R

Machine Learning LHC Event Generation

Anja Butter, ITP Heidelberg

Mathematics, Physics and ML seminar series in Lisbon

A short overview on LHC physics

Setting

- Large Hadron Collider at CERN
- Proton collisions at 13 TeV
- **Huge** dataset ~1Pb/s before trigger selection

Goal

- Understand full dataset from 1st principles
- Precision measurements of the SM
- Find signs of new physics (eg dark matter)

ML for big data in particle physics

Top tagging

Anomaly detection

- B. Dillon et al. [2108.04253]

Detector simulation

E. Buhmann et al. [2112.09709]

Jet calibration & uncertainties

Complete citations $\mathcal{O}(800)$ https://iml-wg.github.io/HEPML-LivingReview/

Open questions towards HL-LHC A biased selection

- Facing **25 times** the amount of data
- What do we need to understand the data? (*read*: find new physics)

Problems beyond supervised classification/regression \rightarrow How can machine learning help?

• Optimized analysis for high-dimensional data

- Likelihood free inference
 - Optimal Observables, Unfolding
- Anomaly detection •
- Uncertainty treatment •

Event generation at the LHC

Monte carlo event generation

1. Generate phase space points

 \rightarrow set of four-momenta p_i

2. Calculate event weight

3. Unweighting * keep events with $\frac{w_i}{w_{\text{max}}} > r \in [0,1]$

*** Bottlenecks**

Slow matrix element calculation 1. Complexity grows exponentially with

- # final state particles
- Precision (LO, NLO, NNLO, ...)

Low **unweighting** efficiency 2.

• Discard most events if $w_i \ll w_{max}$ • Optimize phase space mapping

$$\Rightarrow J(p_i(r)) = (f \times \mathscr{M})^{-1}$$

Approximating Amplitudes

- Approximate matrix element with NN
- Regression problem
- Minimize distance between prediction and truth

$$\Rightarrow \mathscr{L} = \left(NN(p_i) - \mathscr{M}(p_i) \right)^2$$

- + Generalization of interpolation
- + Better scaling than grids for large dimensions
- Open questions
 - Limited precision
 - Overtraining vs interpolation

Badger, Bullock [2002.07516]

Multi-loop calculations with NNs

Precision predictions based on loop diagrams

Analytic expression for loop amplitude

$$G = \int_{-\infty}^{\infty} \left(\prod_{l=1}^{L} \frac{\mathrm{d}^{D} k_{l}}{i\pi^{\frac{D}{2}}} \right) \prod_{j=1}^{N} \frac{1}{(q_{j}^{2} - m_{j}^{2} + i\delta)^{\nu_{j}}}$$
$$= \int_{0}^{1} \prod_{j=1}^{N-1} \mathrm{d} x_{j} x_{j}^{\nu_{j}-1} \frac{U^{\nu-(L+1)D/2}}{F^{\nu-LD/2}} = \int_{0}^{1} \prod_{j=1}^{N-1} \mathrm{d} x_{j} I(\vec{x})$$
Rewrite with

Feynman parameters

Still contains singularities

Multi-loop calculations with NNs

Precision predictions based on loop diagrams

Analytic expression for loop amplitude

$$G = \int_{-\infty}^{\infty} \left(\prod_{l=1}^{L} \frac{\mathrm{d}^{D} k_{l}}{i\pi^{\frac{D}{2}}} \right) \prod_{j=1}^{N} \frac{1}{(q_{j}^{2} - m_{j}^{2} + i\delta)^{\nu_{j}}}$$
$$= \int_{0}^{1} \prod_{j=1}^{N-1} \mathrm{d} x_{j} x_{j}^{\nu_{j}-1} \frac{U^{\nu-(L+1)D/2}}{F^{\nu-LD/2}} = \int_{0}^{1} \prod_{j=1}^{N-1} \mathrm{d} x_{j} I(\vec{x})$$
Rewrite with

Feynman parameters

Still contains singularities

Solved by contour deformation due to Cauchy's theorem

$$\int_{0}^{1} \prod_{j=1}^{N} \mathrm{d}x_{j} I(\overrightarrow{x}) = \int_{0}^{1} \prod_{j=1}^{N} \mathrm{d}x_{j} \det\left(\frac{\partial \overrightarrow{z}(\overrightarrow{x})}{\partial \overrightarrow{x}}\right) I(\overrightarrow{z}(\overrightarrow{x}))$$

Optimal parametrization = minimal variance

Integration with normalizing flows

Numeric evaluation of integral
$$G = \int_{0}^{1} dx_{j} \det\left(\frac{\partial \vec{z}(\vec{x})}{\partial \vec{x}}\right) I(\vec{z}(\vec{x}))$$

Parametrization $\rightarrow z = INN(x)$
Minimize variance $\rightarrow loss \mathscr{L} = \sigma_{n}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left| \det\left(\frac{\partial \vec{z}(\vec{x}_{(i)})}{\partial \vec{x}_{(i)}}\right) I(\vec{z}(\vec{x}_{(i)})) - \langle I \rangle \right|^{2}$

- + Bijective mapping
- + Tractable Jacobian
- + Combine many blocks

Normalizing flow networks

Multi-loop calculations with INNs Profiting from the Jacobian

Precision predictions based on loop diagrams

Analytic expression for loop amplitude

$$G = \int_{-\infty}^{\infty} \left(\prod_{l=1}^{L} \frac{\mathrm{d}^{D} k_{l}}{i\pi^{\frac{D}{2}}} \right) \prod_{j=1}^{N} \frac{1}{(q_{j}^{2} - m_{j}^{2} + i\delta)^{\nu_{j}}}$$
$$= \int_{0}^{1} \prod_{j=1}^{N-1} \mathrm{d} x_{j} x_{j}^{\nu_{j}-1} \frac{U^{\nu-(L+1)D/2}}{F^{\nu-LD/2}} = \int_{0}^{1} \prod_{j=1}^{N-1} \mathrm{d} x_{j} I(\vec{x})$$
Rewrite with

Feynman parameters

Still contains singularities

Solved by contour deformation due to Cauchy's theorem

$$\int_{0}^{1} \prod_{j=1}^{N} \mathrm{d}x_{j} I(\overrightarrow{x}) = \int_{0}^{1} \prod_{j=1}^{N} \mathrm{d}x_{j} \det\left(\frac{\partial \overrightarrow{z}(\overrightarrow{x})}{\partial \overrightarrow{x}}\right) I(\overrightarrow{z}(\overrightarrow{x}))$$

Optimal parametrization = minimal variance

R. Winterhalder, et al. [2112.09145]

Forward simulations with generative networks

Event generation

Applications

- Phase space sampling
- End to end learning
- Data compression
- Amplification

Detector simulation

- \rightarrow CaloGAN by M. Paganini et al.
- \rightarrow BIBAE by E. Buhman, S. Diefenbacher et al.
- \rightarrow CaloFlow by C. Krause , D. Shih

Phase space sampling with generative networks (GAN, VAE, NF)

Particularly promising architecture \rightarrow Normalizing flows

Normalizing flows Invertible networks for complex transformations

- + Bijective mapping
- + Tractable Jacobian $\rightarrow p_x(x) = p_z(z) \cdot J_{NN}$
- + Fast evaluation in both direction

Training on density t(x) \rightarrow Minimize difference

$$\mathcal{L} = \log p_x(x)/t(x)$$
$$= \log p_z(z(x)) J_{NN}/t(x)$$

 $\mathcal{L} = \log p(\theta \,|\, x)$ $= \log p(z | \theta) + \log J_{NN} + p(\theta)$

Normalizing flows Invertible networks for complex transformations

- + Bijective mapping
- + Tractable Jacobian $\rightarrow p_x(x) = p_z(z) \cdot J_{NN}$
- + Fast evaluation in both direction

Training on density t(x) \rightarrow Minimize difference

> $\mathscr{L} = \log p_x(x) / t(x)$ $= \log p_z(z(x)) J_{NN} / t(x)$

Training on samples *x* \rightarrow Maximize the log-likelihood

$$\begin{aligned} \mathscr{L} &= \log p(\theta \,|\, x) \\ &= \log p(z \,|\, \theta) + \log J_{NN} + p(\theta) \end{aligned}$$

Putting flows to work **Event generation**

• Train normalizing flow on 4-momenta • Include symmetries in feature representation • Excellent performance for direct output

• Extend setup vor variable jet multiplicity

Challenges for normalizing flows

- Narrow features
- Topological holes (eg ΔR cuts)
 - no bijecive mapping possible
 - can only be approximated

Reweighting for Precision

Classifier loss •

$$\mathscr{L} = -\sum_{x \sim p_{data}} \log(D(x)) - \sum_{x \sim p_{INN}} \log(1 - D(x))$$
$$= -\int dx \, p_{data}(x) \, \log(D(x)) + p_{INN}(x) \, \log(1 - D(x))$$

• Upon convergence obtain **reweighting factor**

$$\Rightarrow \frac{p_{data}(x)}{p_{INN}(x)} = \frac{D(x)}{1 - D(x)} = w_D$$

• Use classifier feedback to enhance gradients $\psi(x;c)^2$ $\mathscr{L}_{\text{DiscFlow}} \approx \begin{vmatrix} dx & w_D(x)^{\alpha} P(x) \end{vmatrix}$ $-\log J(x)$ reweighted truth

 \Rightarrow Reduces range of reweighting factors

ML Uncertainties When do we (not) need them?

- Predictions with poorly trained NNs are sub-*optimal* but not *wrong*
 - Example 1: Phase space sampling
 - Mapping induces Jacobian
 - Events obtain weight from $ME \times J$
 - Bad mapping \rightarrow small unweighting efficiency
 - Example 2: INN for integration
 - Sub-optimal contour deformation
 - High variance of integral
 - Not efficient but not wrong

→ Control comes from simulation !

→ How can we estimate this uncertainty?

Bayesian Neural Network

Ensemble of networks

$$\mathscr{L} = \mathscr{L}_{INN} + KL_{prid}$$
$$= \sum_{n=1}^{N} \langle \log p_X(x_n) \rangle$$

ior

 $\langle \theta \rangle_{\theta \sim q_{\Phi}(\theta)} - KL(q_{\Phi}(\theta), p(\theta))$

Bayesian generative networks

 \Rightarrow BINN captures uncertainty related to convergence and statistical uncertainties \Rightarrow BINN does not capture lack of expressiveness

Putting flows to work Event generation

- Basis: INN
 - Phase space symmetries in architecture
- Control via classifier D • $\frac{p_{\text{truth}}(x)}{p_{\text{INN}}(x)} = \frac{D(x)}{1 - D(x)}$
- Precision via reweighting
 - Correct deviations of p_{INN}
- ➡ Uncertainty estimation via Bayesian NN
- ➡ Uncertainty propagation via conditioning

Putting flows to work Detector simulation

Challenge: large dimensionality $(3 \times 96, 12 \times 12, 12 \times 6)$

 π^+ shower individual & average

C. Krause & D. Shih [2110.11377]

- Highdimensional
- **D** Bin independent
- $\square Statistically well defined$

ML unfolding methods High-dimensional. Bin independent. Robust.

Detector-level

Particle-level

M. Arratia et al. [<u>2109.13243</u>]

Classifier based aproach

Output: reweighted distribution of MC events

Density based approach

Output: probability density per unfolded event

VAE alternative: OTUS by J. N. Howard et al.

cINN unfolding

Given a reconstructed event: What is the probability distribution at particle level?

Training

Unfolding

Inverting inclusive distributions

$pp > WZ > q\bar{q}l^+l^- + ISR \rightarrow 2/3/4$ jet events

Evaluate exclusive 2/3/4 jet events

Migh-dimensional

M. Bellagente et al. [2006.06685]

M Bin-independent

☐ Statistically well defined ?

Event-wise unfolding

Statistically well defined

No deterministic mapping! Check calibration of probability density for individual event unfolding

Migh-dimensional

M. Bellagente et al. [2006.06685]

M Bin-independent

ML4LHC Event generation

New data are currently on their way...