Derived algebraic geometry and Enumerative Geometry

Global Portuguese Mathematicians IST

Marco Robalo (IMJ-PRG, UPMC)

1 Motivations for derived algebraic geometry

Algebraic geometry

Geometry shaped by solutions of system of polynomial equations

Zoology. General Pattern?

Motivations for derived algebraic geometry

Discovery (Bezout):

- $\bullet\,$ replace ${\mathbb R}\,$ by ${\mathbb C}\,$
- add horizon points to the plane (Projective Plane \mathbb{P}^2),

 \Rightarrow regular pattern

 $\sharp \{ C \cap D \} =$ degree *c*.degree *d* (*counted with multiplicities*)

Motivations for derived algebraic geometry

mult. 1 (transversal),
$$(y = x^2)$$
 mult. 2

Geometric Meaning: continuity under small perturbations

Need Algebraic Formula $P_C = 0, P_D = 0$ intersecting at single point,

geo. multp. = dim
$$[\mathbb{C}[x, y]/_{P_C} \otimes_{\mathbb{C}[x, y]} \mathbb{C}[x, y]/_{P_D}]$$

Example:
$$(y = x^2)$$

$$dim_{\mathbb{C}}[\mathbb{C}[x,y]/(y)\otimes_{\mathbb{C}[x,y]}\mathbb{C}[x,y]/(y-x^2)]\simeq dim_{\mathbb{C}}\mathbb{C}[x]/(x^2)=2$$

Problem in higher dimensions:

Geometry says multp. 2; Algebra says 3

$$dim_{\mathbb{C}}\left[\mathbb{C}[x, y, z, w]/_{(xz, xw, yz, yw)} \otimes_{\mathbb{C}[x, y, z, w]} \mathbb{C}[x, y, z, w]/_{(x-z, y-w)}\right] = 3$$

Problem in lower dimensions: Intersection of 0 with itself in \mathbb{C} .

Continuity says multp. 0; Algebra says 1

$\dim_{\mathbb{C}} \left[\mathbb{C}[x]/(x) \otimes_{\mathbb{C}[x]} \mathbb{C}[x]/(x) \right] = 1$

Serre's discovery: \otimes alone misses subtle geometric information. \rightsquigarrow Introduce a new operation $\otimes^{\mathbb{L}}$ that corrects \otimes .

Invention: To account for the corrections, the *output* of $\otimes^{\mathbb{L}}$ is no longer a single vector space but rather a chain of vector spaces,

$$[\cdots \longrightarrow \underbrace{V_{-2}}_{Layer-2} \xrightarrow{d_2} \underbrace{V_{-1}}_{Layer-1} \xrightarrow{d_1} \underbrace{V_0}_{Layer0}], d^i d^{i-1} = 0,$$

Each extra layer adds a correction. $H^i = \text{complexity at level i.}$ Example:

$$\mathbb{C}[x]/(x)\otimes_{\mathbb{C}[x]}^{\mathbb{L}}\mathbb{C}[x]/(x)\simeq [0\to \underset{deg\ -1}{\mathbb{C}}\to^{0}\underset{deg\ 0}{\mathbb{C}}\to 0], \quad H^{-1}=\mathbb{C},$$

$$H^0(-\otimes^{\mathbb{L}}-)={
m old}\,\otimes\,\,,i>0\,\,H^{-i}={
m corrections}$$
 ("Tor's")

Serre's formula p is an isolated intersection point,

$$\sum_{i\geq 0} (-1)^i \dim_{\mathbb{C}} H^{-i}(-\otimes^{\mathbb{L}} -) = \text{geo. mult.}$$

Previous examples;

- Lower dimension: 1 1 + 0 0 + 0 = 0
- Higher dimension: 3 1 + 0 0 + 0 = 2;

Problem: chains of vector spaces are out of the classical dictionary geometry \leftrightarrow algebra.

(**Toen-Vezzosi, Lurie**) Enhancement of classical geometry where new infinitesimal information can live in higher layers.

For Free: Extra Layers of tangent information \Rightarrow

tangent $(\mathbb{T})/\text{cotangent}$ (\mathbb{T}^*) complexes.

 $H^0(\mathbb{T})$ = usual tangent, $H^i(\mathbb{T})$ = code the singularities.

Illustration: $C = \{f(X, Y) := XY = 0\} \subseteq \mathbb{C}^2$ $f: \mathbb{C}^2 \to \mathbb{C}$ $p = \bullet \leftrightarrow \dim T^{*,cl}_{C,p} = 1$ $p = \bullet \leftrightarrow \dim T^{*,cl}_{C,p} = 2$

$$\mathbb{T}^*_{\mathcal{C},p} \simeq \left[\begin{array}{cc} 0 \longrightarrow \mathbb{C} \\ \deg -1 \end{array} \xrightarrow{1 \mapsto df_p} \mathbb{C}.dx \bigoplus \mathbb{C}.dy \longrightarrow 0 \end{array} \right]$$

• $p = \bullet \leftrightarrow H^0 = \mathbb{C} = T^{*,cl}_{C,p}$ usual cotangent space, $H^{-1} = 0$.

• $p = \bullet \leftrightarrow H^0 = \mathbb{C} \oplus \mathbb{C}, \ H^{-1} \simeq \mathbb{C}$, singularity.

Information in higher degrees controls lack of smoothness.

Derived Geometry and Enumerative Geometry

Easy Example: How many lines pass by 2 diff pts in the plane?

Example: What is the number N_2 of smooth plane curves of degree 2 that pass though $p_1, ..., p_5$ distinct points in \mathbb{P}^2 , no 3 colinear?

What can it do for enumerative geometry?

Problem: $\mathcal{M}_2(\mathbb{P}^2_{\mathbb{C}})$ not compact \rightsquigarrow problems with the integral.

Solution: For N_2 there is a simple candidate for a compactification of $\mathcal{M}_2(\mathbb{P}^2_{\mathbb{C}})$:

$$\frac{\{aX^2 + bXY + cY^2 + dX + eY + f\}}{all \text{ curves in } P^2} / \mathbb{C}^* \simeq \mathbb{P}^5_{\mathbb{C}}$$

Gromov-Witten numbers. $N_d := \sharp$ of rational curves (ie, parametrized by \mathbb{P}^1) of degree d passing by 3d - 1 points in $\mathbb{P}^2_{\mathbb{C}}$ in general position. (3d-1 to get finite)

Kontsevich's Recursion:

$$N_{d} = \sum_{d_{A}+d_{B}=d} N_{d_{A}} N_{d_{B}} d_{A}^{2} d_{B} \left(d_{B} \begin{pmatrix} 3d-4\\ 3d_{A}-2 \end{pmatrix} - d_{A} \begin{pmatrix} 3d-4\\ 3d_{A}-1 \end{pmatrix} \right)$$

Theorem (Gromov-Kontsevich Orbifold Compactification by stable maps)

There exists a nice smooth compact algebraic orbifold whose points are parametrized curves of degree d (stable maps)

Next step: Replace the plane $\mathbb{P}^2_{\mathbb{C}}$ by general X (smooth projective)?

Problem: $\overline{\mathcal{M}}_{0,n}(X, d)$ no longer smooth. Very singular. Has pieces of different dimensions. Naive \int fails.

Solution: Behrend-Fantechi (Chow), Givental-Lee (K-theory). Virtual fundamental classes

$$\int_{\times}^{\text{virtual}} := \int_{\overline{\mathfrak{M}}_{0,n}(X,d)^{\text{good dim.}}}^{\text{alg}} + \text{hand corrections for different dim.}$$

new number

- Get the good numbers;
- Interpretation as volume is lost
- Very difficult to handle the corrections and prove recursive behavior.

New solution: Correct the lack of smoothness of $\overline{\mathcal{M}}_{0,n}(X, d)$ via derived geometry:

Theorem (Schurg-Toen-Vezzosi, Lurie)

The space $\overline{\mathcal{M}}_{0,n}(X,d)$ has a non-trivial structure of derived-orbifold.

 $\mathbb{R}\overline{\mathcal{M}}_{0,n}(X,d)$

Proof: Lurie's master result: the representability theorem.

Theorem (Mann-R.)

The integrals

 $\int_{\mathbb{R}\overline{\mathcal{M}}_{0,n}(X,d)}^{alg, \ K-theoretic}$

are well-defined and verify the recursive relations.. Moreover,

Proof: Brane actions for the ∞ -operad of stable curves + h-descent for perfect complexes.

- Interpretation as a volume remains.
- Easier to recover recursive relations;

In Progress[Mann-R.]:

$$\int_{\mathbb{R}\overline{\mathbb{M}}_{0,n}(X,d)}^{alg, Chow} = \int_{\times}^{virtual, Behrend-Fantechi}$$
is defined

(GRR for derived Orbifolds)

New directions (Yu-Porta): Use this strategy to define GW-invariants in rigid geometry and prove Mirror Symmetry

Obrigado