Derived algebraic geometry and Enumerative Geometry

Global Portuguese Mathematicians IST

Marco Robalo (IMJ-PRG, UPMC)
(1) Motivations for derived algebraic geometry
(2) What can it do for enumerative geometry?

Algebraic geometry

Geometry shaped by solutions of system of polynomial equations

Zoology. General Pattern?

Discovery (Bezout):

- replace \mathbb{R} by \mathbb{C}
- add horizon points to the plane (Projective Plane \mathbb{P}^{2}),

$$
\Rightarrow \text { regular pattern }
$$

$\sharp\{C \cap D\}=$ degree c. degree d (counted with multiplicities)

Example:

mult. 1 (transversal), $\left(y=x^{2}\right)$
 mult. 2

Geometric Meaning: continuity under small perturbations

$1,-1, i,-i$

$$
\sqrt[2]{i}, \sqrt[2]{-i},-\sqrt[2]{i},-\sqrt[2]{-i}
$$

Need Algebraic Formula $P_{C}=0, P_{D}=0$ intersecting at single point,

$$
\text { geo. multp. }=\operatorname{dim}\left[\mathbb{C}[x, y] / P_{C} \otimes_{\mathbb{C}[x, y]} \mathbb{C}[x, y] / P_{D}\right]
$$

Example: $\left(y=x^{2}\right)$

$$
\operatorname{dim}_{\mathbb{C}}\left[\mathbb{C}[x, y] /(y) \otimes_{\mathbb{C}[x, y]} \mathbb{C}[x, y] /\left(y-x^{2}\right)\right] \simeq \operatorname{dim}_{\mathbb{C}} \mathbb{C}[x] /\left(x^{2}\right)=2
$$

Problem in higher dimensions:

Geometry says multp. 2; Algebra says 3
$\operatorname{dim}_{\mathbb{C}}\left[\mathbb{C}[x, y, z, w] /(x z, x w, y z, y w)^{\otimes_{\mathbb{C}}[x, y, z, w]} \mid \mathbb{C}[x, y, z, w] /(x-z, y-w)\right]=3$

Problem in lower dimensions: Intersection of 0 with itself in \mathbb{C}.

$$
-\delta \bullet \quad \delta
$$

Continuity says multp. 0; Algebra says 1

$$
\operatorname{dim}_{\mathbb{C}}\left[\mathbb{C}[x] /(x) \otimes_{\mathbb{C}[x]} \mathbb{C}[x] /(x)\right]=1
$$

Serre's discovery: \otimes alone misses subtle geometric information. \rightsquigarrow Introduce a new operation $\otimes^{\mathbb{L}}$ that corrects \otimes.

Invention: To account for the corrections, the output of $\otimes^{\mathbb{L}}$ is no longer a single vector space but rather a chain of vector spaces,

$$
[\cdots \longrightarrow \underbrace{V_{-2}}_{\text {Layer-2 }} \xrightarrow{d_{2}} \underbrace{V_{-1}}_{\text {Layer-1 }} \xrightarrow{d_{1}} \underbrace{V_{0}}_{\text {Layer } 0}], d^{i} d^{i-1}=0,
$$

Each extra layer adds a correction. $\quad H^{i}=$ complexity at level i.

Example:

$$
\begin{gathered}
\mathbb{C}[x] /(x) \otimes \underset{\mathbb{C}}{\mathbb{L}}[x] \\
\mathbb{C}[x] /(x) \simeq\left[0 \rightarrow \underset{\operatorname{deg}-1}{\mathbb{C}} \rightarrow^{0} \underset{\operatorname{deg} 0}{\mathbb{C}} \rightarrow 0\right], \quad H^{-1}=\mathbb{C}, \\
H^{0}\left(-\otimes^{\mathbb{L}}-\right)=\text { old } \otimes, i>0 H^{-i}=\text { corrections ("Tor's") }
\end{gathered}
$$

Serre's formula p is an isolated intersection point,

$$
\sum_{i \geq 0}(-1)^{i} \operatorname{dim}_{\mathbb{C}} H^{-i}\left(-\otimes^{\mathbb{L}}-\right)=\text { geo. mult. }
$$

Previous examples;

- Lower dimension: $1-1+0-0+0 \ldots .=0$
- Higher dimension: $3-1+0-0+0 \ldots=2$;

Problem: chains of vector spaces are out of the classical dictionary geometry \leftrightarrow algebra.

Derived Algebraic Geometry

(Toen-Vezzosi, Lurie) Enhancement of classical geometry where new infinitesimal information can live in higher layers.

For Free: Extra Layers of tangent information \Rightarrow

$$
\text { tangent }(\mathbb{T}) / \text { cotangent }\left(\mathbb{T}^{*}\right) \text { complexes. }
$$

$H^{0}(\mathbb{T})=$ usual tangent, $H^{i}(\mathbb{T})=$ code the singularities.

Illustration: $C=\{f(X, Y):=X Y=0\} \subseteq \mathbb{C}^{2}$

$$
\left.\begin{array}{rl}
f: \mathbb{C}^{2} \rightarrow \mathbb{C} & p
\end{array}\right)
$$

$\mathbb{T}_{\mathcal{C}, p} \simeq\left[0 \longrightarrow \underset{\operatorname{deg}-1}{\mathbb{C}} \xrightarrow{1 \leftrightarrow d f_{p}} \underset{\text { deg } 0}{\mathbb{C} . d x} \bigoplus \mathbb{C} . d y \longrightarrow 0\right]$

- $p=\bullet \leftrightarrow H^{0}=\mathbb{C}=T_{C, p}^{*, c l}=$ usual cotangent space, $H^{-1}=0$.
- $p=\bullet \leftrightarrow H^{0}=\mathbb{C} \oplus \mathbb{C}, H^{-1} \simeq \mathbb{C}$, singularity.

Information in higher degrees controls lack of smoothness.

Derived Geometry and Enumerative Geometry

Easy Example: How many lines pass by 2 diff pts in the plane?

Example: What is the number N_{2} of smooth plane curves of degree 2 that pass though p_{1}, \ldots, p_{5} distinct points in \mathbb{P}^{2}, no 3 colinear?

Problem: $\quad \mathcal{M}_{2}\left(\mathbb{P}_{\mathbb{C}}^{2}\right)$ not compact \rightsquigarrow problems with the integral.

Solution: For N_{2} there is a simple candidate for a compactification of $\mathcal{M}_{2}\left(\mathbb{P}_{\mathbb{C}}^{2}\right)$:

$$
\underbrace{\left\{a X^{2}+b X Y+c Y^{2}+d X+e Y+f\right\}}_{\text {all curves in } P^{2}} / \mathbb{C}^{*} \simeq \mathbb{P}_{\mathbb{C}}^{5}
$$

Gromov-Witten numbers. $N_{d}:=\sharp$ of rational curves (ie, parametrized by \mathbb{P}^{1}) of degree d passing by $3 d-1$ points in $\mathbb{P}_{\mathbb{C}}^{2}$ in general position. (3d-1 to get finite)

Kontsevich's Recursion:

$$
N_{d}=\sum_{d_{A}+d_{B}=d} N_{d_{A}} N_{d_{B}} d_{A}^{2} d_{B}\left(d_{B}\binom{3 d-4}{3 d_{A}-2}-d_{A}\binom{3 d-4}{3 d_{A}-1}\right)
$$

Theorem (Gromov-Kontsevich Orbifold Compactification by stable maps)

There exists a nice smooth compact algebraic orbifold whose points are parametrized curves of degree d (stable maps)

Recursion \leftrightarrow skeleton of the boundary $\quad N_{d}=\int_{\overline{\mathcal{M}}_{0,3 d-1}\left(\mathbb{P}_{\mathbb{C}}^{2}, d\right)}^{a l g}$

Next step: Replace the plane $\mathbb{P}_{\mathbb{C}}^{2}$ by general X (smooth projective)?

Problem: $\overline{\mathcal{M}}_{0, n}(X, d)$ no longer smooth. Very singular. Has pieces of different dimensions. Naive \int fails.

Solution: Behrend-Fantechi (Chow), Givental-Lee (K-theory).

 Virtual fundamental classes

- Get the good numbers;
- Interpretation as volume is lost
- Very difficult to handle the corrections and prove recursive behavior.

New solution: Correct the lack of smoothness of $\overline{\mathcal{M}}_{0, n}(X, d)$ via derived geometry:

Theorem (Schurg-Toen-Vezzosi, Lurie)

The space $\overline{\mathcal{M}}_{0, n}(X, d)$ has a non-trivial structure of derived-orbifold.

$$
\mathbb{R} \overline{\mathcal{M}}_{0, n}(X, d)
$$

Proof: Lurie's master result: the representability theorem.

Theorem (Mann-R.)

The integrals

$$
\int_{\mathbb{R} \overline{\mathcal{M}}_{0, n}(X, d)}^{a l g, K-\text { theoretic }}
$$

are well-defined and verify the recursive relations.. Moreover,

$$
\int_{\mathbb{R} \overline{\mathcal{M}}_{0, n}(X, d)}^{a l g, K \text {-theoretic }}=\int_{X}^{\text {virtual, Givental-Lee }}
$$

Proof: Brane actions for the ∞-operad of stable curves +h descent for perfect complexes.

- Interpretation as a volume remains.
- Easier to recover recursive relations;

In Progress[Mann-R.]:
(GRR for derived Orbifolds)

New directions (Yu-Porta): Use this strategy to define GWinvariants in rigid geometry and prove Mirror Symmetry

Obrigado

