partial H}{\partial q}\right)$.
- $X_{H}=J \nabla H$, where $J=\left(\begin{array}{cc}0 & I \\ -I & 0\end{array}\right)$.
- $d H\left(X_{H}\right)=\left\langle\nabla H, X_{H}\right\rangle=\langle\nabla H, J \nabla H\rangle=0$.

Hamiltonian dynamics

- $(q, p) \in \mathbb{R}^{n} \times \mathbb{R}^{n}=\mathbb{R}^{2 n}$.
- Hamiltonian: $H \in C^{\infty}\left(\mathbb{R}^{2 n}\right)$.
- Let $X_{H}=\left(\frac{\partial H}{\partial p},-\frac{\partial H}{\partial q}\right)$.
- $X_{H}=J \nabla H$, where $J=\left(\begin{array}{cc}0 & I \\ -I & 0\end{array}\right)$.
- $d H\left(X_{H}\right)=\left\langle\nabla H, X_{H}\right\rangle=\langle\nabla H, J \nabla H\rangle=0$.
- Flow of X_{H} preserves H.

Hamiltonian dynamics

- $(q, p) \in \mathbb{R}^{n} \times \mathbb{R}^{n}=\mathbb{R}^{2 n}$.
- Hamiltonian: $H \in C^{\infty}\left(\mathbb{R}^{2 n}\right)$.
- Let $X_{H}=\left(\frac{\partial H}{\partial p},-\frac{\partial H}{\partial q}\right)$.
- $X_{H}=J \nabla H$, where $J=\left(\begin{array}{cc}0 & I \\ -I & 0\end{array}\right)$.
- $d H\left(X_{H}\right)=\left\langle\nabla H, X_{H}\right\rangle=\langle\nabla H, J \nabla H\rangle=0$.
- Flow of X_{H} preserves H.
- Let $\omega(v, w)=\langle v, J w\rangle$.

Hamiltonian dynamics

- $(q, p) \in \mathbb{R}^{n} \times \mathbb{R}^{n}=\mathbb{R}^{2 n}$.
- Hamiltonian: $H \in C^{\infty}\left(\mathbb{R}^{2 n}\right)$.
- Let $X_{H}=\left(\frac{\partial H}{\partial p},-\frac{\partial H}{\partial q}\right)$.
- $X_{H}=J \nabla H$, where $J=\left(\begin{array}{cc}0 & I \\ -I & 0\end{array}\right)$.
$\nabla d H\left(X_{H}\right)=\left\langle\nabla H, X_{H}\right\rangle=\langle\nabla H, J \nabla H\rangle=0$.
- Flow of X_{H} preserves H.
- Let $\omega(v, w)=\langle v, J w\rangle$.
- ω is closed non-degenerate 2 -form.

Hamiltonian dynamics

- $(q, p) \in \mathbb{R}^{n} \times \mathbb{R}^{n}=\mathbb{R}^{2 n}$.
- Hamiltonian: $H \in C^{\infty}\left(\mathbb{R}^{2 n}\right)$.
- Let $X_{H}=\left(\frac{\partial H}{\partial p},-\frac{\partial H}{\partial q}\right)$.
- $X_{H}=J \nabla H$, where $J=\left(\begin{array}{cc}0 & I \\ -I & 0\end{array}\right)$.
$\nabla d H\left(X_{H}\right)=\left\langle\nabla H, X_{H}\right\rangle=\langle\nabla H, J \nabla H\rangle=0$.
- Flow of X_{H} preserves H.
- Let $\omega(v, w)=\langle v, J w\rangle$.
- ω is closed non-degenerate 2 -form.
- $\omega=\sum_{i=1}^{n} d q_{i} \wedge d p_{i}$.

Symplectic topology

Symplectic topology

Question 1

Given $X_{1}, X_{2} \subset \mathbb{R}^{2 n}$, does there exist a diffeomorphism $\varphi: X_{1} \rightarrow X_{2}$ such that

$$
\varphi^{*} \omega=\omega ?
$$

Symplectic topology

Question 1

Given $X_{1}, X_{2} \subset \mathbb{R}^{2 n}$, does there exist a diffeomorphism $\varphi: X_{1} \rightarrow X_{2}$ such that

$$
\varphi^{*} \omega=\omega ?
$$

$$
\left\{q_{1}^{2}+p_{1}^{2}<1\right\} \cong\left\{\frac{q_{1}^{2}}{a^{2}}+a^{2} p_{1}^{2}<1\right\} \subset \mathbb{R}^{2}, \quad \text { for all } a>0
$$

Symplectic topology

Question 1
Given $X_{1}, X_{2} \subset \mathbb{R}^{2 n}$, does there exist a diffeomorphism $\varphi: X_{1} \rightarrow X_{2}$ such that

$$
\varphi^{*} \omega=\omega ?
$$

$$
\left\{q_{1}^{2}+p_{1}^{2}<1\right\} \cong\left\{\frac{q_{1}^{2}}{a^{2}}+a^{2} p_{1}^{2}<1\right\} \subset \mathbb{R}^{2}, \quad \text { for all } a>0
$$

Question 2

Given $X_{1}, X_{2} \subset \mathbb{R}^{2 n}$, does there exist an embedding $\varphi: X_{1} \hookrightarrow X_{2}$ such that $\varphi^{*} \omega=\omega$?

Symplectic topology

Question 1

Given $X_{1}, X_{2} \subset \mathbb{R}^{2 n}$, does there exist a diffeomorphism $\varphi: X_{1} \rightarrow X_{2}$ such that

$$
\varphi^{*} \omega=\omega ?
$$

$$
\left\{q_{1}^{2}+p_{1}^{2}<1\right\} \cong\left\{\frac{q_{1}^{2}}{a^{2}}+a^{2} p_{1}^{2}<1\right\} \subset \mathbb{R}^{2}, \quad \text { for all } a>0
$$

Question 2

Given $X_{1}, X_{2} \subset \mathbb{R}^{2 n}$, does there exist an embedding $\varphi: X_{1} \hookrightarrow X_{2}$ such that $\varphi^{*} \omega=\omega$?
If it exists, we write $X_{1} \stackrel{s}{\hookrightarrow} X_{2}$.

Symplectic embeddings

Symplectic embeddings

$$
\omega^{n}=\omega \wedge \cdots \wedge \omega=n!d q_{1} \wedge d p_{1} \wedge \cdots \wedge d q_{n} \wedge d p_{n}
$$

Symplectic embeddings

$$
\omega^{n}=\omega \wedge \cdots \wedge \omega=n!d q_{1} \wedge d p_{1} \wedge \cdots \wedge d q_{n} \wedge d p_{n}
$$

If $\varphi^{*} \omega=\omega$, then $\varphi^{*}\left(\omega^{n}\right)=\omega^{n}$.

Symplectic embeddings

$$
\omega^{n}=\omega \wedge \cdots \wedge \omega=n!d q_{1} \wedge d p_{1} \wedge \cdots \wedge d q_{n} \wedge d p_{n}
$$

If $\varphi^{*} \omega=\omega$, then $\varphi^{*}\left(\omega^{n}\right)=\omega^{n}$.
Let

$$
B^{2 n}(r)=\left\{\left.(q, p) \in \mathbb{R}^{2 n}| | q\right|^{2}+|p|^{2}<r^{2}\right\}
$$

Symplectic embeddings

$$
\omega^{n}=\omega \wedge \cdots \wedge \omega=n!d q_{1} \wedge d p_{1} \wedge \cdots \wedge d q_{n} \wedge d p_{n}
$$

If $\varphi^{*} \omega=\omega$, then $\varphi^{*}\left(\omega^{n}\right)=\omega^{n}$.
Let

$$
\begin{aligned}
& B^{2 n}(r)=\left\{\left.(q, p) \in \mathbb{R}^{2 n}| | q\right|^{2}+|p|^{2}<r^{2}\right\} \\
& Z^{2 n}(r)=\left\{(q, p) \in \mathbb{R}^{2 n} \mid q_{1}^{2}+p_{1}^{2}<r^{2}\right\}
\end{aligned}
$$

Symplectic embeddings

$$
\omega^{n}=\omega \wedge \cdots \wedge \omega=n!d q_{1} \wedge d p_{1} \wedge \cdots \wedge d q_{n} \wedge d p_{n}
$$

If $\varphi^{*} \omega=\omega$, then $\varphi^{*}\left(\omega^{n}\right)=\omega^{n}$.
Let

$$
\begin{aligned}
& B^{2 n}(r)=\left\{\left.(q, p) \in \mathbb{R}^{2 n}| | q\right|^{2}+|p|^{2}<r^{2}\right\} \\
& Z^{2 n}(r)=\left\{(q, p) \in \mathbb{R}^{2 n} \mid q_{1}^{2}+p_{1}^{2}<r^{2}\right\}=B^{2}(r) \times \mathbb{R}^{2 n-2} .
\end{aligned}
$$

Symplectic embeddings

$$
\omega^{n}=\omega \wedge \cdots \wedge \omega=n!d q_{1} \wedge d p_{1} \wedge \cdots \wedge d q_{n} \wedge d p_{n}
$$

If $\varphi^{*} \omega=\omega$, then $\varphi^{*}\left(\omega^{n}\right)=\omega^{n}$.
Let

$$
\begin{aligned}
& B^{2 n}(r)=\left\{\left.(q, p) \in \mathbb{R}^{2 n}| | q\right|^{2}+|p|^{2}<r^{2}\right\} \\
& Z^{2 n}(r)=\left\{(q, p) \in \mathbb{R}^{2 n} \mid q_{1}^{2}+p_{1}^{2}<r^{2}\right\}=B^{2}(r) \times \mathbb{R}^{2 n-2}
\end{aligned}
$$

Nonsqueezing

Gromov's nonsqueezing theorem, 1985

$$
B^{2 n}(r) \stackrel{s}{\hookrightarrow} Z^{2 n}(R) \Longleftrightarrow r \leq R .
$$

Nonsqueezing

Gromov's nonsqueezing theorem, 1985

$$
B^{2 n}(r) \stackrel{s}{\hookrightarrow} Z^{2 n}(R) \Longleftrightarrow r \leq R .
$$

Nonsqueezing

Gromov's nonsqueezing theorem, 1985

$$
B^{2 n}(r) \stackrel{s}{\hookrightarrow} Z^{2 n}(R) \Longleftrightarrow r \leq R .
$$

Nonsqueezing

Gromov's nonsqueezing theorem, 1985

$$
B^{2 n}(r) \stackrel{s}{\hookrightarrow} Z^{2 n}(R) \Longleftrightarrow r \leq R .
$$

$$
B^{2 n}(r) \stackrel{s}{\hookrightarrow} \widetilde{Z}^{2 n}(\varepsilon)=\left\{(q, p) \in \mathbb{R}^{2 n} \mid q_{1}^{2}+q_{2}^{2}<\varepsilon^{2}\right\}, \quad \forall r, \varepsilon>0 .
$$

Nonsqueezing

Gromov's nonsqueezing theorem, 1985

$$
B^{2 n}(r) \stackrel{s}{\hookrightarrow} Z^{2 n}(R) \Longleftrightarrow r \leq R .
$$

$$
B^{2 n}(r) \stackrel{s}{\hookrightarrow} \widetilde{Z}^{2 n}(\varepsilon)=\left\{(q, p) \in \mathbb{R}^{2 n} \mid q_{1}^{2}+q_{2}^{2}<\varepsilon^{2}\right\}, \quad \forall r, \varepsilon>0 .
$$

$$
\omega=\sum_{i} d q_{i} \wedge d p_{i}
$$

Symplectic capacities

Definition
A symplectic capacity is a function $c: \mathcal{P}\left(\mathbb{R}^{2 n}\right) \rightarrow[0,+\infty]$ satisfying

Symplectic capacities

Definition

A symplectic capacity is a function $c: \mathcal{P}\left(\mathbb{R}^{2 n}\right) \rightarrow[0,+\infty]$ satisfying

- $c(r X)=r^{2} c(X)$ for all $r>0$,

Symplectic capacities

Definition

A symplectic capacity is a function $c: \mathcal{P}\left(\mathbb{R}^{2 n}\right) \rightarrow[0,+\infty]$ satisfying

- $c(r X)=r^{2} c(X)$ for all $r>0$,
- $X_{1} \stackrel{s}{\hookrightarrow} X_{2} \Rightarrow c\left(X_{1}\right) \leq c\left(X_{2}\right)$,

Symplectic capacities

Definition

A symplectic capacity is a function $c: \mathcal{P}\left(\mathbb{R}^{2 n}\right) \rightarrow[0,+\infty]$ satisfying

- $c(r X)=r^{2} c(X)$ for all $r>0$,
- $X_{1} \stackrel{s}{\hookrightarrow} X_{2} \Rightarrow c\left(X_{1}\right) \leq c\left(X_{2}\right)$,
- $c\left(B^{2 n}(r)\right)>0$ and $c\left(Z^{2 n}(r)\right)<\infty$.

Symplectic capacities

Definition

A symplectic capacity is a function $c: \mathcal{P}\left(\mathbb{R}^{2 n}\right) \rightarrow[0,+\infty]$ satisfying

- $c(r X)=r^{2} c(X)$ for all $r>0$,
- $X_{1} \stackrel{s}{\hookrightarrow} X_{2} \Rightarrow c\left(X_{1}\right) \leq c\left(X_{2}\right)$,
- $c\left(B^{2 n}(r)\right)>0$ and $c\left(Z^{2 n}(r)\right)<\infty$.
c is said to be normalized if

Symplectic capacities

Definition

A symplectic capacity is a function $c: \mathcal{P}\left(\mathbb{R}^{2 n}\right) \rightarrow[0,+\infty]$ satisfying

- $c(r X)=r^{2} c(X)$ for all $r>0$,
- $X_{1} \stackrel{s}{\hookrightarrow} X_{2} \Rightarrow c\left(X_{1}\right) \leq c\left(X_{2}\right)$,
- $c\left(B^{2 n}(r)\right)>0$ and $c\left(Z^{2 n}(r)\right)<\infty$.
c is said to be normalized if

$$
c\left(B^{2 n}(r)\right)=c\left(Z^{2 n}(r)\right)=\pi r^{2}
$$

Symplectic capacities

Definition

A symplectic capacity is a function $c: \mathcal{P}\left(\mathbb{R}^{2 n}\right) \rightarrow[0,+\infty]$ satisfying

- $c(r X)=r^{2} c(X)$ for all $r>0$,
- $X_{1} \stackrel{s}{\hookrightarrow} X_{2} \Rightarrow c\left(X_{1}\right) \leq c\left(X_{2}\right)$,
- $c\left(B^{2 n}(r)\right)>0$ and $c\left(Z^{2 n}(r)\right)<\infty$.
c is said to be normalized if

$$
c\left(B^{2 n}(r)\right)=c\left(Z^{2 n}(r)\right)=\pi r^{2}
$$

The existence of a normalized symplectic capacity is equivalent to Gromov's nonsqueezing theorem.

Symplectic capacities

The simplest capacities are

Symplectic capacities

The simplest capacities are

$$
c_{G r}(X)=\sup \left\{\pi r^{2} \mid B^{2 n}(r) \stackrel{s}{\hookrightarrow} X\right\} \quad(\text { Gromov width }),
$$

Symplectic capacities

The simplest capacities are

$$
\begin{aligned}
c_{G r}(X) & =\sup \left\{\pi r^{2} \mid B^{2 n}(r) \stackrel{s}{\hookrightarrow} X\right\} \quad \text { (Gromov width) } \\
c_{Z}(X) & =\inf \left\{\pi r^{2} \mid X \stackrel{s}{\hookrightarrow} Z^{2 n}(r)\right\} \quad \text { (cylindrical capacity). }
\end{aligned}
$$

Symplectic capacities

The simplest capacities are

$$
\begin{aligned}
c_{G r}(X) & =\sup \left\{\pi r^{2} \mid B^{2 n}(r) \stackrel{s}{\hookrightarrow} X\right\} \quad \text { (Gromov width) } \\
c_{Z}(X) & =\inf \left\{\pi r^{2} \mid X \stackrel{s}{\hookrightarrow} Z^{2 n}(r)\right\} \quad \text { (cylindrical capacity) } .
\end{aligned}
$$

It is easy to check that if c is a normalized capacity, then

$$
c_{G r}(X) \leq c(X) \leq c_{Z}(X)
$$

Symplectic capacities

The simplest capacities are

$$
\begin{aligned}
c_{G r}(X) & =\sup \left\{\pi r^{2} \mid B^{2 n}(r) \stackrel{s}{\hookrightarrow} X\right\} \quad \text { (Gromov width) } \\
c_{Z}(X) & =\inf \left\{\pi r^{2} \mid X \stackrel{s}{\hookrightarrow} Z^{2 n}(r)\right\} \quad \text { (cylindrical capacity) }
\end{aligned}
$$

It is easy to check that if c is a normalized capacity, then

$$
c_{G r}(X) \leq c(X) \leq c_{Z}(X)
$$

Other examples of normalized capacities:

Symplectic capacities

The simplest capacities are

$$
\begin{aligned}
c_{G r}(X) & =\sup \left\{\pi r^{2} \mid B^{2 n}(r) \stackrel{s}{\hookrightarrow} X\right\} \quad \text { (Gromov width) } \\
c_{Z}(X) & =\inf \left\{\pi r^{2} \mid X \stackrel{s}{\hookrightarrow} Z^{2 n}(r)\right\} \quad \text { (cylindrical capacity) }
\end{aligned}
$$

It is easy to check that if c is a normalized capacity, then

$$
c_{G r}(X) \leq c(X) \leq c_{Z}(X)
$$

Other examples of normalized capacities:

- First Ekeland-Hofer capacity $c_{1}^{E H}$ (1989),

Symplectic capacities

The simplest capacities are

$$
\begin{aligned}
c_{G r}(X) & =\sup \left\{\pi r^{2} \mid B^{2 n}(r) \stackrel{s}{\hookrightarrow} X\right\} \quad \text { (Gromov width) } \\
c_{Z}(X) & =\inf \left\{\pi r^{2} \mid X \stackrel{s}{\hookrightarrow} Z^{2 n}(r)\right\} \quad \text { (cylindrical capacity) }
\end{aligned}
$$

It is easy to check that if c is a normalized capacity, then

$$
c_{G r}(X) \leq c(X) \leq c_{Z}(X)
$$

Other examples of normalized capacities:

- First Ekeland-Hofer capacity $c_{1}^{E H}$ (1989),
- Hofer-Zehnder capacity $c_{H Z}$ (1994),

Symplectic capacities

The simplest capacities are

$$
\begin{aligned}
c_{G r}(X) & =\sup \left\{\pi r^{2} \mid B^{2 n}(r) \stackrel{s}{\hookrightarrow} X\right\} \quad \text { (Gromov width) } \\
c_{Z}(X) & =\inf \left\{\pi r^{2} \mid X \stackrel{s}{\hookrightarrow} Z^{2 n}(r)\right\} \quad \text { (cylindrical capacity). }
\end{aligned}
$$

It is easy to check that if c is a normalized capacity, then

$$
c_{G r}(X) \leq c(X) \leq c_{Z}(X)
$$

Other examples of normalized capacities:

- First Ekeland-Hofer capacity $c_{1}^{E H}$ (1989),
- Hofer-Zehnder capacity $c_{H Z}$ (1994),
- Floer-Hofer capacity CSH $^{\text {(1994), }}$

Symplectic capacities

The simplest capacities are

$$
\begin{aligned}
c_{G r}(X) & =\sup \left\{\pi r^{2} \mid B^{2 n}(r) \stackrel{s}{\hookrightarrow} X\right\} \quad \text { (Gromov width) } \\
c_{Z}(X) & =\inf \left\{\pi r^{2} \mid X \stackrel{s}{\hookrightarrow} Z^{2 n}(r)\right\} \quad \text { (cylindrical capacity) } .
\end{aligned}
$$

It is easy to check that if c is a normalized capacity, then

$$
c_{G r}(X) \leq c(X) \leq c_{Z}(X)
$$

Other examples of normalized capacities:

- First Ekeland-Hofer capacity $c_{1}^{E H}$ (1989),
- Hofer-Zehnder capacity $c_{H Z}$ (1994),
- Floer-Hofer capacity CSH (1994),
- First contact homology capacity $c_{1}^{C H}$ (Gutt-Hutchings 2018),

Symplectic capacities

The simplest capacities are

$$
\begin{aligned}
c_{G r}(X) & =\sup \left\{\pi r^{2} \mid B^{2 n}(r) \stackrel{s}{\hookrightarrow} X\right\} \quad \text { (Gromov width) } \\
c_{Z}(X) & =\inf \left\{\pi r^{2} \mid X \stackrel{s}{\hookrightarrow} Z^{2 n}(r)\right\} \quad \text { (cylindrical capacity) } .
\end{aligned}
$$

It is easy to check that if c is a normalized capacity, then

$$
c_{G r}(X) \leq c(X) \leq c_{Z}(X)
$$

Other examples of normalized capacities:

- First Ekeland-Hofer capacity $c_{1}^{E H}$ (1989),
- Hofer-Zehnder capacity $c_{H Z}$ (1994),
- Floer-Hofer capacity CSH $^{\text {(1994), }}$
- First contact homology capacity $c_{1}^{C H}$ (Gutt-Hutchings 2018),
- First embedded contact homology capacity $c_{1}^{E C H}$ (Hutchings 2011) - only in dimension 4.

The Viterbo conjecture

Exercise

For any compact set X,

$$
\frac{c_{G r}(X)^{n}}{n!} \leq \operatorname{vol}(X)
$$

The Viterbo conjecture

Exercise

For any compact set X,

$$
\frac{c_{G r}(X)^{n}}{n!} \leq \operatorname{vol}(X)
$$

Idea: If $c_{G r}(X)=\pi r^{2}$, then $(1-\epsilon) B^{2 n}(r) \stackrel{s}{\hookrightarrow} X$.

The Viterbo conjecture

Exercise

For any compact set X,

$$
\frac{c_{G r}(X)^{n}}{n!} \leq \operatorname{vol}(X)
$$

Idea: If $c_{G r}(X)=\pi r^{2}$, then $(1-\epsilon) B^{2 n}(r) \stackrel{s}{\hookrightarrow} X$. So $\operatorname{vol}\left((1-\epsilon) B^{2 n}(r)\right) \leq \operatorname{vol}(X)$.

The Viterbo conjecture

Exercise
For any compact set X,

$$
\frac{c_{G r}(X)^{n}}{n!} \leq \operatorname{vol}(X)
$$

Idea: If $c_{G r}(X)=\pi r^{2}$, then $(1-\epsilon) B^{2 n}(r) \stackrel{s}{\hookrightarrow} X$.
So $\operatorname{vol}\left((1-\epsilon) B^{2 n}(r)\right) \leq \operatorname{vol}(X)$.
Conjecture (Viterbo)
If $X \subset \mathbb{R}^{2 n}$ is a compact and convex set and c is a normalized symplectic capacity, then

$$
\frac{c(X)^{n}}{n!} \leq \operatorname{vol}(X)
$$

The Viterbo conjecture

Exercise
For any compact set X,

$$
\frac{c_{G r}(X)^{n}}{n!} \leq \operatorname{vol}(X)
$$

Idea: If $c_{G r}(X)=\pi r^{2}$, then $(1-\epsilon) B^{2 n}(r) \stackrel{s}{\hookrightarrow} X$.
So $\operatorname{vol}\left((1-\epsilon) B^{2 n}(r)\right) \leq \operatorname{vol}(X)$.
Conjecture (Viterbo)
If $X \subset \mathbb{R}^{2 n}$ is a compact and convex set and c is a normalized symplectic capacity, then

$$
\frac{c(X)^{n}}{n!} \leq \operatorname{vol}(X)
$$

Moreover equality holds if, and only if, X is symplectomorphic to a ball.

Minimal action

If X is a compact and convex set of $\mathbb{R}^{2 n}$ with smooth boundary, let $A_{\min }(X)$ denote the shortest period of a closed characteristic on ∂X.

Minimal action

If X is a compact and convex set of $\mathbb{R}^{2 n}$ with smooth boundary, let $A_{\min }(X)$ denote the shortest period of a closed characteristic on ∂X.

Theorem (EH, HZ, Abbondandolo-Kang, Irie)
If X is a compact and convex set with smooth boundary, then

$$
c_{1}^{E H}(X)=c_{H Z}(X)=c_{S H}(X)=c_{1}^{C H}(X)=A_{\min }(X) .
$$

Minimal action

If X is a compact and convex set of $\mathbb{R}^{2 n}$ with smooth boundary, let $A_{\min }(X)$ denote the shortest period of a closed characteristic on ∂X.

Theorem (EH, HZ, Abbondandolo-Kang, Irie)
If X is a compact and convex set with smooth boundary, then

$$
c_{1}^{E H}(X)=c_{H Z}(X)=c_{S H}(X)=c_{1}^{C H}(X)=A_{\min }(X)
$$

Weak Viterbo conjecture
If X is a compact and convex set of $\mathbb{R}^{2 n}$ with smooth boundary, then

$$
\frac{A_{\min }(X)^{n}}{n!} \leq \operatorname{vol}(X)
$$

Minimal action

If X is a compact and convex set of $\mathbb{R}^{2 n}$ with smooth boundary, let $A_{\min }(X)$ denote the shortest period of a closed characteristic on ∂X.

Theorem (EH, HZ, Abbondandolo-Kang, Irie)
If X is a compact and convex set with smooth boundary, then

$$
c_{1}^{E H}(X)=c_{H Z}(X)=c_{S H}(X)=c_{1}^{C H}(X)=A_{\min }(X)
$$

Weak Viterbo conjecture
If X is a compact and convex set of $\mathbb{R}^{2 n}$ with smooth boundary, then

$$
\frac{A_{\min }(X)^{n}}{n!} \leq \operatorname{vol}(X)
$$

Strong Viterbo conjecture
All normalized capacities coincide on convex sets.

Mahler's conjecture

Conjecture (Mahler)
Let K be a centrally symmetric, compact and convex set in \mathbb{R}^{n}.

Mahler's conjecture

Conjecture (Mahler)
Let K be a centrally symmetric, compact and convex set in \mathbb{R}^{n}. Then

$$
\operatorname{vol}(K) \cdot \operatorname{vol}\left(K^{\circ}\right) \geq \frac{4^{n}}{n!}
$$

Mahler's conjecture

Conjecture (Mahler)
Let K be a centrally symmetric, compact and convex set in \mathbb{R}^{n}. Then

$$
\operatorname{vol}(K) \cdot \operatorname{vol}\left(K^{\circ}\right) \geq \frac{4^{n}}{n!}
$$

Moreover, equality is attained if, and only if, K is a Hanner polytope.

Mahler's conjecture

Conjecture (Mahler)
Let K be a centrally symmetric, compact and convex set in \mathbb{R}^{n}. Then

$$
\operatorname{vol}(K) \cdot \operatorname{vol}\left(K^{\circ}\right) \geq \frac{4^{n}}{n!}
$$

Moreover, equality is attained if, and only if, K is a Hanner polytope.

Theorem (Artstein-Avidan, Karasev, Ostrover 2014)
The weak Viterbo conjecture implies the Mahler conjecture.

Mahler's conjecture

Conjecture (Mahler)

Let K be a centrally symmetric, compact and convex set in \mathbb{R}^{n}. Then

$$
\operatorname{vol}(K) \cdot \operatorname{vol}\left(K^{\circ}\right) \geq \frac{4^{n}}{n!}
$$

Moreover, equality is attained if, and only if, K is a Hanner polytope.

Theorem (Artstein-Avidan, Karasev, Ostrover 2014)
The weak Viterbo conjecture implies the Mahler conjecture.
Main idea: $c_{H Z}\left(K \times K^{\circ}\right)=4$.

Mahler's conjecture

Conjecture (Mahler)

Let K be a centrally symmetric, compact and convex set in \mathbb{R}^{n}. Then

$$
\operatorname{vol}(K) \cdot \operatorname{vol}\left(K^{\circ}\right) \geq \frac{4^{n}}{n!}
$$

Moreover, equality is attained if, and only if, K is a Hanner polytope.

Theorem (Artstein-Avidan, Karasev, Ostrover 2014)
The weak Viterbo conjecture implies the Mahler conjecture.
Main idea: $c_{H Z}\left(K \times K^{\circ}\right)=4$.
Strong Viterbo \Rightarrow Viterbo \Rightarrow Weak Viterbo \Rightarrow Mahler

Toric domains

Definition

A toric domain $X_{\Omega} \subset \mathbb{C}^{n}$ is a set of the form $X_{\Omega}=\mu^{-1}(\Omega)$ where $\Omega \subset \mathbb{R}_{\geq 0}^{n}$ is star-shaped with respect with 0 and

$$
\mu: \mathbb{C}^{n} \rightarrow \mathbb{R}^{n} \quad \mu\left(z_{1}, \ldots, z_{n}\right)=\left(\pi\left|z_{1}\right|^{2}, \ldots, \pi\left|z_{n}\right|^{2}\right)
$$

Toric domains

Definition

A toric domain $X_{\Omega} \subset \mathbb{C}^{n}$ is a set of the form $X_{\Omega}=\mu^{-1}(\Omega)$ where $\Omega \subset \mathbb{R}_{\geq 0}^{n}$ is star-shaped with respect with 0 and

$$
\mu: \mathbb{C}^{n} \rightarrow \mathbb{R}^{n} \quad \mu\left(z_{1}, \ldots, z_{n}\right)=\left(\pi\left|z_{1}\right|^{2}, \ldots, \pi\left|z_{n}\right|^{2}\right)
$$

Example (Cylinder)

$Z(a):=\left\{\left.\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}|\pi| z_{1}\right|^{2} \leq a\right\}$

Toric domains

Definition

A toric domain $X_{\Omega} \subset \mathbb{C}^{n}$ is a set of the form $X_{\Omega}=\mu^{-1}(\Omega)$ where $\Omega \subset \mathbb{R}_{\geq 0}^{n}$ is star-shaped with respect with 0 and

$$
\mu: \mathbb{C}^{n} \rightarrow \mathbb{R}^{n} \quad \mu\left(z_{1}, \ldots, z_{n}\right)=\left(\pi\left|z_{1}\right|^{2}, \ldots, \pi\left|z_{n}\right|^{2}\right)
$$

Example (Cylinder)

$Z(a):=\left\{\left.\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}|\pi| z_{1}\right|^{2} \leq a\right\}$

Example (Ellipsoid)

$$
E(a, b):=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \left\lvert\, \frac{\pi\left|z_{1}\right|^{2}}{a}+\frac{\pi\left|z_{2}\right|^{2}}{b} \leq 1\right.\right\}
$$

Monotone toric domains

Definition

A toric domain $X_{\Omega} \subset \mathbb{R}^{2 n}$ is called monotone if for each point $p \in \partial \Omega \backslash\left\{x_{i}=0\right.$, for some i$\}$, the normal vector $\nu=\left(\nu_{1}, \ldots, \nu_{n}\right)$ satifies $\nu_{i} \geq 0$ for every i.

Monotone toric domains

Definition

A toric domain $X_{\Omega} \subset \mathbb{R}^{2 n}$ is called monotone if for each point $p \in \partial \Omega \backslash\left\{x_{i}=0\right.$, for some i$\}$, the normal vector $\nu=\left(\nu_{1}, \ldots, \nu_{n}\right)$ satifies $\nu_{i} \geq 0$ for every i.

Monotone toric domains

Definition
A toric domain $X_{\Omega} \subset \mathbb{R}^{2 n}$ is called monotone if for each point $p \in \partial \Omega \backslash\left\{x_{i}=0\right.$, for some i$\}$, the normal vector $\nu=\left(\nu_{1}, \ldots, \nu_{n}\right)$ satifies $\nu_{i} \geq 0$ for every i.

Remark

If X_{Ω} is monotone, then it can be approximated by a toric domains which are bounded by the coordinate hyperplanes and a the graph of a non-negative smooth function $f: \Omega^{\prime} \subset \mathbb{R}_{\geq 0}^{n} \rightarrow \mathbb{R}_{\geq 0}$ whose partial derivatives are all negative.

Monotone toric domains

Remark
Monotone toric domains are not necessarily convex.

Monotone toric domains

Remark

Monotone toric domains are not necessarily convex.

Proposition

A 4-dimensional toric domain X_{Ω} is (strictly) monotone if, and only if, $\left(\partial X_{\Omega}, \alpha_{0}\right)$ is dynamically convex.

Strong Viterbo conjecture

Theorem (Gutt-Hutchings-R. 2020)
For a monotone toric domain $X_{\Omega} \subset \mathbb{R}^{4}$ all symplectic capacities coincide.

Strong Viterbo conjecture

Theorem (Gutt-Hutchings-R. 2020)
For a monotone toric domain $X_{\Omega} \subset \mathbb{R}^{4}$ all symplectic capacities coincide.

Theorem
For a monotone toric domain $X_{\Omega} \subset \mathbb{R}^{2 n}$,

$$
c_{G r}\left(X_{\Omega}\right)=c_{1}^{C H}\left(X_{\Omega}\right)
$$

Proof

Proof

Proof

Proof

The second theorem follows from this picture and a result by Gutt-Hutchings.

Proof

The second theorem follows from this picture and a result by Gutt-Hutchings.
In dimension 4, let

$$
Z_{2}(a, b):=\left\{\left.\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}|\pi| z_{1}\right|^{2} \leq a \text { or } \pi\left|z_{2}\right|^{2} \leq b\right\} .
$$

Proof

$Z_{2}(a, b)$ is a concave toric domain with weight sequence $(a+b, a, b, a, b, a, b, \ldots)$.

Proof

$Z_{2}(a, b)$ is a concave toric domain with weight sequence $(a+b, a, b, a, b, a, b, \ldots)$.

Theorem (Cristofaro-Gardiner)

If X_{Ω} is a concave toric domain with weight sequence $\left(w_{1}, w_{2}, \ldots\right)$.
Then

$$
X_{\Omega} \stackrel{s}{\hookrightarrow} Z^{4}(r) \Longleftrightarrow \bigsqcup_{i} B\left(w_{i}\right) \stackrel{s}{\hookrightarrow} Z^{4}(r)
$$

N

Proof

Corollary
 $Z_{2}(a, b) \stackrel{s}{\hookrightarrow} Z^{4}(a+b)$.

Proof
So

$$
B^{4}(a+b) \subset X_{\Omega} \subset Z_{2}(a, b) \stackrel{s}{\hookrightarrow} Z^{4}(a+b) .
$$

Proof

So

$$
B^{4}(a+b) \subset X_{\Omega} \subset Z_{2}(a, b) \stackrel{s}{\hookrightarrow} Z^{4}(a+b) .
$$

Therefore

$$
c_{G r}\left(X_{\Omega}\right)=c_{Z}\left(X_{\Omega}\right)=a+b .
$$

Proof

So

$$
B^{4}(a+b) \subset X_{\Omega} \subset Z_{2}(a, b) \stackrel{s}{\hookrightarrow} Z^{4}(a+b) .
$$

Therefore

$$
c_{G r}\left(X_{\Omega}\right)=c_{Z}\left(X_{\Omega}\right)=a+b
$$

Lagrangian products

$$
K \times T=\left\{(\mathrm{q}, \mathrm{p}) \in \mathbb{C}^{n} \mid \mathrm{q} \in K \text { and } \mathrm{p} \in T\right\}
$$

Lagrangian products

$$
K \times T=\left\{(\mathrm{q}, \mathrm{p}) \in \mathbb{C}^{n} \mid \mathrm{q} \in K \text { and } \mathrm{p} \in T\right\}
$$

Characteristic flow:

$$
\begin{aligned}
& \sum_{i} \nu_{\mathrm{p}}^{i} \frac{\partial}{\partial q_{i}} \text { on } \\
- & K \times \partial T \\
- & \sum_{i} \nu_{\mathrm{q}}^{i} \frac{\partial}{\partial p_{i}} \text { on }
\end{aligned} \quad \partial K \times T .
$$

Lagrangian products

$$
K \times T=\left\{(\mathrm{q}, \mathrm{p}) \in \mathbb{C}^{n} \mid \mathrm{q} \in K \text { and } \mathrm{p} \in T\right\} .
$$

Characteristic flow:

$$
\begin{aligned}
& \sum_{i} \nu_{\mathrm{p}}^{i} \frac{\partial}{\partial q_{i}} \text { on } \quad K \times \partial T \\
- & \sum_{i} \nu_{\mathrm{q}}^{i} \frac{\partial}{\partial p_{i}} \text { on } \quad \partial K \times T .
\end{aligned}
$$

Lagrangian products

$$
K \times T=\left\{(\mathrm{q}, \mathrm{p}) \in \mathbb{C}^{n} \mid \mathrm{q} \in K \text { and } \mathrm{p} \in T\right\} .
$$

Characteristic flow:

$$
\begin{aligned}
& \sum_{i} \nu_{\mathrm{p}}^{i} \frac{\partial}{\partial q_{i}} \text { on } \\
- & K \times \partial T \\
- & \nu_{i} \nu_{\mathrm{q}}^{i} \frac{\partial}{\partial p_{i}} \text { on } \\
& \partial K \times T .
\end{aligned}
$$

Lagrangian products

$$
K \times T=\left\{(\mathrm{q}, \mathrm{p}) \in \mathbb{C}^{n} \mid \mathrm{q} \in K \text { and } \mathrm{p} \in T\right\} .
$$

Characteristic flow:

$$
\begin{aligned}
& \sum_{i} \nu_{\mathrm{p}}^{i} \frac{\partial}{\partial q_{i}} \text { on } & K \times \partial T \\
- & \sum_{i} \nu_{\mathrm{q}}^{i} \frac{\partial}{\partial p_{i}} \text { on } & \partial K \times T .
\end{aligned}
$$

Lagrangian products

$$
K \times T=\left\{(\mathrm{q}, \mathrm{p}) \in \mathbb{C}^{n} \mid \mathrm{q} \in K \text { and } \mathrm{p} \in T\right\} .
$$

Characteristic flow:

$$
\begin{aligned}
& \sum_{i} \nu_{\mathrm{p}}^{i} \frac{\partial}{\partial q_{i}} \text { on } & K \times \partial T \\
- & \sum_{i} \nu_{\mathrm{q}}^{i} \frac{\partial}{\partial p_{i}} \text { on } & \partial K \times T .
\end{aligned}
$$

Lagrangian products

$$
K \times T=\left\{(\mathrm{q}, \mathrm{p}) \in \mathbb{C}^{n} \mid \mathrm{q} \in K \text { and } \mathrm{p} \in T\right\} .
$$

Characteristic flow:

$$
\begin{aligned}
& \sum_{i} \nu_{\mathrm{p}}^{i} \frac{\partial}{\partial q_{i}} \text { on } & K \times \partial T \\
- & \sum_{i} \nu_{\mathrm{q}}^{i} \frac{\partial}{\partial p_{i}} \text { on } & \partial K \times T .
\end{aligned}
$$

Toric domains in disguise

Specific examples:

- The Lagrangian bidisk $D^{2} \times D^{2} \subset \mathbb{R}^{4}$ is symplectomorphic to a concave toric domain. (R. 2017)

Toric domains in disguise

Specific examples:

- The Lagrangian bidisk $D^{2} \times D^{2} \subset \mathbb{R}^{4}$ is symplectomorphic to a concave toric domain. (R. 2017)
- The L^{p} sum of two disks is symplectomorphic to a toric domain. (Ostrover- R. 2020)

Toric domains in disguise

Specific examples:

- The Lagrangian bidisk $D^{2} \times D^{2} \subset \mathbb{R}^{4}$ is symplectomorphic to a concave toric domain. (R. 2017)
- The L^{p} sum of two disks is symplectomorphic to a toric domain. (Ostrover- R. 2020)
- The unit disk bundles $D^{*} S_{+}^{2}$ and $D^{*}\left(S^{2} \backslash\{x\}\right)$ are symplectomorphic to $B(2 \pi)$ and $P(2 \pi, 2 \pi)$, respectively. (Ferreira- R. 2021)

Toric domains in disguise

Specific examples:

- The Lagrangian bidisk $D^{2} \times D^{2} \subset \mathbb{R}^{4}$ is symplectomorphic to a concave toric domain. (R. 2017)
- The L^{p} sum of two disks is symplectomorphic to a toric domain. (Ostrover- R. 2020)
- The unit disk bundles $D^{*} S_{+}^{2}$ and $D^{*}\left(S^{2} \backslash\{x\}\right)$ are symplectomorphic to $B(2 \pi)$ and $P(2 \pi, 2 \pi)$, respectively. (Ferreira- R. 2021)
Large classes of examples:
- The Lagrangian product of a hypercube and a symmetric region in $\mathbb{R}^{2 n}$ is symplectomorphic to a toric domain. (R.Sepe, 2019)

Toric domains in disguise

Specific examples:

- The Lagrangian bidisk $D^{2} \times D^{2} \subset \mathbb{R}^{4}$ is symplectomorphic to a concave toric domain. (R. 2017)
- The L^{p} sum of two disks is symplectomorphic to a toric domain. (Ostrover- R. 2020)
- The unit disk bundles $D^{*} S_{+}^{2}$ and $D^{*}\left(S^{2} \backslash\{x\}\right)$ are symplectomorphic to $B(2 \pi)$ and $P(2 \pi, 2 \pi)$, respectively. (Ferreira- R. 2021)
Large classes of examples:
- The Lagrangian product of a hypercube and a symmetric region in $\mathbb{R}^{2 n}$ is symplectomorphic to a toric domain. (R.Sepe, 2019)
- The Lagrangian product of a regular simplex Δ^{n} and a symmetric region in \mathbb{R}^{n} is symplectomorphic to a toric domain. (Ostrover- R.- Sepe, 2022)

The Arnold-Liouville theorem

Fix $\left(M^{2 n}, \omega\right)$ and let $F=\left(H^{1}, \ldots, H^{n}\right): M \rightarrow \mathbb{R}^{n}$ whose components Poisson commute.

The Arnold-Liouville theorem

Fix $\left(M^{2 n}, \omega\right)$ and let $F=\left(H^{1}, \ldots, H^{n}\right): M \rightarrow \mathbb{R}^{n}$ whose components Poisson commute.

- If $c \in \mathbb{R}^{n}$ is a regular value of F and $F^{-1}(c)$ is compact and connected, then $F^{-1}(c) \cong \mathbb{T}^{n}$.

The Arnold-Liouville theorem

Fix $\left(M^{2 n}, \omega\right)$ and let $F=\left(H^{1}, \ldots, H^{n}\right): M \rightarrow \mathbb{R}^{n}$ whose components Poisson commute.

- If $c \in \mathbb{R}^{n}$ is a regular value of F and $F^{-1}(c)$ is compact and connected, then $F^{-1}(c) \cong \mathbb{T}^{n}$.
- Let U be a simply-connected open set of regular points. For $c \in F(U)$, let $\left\{\gamma_{1}^{c}, \ldots, \gamma_{n}^{c}\right\}$ be simple closed curves generating $H_{1}\left(F^{-1}(c) ; \mathbb{Z}\right)$ and suppose $\omega=d \lambda$ on U. Let

$$
\phi(c)=\left(\int_{\gamma_{1}^{c}} \lambda, \ldots, \int_{\gamma_{n}^{c}} \lambda\right) .
$$

The Arnold-Liouville theorem

Fix $\left(M^{2 n}, \omega\right)$ and let $F=\left(H^{1}, \ldots, H^{n}\right): M \rightarrow \mathbb{R}^{n}$ whose components Poisson commute.

- If $c \in \mathbb{R}^{n}$ is a regular value of F and $F^{-1}(c)$ is compact and connected, then $F^{-1}(c) \cong \mathbb{T}^{n}$.
- Let U be a simply-connected open set of regular points. For $c \in F(U)$, let $\left\{\gamma_{1}^{c}, \ldots, \gamma_{n}^{c}\right\}$ be simple closed curves generating $H_{1}\left(F^{-1}(c) ; \mathbb{Z}\right)$ and suppose $\omega=d \lambda$ on U. Let

$$
\phi(c)=\left(\int_{\gamma_{1}^{c}} \lambda, \ldots, \int_{\gamma_{n}^{c}} \lambda\right) .
$$

Then there exists a symplectomorphism
$\Phi:(U, \omega) \rightarrow\left(\phi(U) \times \mathbb{T}^{n}, \omega_{0}\right)$ such that the following diagram commutes.

The Arnold-Liouville theorem in action

$$
H_{\epsilon}(\mathrm{q}, \mathrm{p})=\frac{1}{2}|\mathrm{p}|^{2}+\frac{\epsilon}{1-|\mathrm{q}|^{2}}, \quad J(\mathrm{q}, \mathrm{p})=\mathrm{q} \times \mathrm{p} .
$$

The Arnold-Liouville theorem in action

$$
H_{\epsilon}(\mathrm{q}, \mathrm{p})=\frac{1}{2}|\mathrm{p}|^{2}+\frac{\epsilon}{1-|\mathrm{q}|^{2}}, \quad J(\mathrm{q}, \mathrm{p})=\mathrm{q} \times \mathrm{p} .
$$

$D^{2} \times D^{2}$ is symplectomorphic to a toric domain X_{Ω}, where Ω is the domain bounded by the coordinate axis and the curve parametrized by:

$$
\left(2 \sin \frac{\alpha}{2}-\alpha \cos \frac{\alpha}{2}, 2 \sin \frac{\alpha}{2}+(2 \pi-\alpha) \cos \frac{\alpha}{2}\right), \alpha \in[0,2 \pi]
$$

The Arnold-Liouville theorem in action

$$
H_{\epsilon}(\mathrm{q}, \mathrm{p})=\frac{1}{2}|\mathrm{p}|^{2}+\frac{\epsilon}{1-|\mathrm{q}|^{2}}, \quad J(\mathrm{q}, \mathrm{p})=\mathrm{q} \times \mathrm{p} .
$$

$D^{2} \times D^{2}$ is symplectomorphic to a toric domain X_{Ω}, where Ω is the domain bounded by the coordinate axis and the curve parametrized by:

$$
\left(2 \sin \frac{\alpha}{2}-\alpha \cos \frac{\alpha}{2}, 2 \sin \frac{\alpha}{2}+(2 \pi-\alpha) \cos \frac{\alpha}{2}\right), \alpha \in[0,2 \pi]
$$

The Arnold-Liouville Theorem in action

Theorem (Ostrover-R.-Sepe)

$$
\triangle \times \square \cong B^{4}
$$

The Arnold-Liouville Theorem in action

Theorem (Ostrover-R.-Sepe)

$$
\triangle \times \square \cong B^{4}
$$

First idea:

$$
\begin{aligned}
H(\mathrm{q}, \mathrm{p}) & =\frac{1}{2}|\mathrm{p}|^{2}+\text { reflection law. } \\
J(\mathrm{q}, \mathrm{p}) & =\frac{1}{3} \operatorname{Re}\left(\mathrm{p}^{3}\right)
\end{aligned}
$$

The Arnold-Liouville Theorem in action

Theorem (Ostrover-R.-Sepe)

$$
\triangle \times \square \cong B^{4}
$$

First idea:

$$
\begin{aligned}
H(\mathrm{q}, \mathrm{p}) & =\frac{1}{2}|\mathrm{p}|^{2}+U(\mathrm{q}) \\
J(\mathrm{q}, \mathrm{p}) & =\frac{1}{3} \operatorname{Re}\left(\mathrm{p}^{3}\right)+\mathrm{p} \times \nabla U(\mathrm{q})
\end{aligned}
$$

The Toda lattice

$$
H(q, p)=\frac{1}{2} \sum_{i=1}^{n} p_{i}^{2}+\sum_{i=1}^{n-1} e^{q_{i}-q_{i+1}}+e^{q_{n}-q_{1}}
$$

The Toda lattice

$$
H(q, p)=\frac{1}{2} \sum_{i=1}^{n} p_{i}^{2}+\sum_{i=1}^{n-1} e^{q_{i}-q_{i+1}}+e^{q_{n}-q_{1}}
$$

Flaschka coordinates:

$$
a_{i}=e^{\frac{1}{2}\left(q_{i}-q_{i+1}\right)}, \quad b_{i}=-p_{i}
$$

The Toda lattice

$$
H(q, p)=\frac{1}{2} \sum_{i=1}^{n} p_{i}^{2}+\sum_{i=1}^{n-1} e^{q_{i}-q_{i+1}}+e^{q_{n}-q_{1}}
$$

Flaschka coordinates:

$$
\begin{aligned}
& a_{i}=e^{\frac{1}{2}\left(q_{i}-q_{i+1}\right)}, \quad b_{i}=-p_{i} \\
& H(a, b)=\frac{1}{2} \sum_{i=1}^{n} b_{i}^{2}+\sum_{i=1}^{n} a_{i}^{2}
\end{aligned}
$$

The Toda lattice

$$
H(q, p)=\frac{1}{2} \sum_{i=1}^{n} p_{i}^{2}+\sum_{i=1}^{n-1} e^{q_{i}-q_{i+1}}+e^{q_{n}-q_{1}}
$$

Flaschka coordinates:

$$
\begin{aligned}
& a_{i}=e^{\frac{1}{2}\left(q_{i}-q_{i+1}\right)}, \quad b_{i}=-p_{i} \\
& H(a, b)=\frac{1}{2} \sum_{i=1}^{n} b_{i}^{2}+\sum_{i=1}^{n} a_{i}^{2}
\end{aligned}
$$

Hamiltonian system:

$$
\begin{aligned}
& \dot{b}_{i}=a_{i}^{2}-a_{i-1}^{2} \\
& \dot{a}_{i}=\frac{1}{2} a_{i}\left(b_{i+1}-b_{i}\right) .
\end{aligned}
$$

Lax pair formulation

There exists a Lax pair (L, B) such that the Hamiltonian system above is equivalent to $\dot{L}=[B, L]$,

$$
L=\left(\begin{array}{ccccc}
b_{1} & a_{1} & 0 & \ldots & a_{n} \\
a_{1} & b_{2} & a_{2} & \ldots & 0 \\
0 & a_{2} & b_{3} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n} & 0 & 0 & \ldots & b_{n}
\end{array}\right) .
$$

Lax pair formulation

There exists a Lax pair (L, B) such that the Hamiltonian system above is equivalent to $\dot{L}=[B, L]$,

$$
L=\left(\begin{array}{ccccc}
b_{1} & a_{1} & 0 & \ldots & a_{n} \\
a_{1} & b_{2} & a_{2} & \ldots & 0 \\
0 & a_{2} & b_{3} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n} & 0 & 0 & \ldots & b_{n}
\end{array}\right)
$$

Theorem (Toda)
The spectrum of L is invariant under the flow.

Action-angle coordinates

Theorem (Flaschka-McLaughlin, van Moerbeke, Moser)
Let $\Delta(\lambda)=\operatorname{det}(L-\lambda I)^{2}-2$ and let $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{2 n}$ be the roots of $\Delta(\lambda)^{2}-4$.

Action-angle coordinates

Theorem (Flaschka-McLaughlin, van Moerbeke, Moser) Let $\Delta(\lambda)=\operatorname{det}(L-\lambda I)^{2}-2$ and let $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{2 n}$ be the roots of $\Delta(\lambda)^{2}-4$. Then the reduced manifold $\left\{(q, p) \in \mathbb{R}^{2 n} \mid \sum_{i} p_{i}=0\right\} / \sim$ is symplectomorphic to a toric manifold with moment map coordinates given by

$$
\int_{\lambda_{2 i}}^{\lambda_{2 i+1}} \cosh ^{-1}\left|\frac{\Delta(\lambda)}{2}\right| d \lambda
$$

Action-angle coordinates

Theorem (Flaschka-McLaughlin, van Moerbeke, Moser) Let $\Delta(\lambda)=\operatorname{det}(L-\lambda I)^{2}-2$ and let $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{2 n}$ be the roots of $\Delta(\lambda)^{2}-4$. Then the reduced manifold $\left\{(q, p) \in \mathbb{R}^{2 n} \mid \sum_{i} p_{i}=0\right\} / \sim$ is symplectomorphic to a toric manifold with moment map coordinates given by

$$
\int_{\lambda_{2 i}}^{\lambda_{2 i+1}} \cosh ^{-1}\left|\frac{\Delta(\lambda)}{2}\right| d \lambda
$$

Theorem (Ostrover-R.-Sepe)
$\Delta^{n-1} \times \mathbb{R}^{n-1}$ has a toric action whose moment map is given by

$$
\begin{aligned}
\Delta^{n-1} \times \mathbb{R}^{n-1} & \rightarrow \mathbb{R}_{\geq 0}^{n-1} \\
(q, p) & \mapsto\left(p_{i_{1}}-p_{i_{2}}, p_{i_{2}}-p_{i_{3}}, \ldots, p_{i_{n-1}}-p_{i_{n}}\right)
\end{aligned}
$$

where $p_{i_{1}} \geq p_{i_{2}} \geq \cdots \geq p_{i_{n}}$.

The ball

Corollary

The ball is symplectomorphic to the Lagrangian product of

(n-simplex)
(rhombic dodecahedron)

The ball

Corollary

The ball is symplectomorphic to the Lagrangian product of

Observation: One can independently verify that the Lagrangian product above satisfies the equality in Viterbo's conjecture.

