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Classical (Lagrangian) field theory

In physics, or more specific in classical field theory, people are interested
in a certain collection of data:

1 a d-manifold Σ (a model for space–time),

2 a space of fields FΣ (e.g. differential forms, maps between
manifolds, sections of a vector bundle, . . . ),

3 an action functional SΣ : FΣ ! R
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Examples for Σ when d = 2

1 Σ = Σ =

2 Σ = Σ =
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Topological theory

We focus on theories which are topological.

This means that Σ is invariant under continuous deformations (invariant
under reparametrization):

Σ = = =
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Locality

An important physical concept is called locality.

It basically says that we can cut Σ into smaller pieces, compute things
there, and paste it back together.

1 Σ = ⇐⇒
2 Σ = = ⇐⇒
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Local functional

Locality also tells us, roughly, that we can express e.g. the action as an
integral:

SΣ[φ] =

∫
Σ

L (φ, ∂φ, . . .), φ ∈ FΣ.

If L is invariant under local transformation of a Lie group G , we say it
has symmetry, and call it a gauge theory.

Example: For electromagnetism we have L = − 1
4F ∧ ∗F where F = dA

for some 1-form A. Then if we transform A ! A′ = A+ dλ for some
function λ, we get F ′ = dA′ = d(A+ dλ) = dA+ ddλ︸︷︷︸

=0

= F and hence

L ′ = L .
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Quantum field theory

For the quantum construction we are mainly interested in the partition
function

ZΣ =

∫
φ∈FΣ

e
i
ℏSΣ[φ]D [φ].

One can make sense of this expression by considering the perturbative
expansion in terms of Feynman graphs:

ZΣ ≈
ℏ!0

∑
crit. pts. φ0 of SΣ

| det ∂2SΣ[φ0]|−
1
2

∑
Γ

ℏkΓ
∫
CΓ(Σ)

ZΓ,

where ≈
ℏ!0 means in the ℏ ! 0 asymptotic up to some prefactors, CΓ(Σ)

is a suitable configuration space of the vertex set of Γ in Σ and ZΓ some
differential form.

It can be constructed by the method of stationary phase expansion
around critical points φ0 of SΣ.
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Batalin–Vilkovisky formalism

To be able to perform the perturbative expansion (stationary phase
expansion) we need to make sure that the critical points of SΣ are all
isolated, which is never the case for gauge theories.

Thus, to compute ZΣ, we need to replace the action SΣ by another
functional whose critical points are all isolated without changing the
value of ZΣ.

There are different methods for dealing with this issue (e.g.
Faddeev–Popov, BRST).

We consider a gauge formalism developed by Batalin and Vilkovisky (BV
formalism): ∫

FΣ

e
i
ℏSΣ −!

∫
L⊂FΣ

e
i
ℏSΣ

In fact we have: FP ⊂ BRST ⊂ BV.
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Batalin–Vilkovisky formalism

In the BV formalism one considers the following data:

• a BV space of fields FΣ (Z-graded supermanifold),

• a BV symplectic form ωΣ of degree −1,

• a BV action functional SΣ of degree 0 satisfying the CME

(SΣ,SΣ) = 0.

We call the triple (FΣ, ωΣ,SΣ) a BV theory.

We are also interested in the Hamiltonian vector field QΣ of SΣ of degree
+1 which, by definition, satisfies (QΣ)

2 = 0 (cohomological) and
LQΣ

ωΣ = 0 (symplectic).

Note that the CME is equivalent to QΣ(SΣ) = 0.
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Batalin–Vilkovisky formalism

In finite dimensions, one can canonically define a second order differential
operator ∆ acting on half-densities on FΣ such that ∆2 = 0, called BV
Laplacian.

Theorem (Batalin–Vilkovisky)

For half-densities f , g we have:

1 if f = ∆g (BV exact), then
∫
L f = 0 for any Lagrangian

submanifold L ⊂ FΣ,

2 if ∆f = 0 (BV closed), then d
dt

∫
Lt

f = 0 for any continuous family

of Lagrangian submanifolds (Lt).

For the case of QFT, we want f = e
i
ℏSΣρ, where ρ is some non-vanishing,

∆-closed reference half-density. Hence we want that the QME holds:

∆e
i
ℏSΣρ = 0 ⇐⇒ (SΣ,SΣ)− 2iℏ∆SΣ = 0.
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BV-BFV formalism
The BV formalism only works if Σ is closed (∂Σ = ∅).

We want to be able to deal with gauge theories in the case where Σ has
boundary (∂Σ ̸= ∅).

=⇒ Use the BV-BFV formalism developed by Cattaneo–Mnev–Reshetikhin

It is a quantum gauge formalism which couples the Batalin–Vilkovisky
bulk theory to the Batalin–Fradkin–Vilkovisky boundary theory
compatible with cutting and gluing in the sense of Atiyah–Segal.

There we consider the quadruple (F∂
∂Σ, ω

∂
∂Σ = δα∂

∂Σ,Q
∂
∂Σ,S∂

∂Σ) on the
boundary ∂Σ which is connected to the bulk theory in a coherent way.
We have:

• F∂
∂Σ is a Z-graded supermanifold,

• ω∂
∂Σ = δα∂

∂Σ is an exact symplectic form on F∂
∂Σ of degree 0,

• S∂
∂Σ is a function on F∂

∂Σ of degree +1 with Hamiltonian vector field
Q∂

∂Σ of degree +1.

N. Moshayedi TQFT club
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BV-BFV formalism
Choosing a polarization (involutive Lagrangian distribution) P on ∂Σ, we
assume a splitting

FΣ = B∂Σ × Y,

where B∂Σ := F∂
∂Σ/P denotes the (smooth) leaf space for P, and Y a

symplectic complement (ωΣ constant on B∂Σ).
1 CME ⇒ modified CME:

QΣ(SΣ) = π∗
Σ(2S∂

∂Σ − ιQ∂
∂Σ
α∂
∂Σ) ⇐⇒ 1

2
ιQΣ

ιQΣ
ωΣ = π∗

ΣS∂
∂Σ,

where πΣ : FΣ ! F∂
∂Σ is a surjective submersion.

2 QME ⇒ modified QME:

(ℏ2∆Y +Ω∂Σ)ZΣ = 0.

• BFV boundary operator:

Ω∂Σ = ordered standard quantization of S∂
∂Σ.

Moreover, (Ω∂Σ)
2 = 0.

• Ω∂Σ is fully described in terms of integrals on ∂CΓ(Σ).

N. Moshayedi TQFT club
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AKSZ-BV theories

AKSZ (Alexandrov–Kontsevich–Schwarz–Zaboronsky) theories are a
particular type of BV theories.
Fix the following data:

• a d-manifold Σ,

• an exact Hamiltonian dg symplectic manifold (M, ω = dα,Θ) of
degree d − 1,

• a BV space of fields FΣ = Map(T [1]Σ,M).

Using ω, one can construct a BV symplectic form ωΣ on FΣ which is
locally given by

ωΣ =

∫
Σ

ωµν(Φ)δΦ
µ ∧ δΦν .

Moreover, we can construct a BV action by SΣ on FΣ which is locally
given by

SΣ[Φ] =

∫
Σ

αµ(Φ)dΣΦ
µ +

∫
Σ

Θ(Φ).

N. Moshayedi TQFT club
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AKSZ-BV theories

One can check that constant maps x : Σ ! M are solutions to δSΣ = 0.

Definition (Split AKSZ theory)

We say that an AKSZ theory is split if M = T ∗[d − 1]M for some
graded manifold M.

Then, considering superfields (P,X ) : T [1]Σ ! M, we get

• ωΣ =
∫
Σ

∑
i δP i ∧ δX i ,

• SΣ =
∫
Σ

∑
i P i ∧ dΣX i +

∫
Σ
Θ(P,X ).

To compute ZΣ, we want to perturb around constant background fields
x ∈ M.

Question (?)

How can we put the perturbative expansions around different points
x ∈ M together, which corresponds to globalization of the AKSZ model?
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Formal geometry

Since we are looking at maps to some target manifold M, we want to
work with coordinates in a formal neighborhood at each point x ∈ M.
Moreover, we want to pass from one coordinate chart to another by
changing the base point ⇒ need a connection to formulate a covariant
setting.

We will use notions of formal geometry developed by

• Gelfand–Fuks,

• Gelfand–Kazhdan,

• Bott.
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Formal geometry

We consider a map ϕ : TM ! M, (x , y) 7! ϕx(y), for y ∈ TxM such
that

• ϕx(0) = 0,

• dyϕx(0) = idTxM.

We use ϕ to map tensor fields (functions, multivector fields, differential
forms) on M to formal tensor fields in the vertical fibers parametrized by
the base:

σ 7! Ξ(σ), Ξ(σ)(x) := Taylory (ϕ
−1
x )∗σ.

In case of a function we have

dx(ϕ
∗f ) = df ◦ dxϕ, dy (ϕ

∗f ) = df ◦ dyϕ,

so, assuming dyϕ is invertible, we get

dx(ϕ
∗f ) = dy (ϕ

∗f ) ◦ (dyϕ)−1 ◦ dxϕ.

N. Moshayedi TQFT club
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Grothendieck connection

Hence, if σ = ϕ∗f and R is the vector field on the fiber induced by the
formal map ϕ as before, we get

(dx + R)σ = 0.

In fact, a tensor field σ lies in the image of Ξ if and only if

dxσ + LRσ = 0.

The connection DG := dx + R is flat and is called Grothendieck
connection.

Using homological perturbation theory, one can show that

Hk
DG

=

{
Ξ(C∞(M)) ∼= C∞(M), k = 0

0, k > 0

N. Moshayedi TQFT club
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differential Classical Master Equation
Consider again an AKSZ theory with source Σ and target M.

Define the corresponding formal global action:

S̃Σ :=

∫
Σ

∑
i

P̂ i ∧ dΣX̂
i
+

∫
Σ

Ξ(Θ)(P̂, X̂ ) +

∫
Σ

∑
k

Rk ∧ P̂k ,

where (P̂, X̂ ) denotes a supermap T [1]Σ ! TxM and Rk is the 1-form
part of R.
We get the differential CME:

dx S̃Σ +
1

2
(S̃Σ, S̃Σ) = 0.

It captures:

• CME,

• flatness of DG ,

• global condition.
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modified differential Quantum Master Equation
If we put everything together, on the quantum level, we get the following
theorem:

Theorem (Cattaneo–M.–Wernli)

For the global state Z̃Σ given by the quantization of a formal global split
AKSZ theory, the modified differential QME (mdQME) holds:

∇GZ̃Σ =

(
dx − iℏ∆Y +

i

ℏ
Ω∂Σ

)
Z̃Σ = 0.

We call ∇G the quantum Grothendieck BFV operator (qGBFV operator).
Can be also regarded as a connection on the total state space
Htot =

⊔
x Hx .

Moreover, we get:

Theorem (Cattaneo–M.–Wernli)

The qGBFV operator ∇G squares to zero ((∇G)
2 = 0).
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Change of data

Our construction depends on the choice of:

• a formal map ϕ,

• representatives of residual fields (low energy fields),

• a propagator.

We can show that Z̃Σ changes in a controlled way under change of data.

Theorem (Cattaneo–M.–Wernli)

For families of BFV operators (Ωt) and global states (Z̃t) parametrized
by t ∈ [0, 1]:

d

dt

∣∣∣
t=0

Ωt = dxτ + [Ωt=0, τ ], τ ∈ Γ(End(Htot))

d

dt

∣∣∣
t=0

Z̃t = ∇G(Z̃t=0 • ρ)− τ Z̃t=0, ρ ∈ Γ(Htot).

All together, the global state Z̃Σ gives a well-defined ∇G-cohomology
class.
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Poisson Sigma Model (PSM)

The Poisson Sigma Model is an example of a 2-dimensional split AKSZ
theory with:

• M = T ∗[1]M for a Poisson manifold (M, π),

• BV action functional given by

SΣ =

∫
Σ

∑
i

ηi ∧ dΣX i +
1

2

∫
Σ

∑
ij

πij(X )ηi ∧ ηj ,

where (η,X ) : T [1]Σ ! T ∗[1]M are superfields.

The classical PSM action SΣ has the same form as the BV action where
superfields (η,X ) are replaced by vector bundle maps

(η,X ) : TΣ ! T ∗M.
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Kontsevich’s star product using the PSM

Kontsevich’s star product is induced by the PSM on the disk D with
boundary condition η = 0 (Cattaneo–Felder):

f ⋆ g(x) =

∫
X (∞)=x

f (X (0))g(X (1))e
i
ℏSD , f , g ∈ C∞(U), U ⊂ Rn.

where 0, 1,∞ are cyclically ordered points on the boundary of the disk.

0 1

∞

D
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Globalization of Kontsevich’s star product

Kontsevich’s formula uses local coordinates but can be globalized using
formal geometry (Cattaneo–Felder–Tomassini).

There, one derives the formulae locally by field theory and globalizes
algebraically afterwards.

We give an approach where the globalization is directly contained in the
field-theoretic construction.

One starts with the Grothendieck connection DG and uses Kontsevich’s
formality map U to quantize it to a derivation DG = DG + O(ℏ)
(deformed Grothendieck connection).
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Globalization of Kontsevich’s star product

One can check that DG is not a differential. In fact, we get

(DG)
2 = [F , ]⋆,

F =
∞∑
n=0

ℏn+2

(n + 2)!
Un+2(R,R,Ξ(π), . . . ,Ξ(π)) ∈ O(ℏ2).

There exists a 1-form γ on M with values in Ŝym(T ∗M)[[ℏ]] such that

DGγ +
1

2
γ ⋆ γ = F .

If one defines D̄G := DG + [γ, ]⋆, we can check that (D̄G)
2 = 0.

Its cohomology H•
D̄G

is identified with globally defined functions.
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Globalization in the BV-BFV formalism
As before, we can use the formal global action for the PSM:

S̃Σ =

∫
Σ

∑
i

η̂i ∧ dΣX̂
i
+

1

2

∫
Σ

∑
ij

Ξ(π)ij(X̂ )η̂i ∧ η̂j +

∫
Σ

∑
k

Rk ∧ η̂k .

The difference is that on some boundary components ∂ℓ
0Σ ⊂ ∂Σ we can

have additional boundary conditions η̂ = 0 instead of a polarization.

=⇒ failure of the general method.

Proposition (Cattaneo–M.–Wernli)

Consider the global state Z̃Σ for the formal global PSM S̃Σ. Then we
have a failure of the mdQME by curvature terms of the deformed
Grothendieck connection:

∇GZ̃Σ = exp

(
i

ℏ

∫
∂0Σ:=

⊔
ℓ ∂

ℓ
0Σ

F

)
Z̃Σ.
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Globalization in the BV-BFV formalism

We can resolve this by adding another boundary field theory to the
formal global action:

S̃γ
Σ =

∫
Σ

∑
i

η̂i∧dΣX̂
i
+
1

2

∫
Σ

∑
ij

Ξ(π)ij(X̂ )η̂i∧η̂j+

∫
Σ

∑
k

Rk∧η̂k +

∫
∂Σ

X̂
∗
γ

We call this the twisted theory.

Theorem (Cattaneo–M.–Wernli)

Let Z̃γ
Σ be the quantization of the twisted theory S̃γ

Σ and let ∇̃γ
G be a

twisted version of the qGBFV operator. Then a twisted version of the
mdQME holds:

∇̃γ
GZ̃

γ
Σ = 0.
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Mixed boundary structure

Moreover, the quantization for mixed boundary structures leads to corner
terms:

∂Σ =

This is important for the quantization of the relational symplectic
groupoid (RSG).
=⇒ Can construct a global version of Kontsevich’s star product, using
the BV-BFV formalism by gluing the disk out of canonical relations:

=

N. Moshayedi TQFT club



The BV-BFV formalism Globalization of split AKSZ theories The Poisson Sigma Model and its globalization Higher codimension

Mixed boundary structure

Moreover, the quantization for mixed boundary structures leads to corner
terms:

∂Σ =

This is important for the quantization of the relational symplectic
groupoid (RSG).
=⇒ Can construct a global version of Kontsevich’s star product, using
the BV-BFV formalism by gluing the disk out of canonical relations:

=

N. Moshayedi TQFT club



The BV-BFV formalism Globalization of split AKSZ theories The Poisson Sigma Model and its globalization Higher codimension

Mixed boundary structure
Moreover, the quantization for mixed boundary structures leads to corner
terms:

∂Σ =

This is important for the quantization of the relational symplectic
groupoid (RSG).
=⇒ Can construct a global version of Kontsevich’s star product, using
the BV-BFV formalism by gluing the disk out of canonical relations:

=

N. Moshayedi TQFT club



The BV-BFV formalism Globalization of split AKSZ theories The Poisson Sigma Model and its globalization Higher codimension

Higher codimension

Question: What happens when we consider stratified manifolds and their
higher codimension submanifolds (e.g. manifolds with corners, etc.)?

For codimension k theories, we speak of BV-BFkV.

The classical theory is easily formulated by iteration of the previous

process, i.e. we consider F∂k

, S∂k

, ω∂k

, Q∂k

, etc.

The shift (ghost number) of the symplectic structure is always raised by

+1. Hence, the ghost number of ω∂k

is k − 1.

The mCME in codimension k is then

Q∂k

(S∂k

) = π∗
∂k (2S

∂k+1

− ιQ∂k+1α∂k+1

),

where π∂k : F∂k

! F∂k+1

.
See also e.g. Cattaneo–Mnev–Reshetikhin (2012), Canepa–Cattaneo
(2022).
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Question: What happens when we consider stratified manifolds and their
higher codimension submanifolds (e.g. manifolds with corners, etc.)?

For codimension k theories, we speak of BV-BFkV.

The classical theory is easily formulated by iteration of the previous

process, i.e. we consider F∂k

, S∂k

, ω∂k

, Q∂k

, etc.

The shift (ghost number) of the symplectic structure is always raised by

+1. Hence, the ghost number of ω∂k

is k − 1.

The mCME in codimension k is then
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Higher codimension
The Quantum case is much more difficult.
We would like to have (up to coefficients) something like

(∆ + Ω∂ +Ω∂∂ + . . .+Ω∂k )Z = 0.

Not clear what the above equation should mean. The objects of the
categories assigned to higher codimensions (≥ 2) are not explicitly
constructed. Before, i.e. in the codimension 1 case, it was the category
of chain complexes Ch (usually the category of vector spaces in the
setting of TQFTs). Denote by AlgEd

Pk
(Ch) the category of Pk -algebras

over Ed -algebras in chain complexes Ch and by dgCat(∞,k) the category
of differential graded (∞, k)-categories. Then the deformation

quantization part gives something like Alg
En−k

BDk
(Ch) acting on

dgCat(∞,k−1) coming from the geometric quantization part. In
particular, we have something like

Q∂k

ℏ = [S∂k

ℏ , ]Ek
, k ≥ 2.

This corresponds to the differential Q∂
ℏ = S∂

ℏ ⋆ · in the codimension 1
setting.
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Thank you!
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