Physics informed neural networks (PINNs) for blow-up solutions of Euler equations

Yongji Wang

Department of Geosciences, Princeton University

Mathematics, Physics & Machine Learning webinar, May 26th, 2022

Navier-Stokes equations

The pair (\mathbf{u}, p) solves the incompressible 3-D Navier-Stokes equations if

$$\underline{\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u}} + \underline{\nabla p} = \underline{\mu \Delta \mathbf{u}}, \quad \text{div}(\mathbf{u}) = 0, \quad \text{and} \quad \mathbf{u}(\cdot, t) = \mathbf{u_0}$$
Momentum change Shear stress

for velocity \mathbf{u} , pressure p and initial velocity $\mathbf{u_0}$. Here μ is fluid viscosity

Euler equations

The pair (\mathbf{u}, p) solves the incompressible 3-D Euler equations if

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = \mu \Delta \mathbf{u}, \quad \text{div}(\mathbf{u}) = 0, \quad \text{and} \quad \mathbf{u}(\cdot, t) = \mathbf{u_0}$$

for velocity \mathbf{u} , pressure p and initial velocity $\mathbf{u_0}$.

Open Problem:

Does there exist smooth, finite energy initial condition $\mathbf{u_0}$ leading to a solution $\underline{blowing\ up}$ in finite time?

Euler equations

The pair (\mathbf{u}, p) solves the incompressible 3-D Euler equations if

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = \mu \Delta \mathbf{u}, \quad \text{div}(\mathbf{u}) = 0, \quad \text{and} \quad \mathbf{u}(\cdot, t) = \mathbf{u_0}$$

for velocity \mathbf{u} , pressure p and initial velocity $\mathbf{u_0}$.

Open Problem:

Does there exist smooth, finite energy initial condition $\mathbf{u_0}$ leading to a solution blowing up in finite time?

1-D example
$$\frac{du}{dt} = u$$

$$u(0) = 1$$

The pair (\mathbf{u}, p) solves the incompressible 3-D Euler equations if

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = \mu \Delta \mathbf{u}, \quad \text{div}(\mathbf{u}) = 0, \quad \text{and} \quad \mathbf{u}(\cdot, t) = \mathbf{u_0}$$

for velocity \mathbf{u} , pressure p and initial velocity $\mathbf{u_0}$.

Open Problem:

Does there exist smooth, finite energy initial condition leading to a solution blowing up in finite time?

1-D example
$$\frac{du}{dt} = u$$

$$u(0) = 1$$

The pair (\mathbf{u}, p) solves the incompressible 3-D Euler equations if

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = \mu \Delta \mathbf{u}, \quad \text{div}(\mathbf{u}) = 0, \quad \text{and} \quad \mathbf{u}(\cdot, t) = \mathbf{u_0}$$

for velocity \mathbf{u} , pressure p and initial velocity $\mathbf{u_0}$.

Open Problem:

Does there exist smooth, finite energy initial condition leading to a solution blowing up in finite time?

1-D example $\frac{du}{dt} = u^{2} - u$ u(0) = 1

The pair (\mathbf{u}, p) solves the incompressible 3-D Euler equations if

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = \mu \Delta \mathbf{u}, \quad \text{div}(\mathbf{u}) = 0, \quad \text{and} \quad \mathbf{u}(\cdot, t) = \mathbf{u_0}$$

for velocity \mathbf{u} , pressure p and initial velocity $\mathbf{u_0}$.

Open Problem:

Does there exist smooth, finite energy initial condition leading to a solution blowing up in finite time?

1-D example
$$\frac{du}{dt} = u^{\boxed{2}}$$

$$u(0) = 1$$

The pair (\mathbf{u}, p) solves the incompressible 3-D Euler equations if

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = \mu \Delta \mathbf{u}, \quad \text{div}(\mathbf{u}) = 0, \quad \text{and} \quad \mathbf{u}(\cdot, t) = \mathbf{u_0}$$
Nonlinearity

for velocity \mathbf{u} , pressure p and initial velocity $\mathbf{u_0}$.

Open Problem:

Does there exist smooth, finite energy initial condition leading to a solution blowing up in finite time?

1-D example

Euler equations

The pair (\mathbf{u}, p) solves the incompressible 3-D Euler equations if

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = \mu \Delta \mathbf{u}, \quad \text{div}(\mathbf{u}) = 0, \quad \text{and} \quad \mathbf{u}(\cdot, t) = \mathbf{u_0}$$
Nonlinearity

for velocity \mathbf{u} , pressure p and initial velocity $\mathbf{u_0}$.

Open Problem:

Does there exist smooth, finite energy initial condition $\mathbf{u_0}$ leading to a solution blowing up in finite time?

If it does exists — Local velocity goes infinity

Euler equations

The pair (\mathbf{u}, p) solves the incompressible 3-D Euler equations if

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = \mu \Delta \mathbf{u}, \quad \text{div}(\mathbf{u}) = 0, \quad \text{and} \quad \mathbf{u}(\cdot, t) = \mathbf{u_0}$$
Nonlinearity

for velocity \mathbf{u} , pressure p and initial velocity $\mathbf{u_0}$.

Open Problem:

Does there exist smooth, finite energy initial condition $\mathbf{u_0}$ leading to a solution blowing up in finite time?

If it does exists — Local velocity goes infinity

Numerical challenge: how to find the **blow-up** solution if it exits

Physics-informed neural networks (PINNs)

Outlines

1. What is Physics-informed Neural Networks (PINNs)

- Basic and key components
- Understand PINNs from the mathematics point of view
- Comparison with classical numerical scheme

2. Why can PINNs find self-similar blow-up solutions

- Advantages of PINNs over classical numerical scheme
- Steps to set up the PINNs
- Robustness and universality of PINNs

Karniadakis et. al. (2021), Nat. Rev. Phys., 3

Fully-connected Neural network

Karniadakis et. al. (2021), Nat. Rev. Phys., 3

Fully-connected Neural network

Function u(x)

Karniadakis et. al. (2021), Nat. Rev. Phys., 3

Fully-connected Neural network

Function u(x)

Common choice

$$\sigma(x) = \tanh(x)$$

$$\sigma(x) = \sin(x)$$

Activation function (nonlinearity)

Output of a neuron

Karniadakis et. al. (2021), Nat. Rev. Phys., 3

Fully-connected Neural network

Function u(x)

Sum of the outputs from previous layer

$$\frac{\sigma\left(\sum_{i=1}^{4} w_{ji}^{(1)} \sigma\left(w_{i}^{(0)} x + b_{i}^{(0)}\right) + b_{j}^{(1)}\right)}{}$$

Output of a neuron in the second layer

Karniadakis et. al. (2021), Nat. Rev. Phys., 3

Fully-connected Neural network

Function
$$u(x) = \sum_{j=1}^{n} w_{lk}^{(n)} \sigma \left(\sum_{i=1}^{n} w_{kj}^{(n-1)} \sigma \left(\dots \sigma \left(\sum_{i=1}^{n} w_{ji}^{(1)} \sigma \left(w_i^{(0)} x + b_i^{(0)} \right) + b_j^{(1)} \right) \dots \right) + b_k^{(n-1)} \right) + b_l^{(n)}$$

w: weights

b: biases

(free parameters to be trained)

 $\sigma(x)$: activation function

(fixed and selected by users)

Karniadakis et. al. (2021), Nat. Rev. Phys., 3

Fully-connected Neural network

$$u(x) = \sum_{j=1} w_{lk}^{(n)} \sigma \left(\dots \sigma \left(\sum_{i=1} w_{ji}^{(1)} \sigma \left(w_i^{(0)} x + b_i^{(0)} \right) + b_j^{(1)} \right) \dots \right) + b_l^{(n)}$$

w: weights

b: biases

 $\sigma(x)$: activation function

Universal function approximator

Hornik et. al. (1989), Neural Netw. 2

Fully-connected Neural network

$$u(x) = \sum_{j=1} w_{lk}^{(n)} \sigma \left(\dots \sigma \left(\sum_{i=1} w_{ji}^{(1)} \sigma \left(w_i^{(0)} x + b_i^{(0)} \right) + b_j^{(1)} \right) \dots \right) + b_l^{(n)}$$

w: weights

b: biases

 $\sigma(x)$: activation function

Fourier series: $u(x, w_n, b_n) = \sum_{n=0}^{N} w_n \sin(nx + b_n)$

Universal function approximator

Hornik et. al. (1989), Neural Netw. 2

Neural network for regression

8.0

0.4

0.2

u

Fully-connected Neural network

 $u(x) = \sin(\pi x)$ Ground truth - - NN approx. × Sample data

0.6

0.7

8.0

0.9

Karniadakis et. al. (2021), Nat. Rev. Phys., 3

$$u(x) = \sum_{j=1} w_{lk}^{(n)} \sigma \left(\dots \sigma \left(\sum_{i=1} w_{ji}^{(1)} \sigma \left(w_i^{(0)} x + b_i^{(0)} \right) + b_j^{(1)} \right) \dots \right) + b_l^{(n)}$$

Updating variables: w: weights

b: biases

Optimization

data of u at $x = x_i$

 $\mathbf{w}^{(i+1)} = \mathbf{w}^{(i)} - \eta \nabla_{\mathbf{w}} J(x, \mathbf{w}^{(i)}, \mathbf{b}^{(i)})$ Gradient descent

$$\mathbf{b}^{(i+1)} = \mathbf{b}^{(i)} - \eta \nabla_{\mathbf{b}} J(x, \mathbf{w}^{(i)}, \mathbf{b}^{(i)})$$

 $\mathbf{w}^{(i)}, \mathbf{b}^{(i)}$: value at the *i*-th iteration

 η : learning rate

Cost function: mean squared error

 $[u(x=0.1)-0.38]^2$

0.4

0.5

0.3

0.2

0.1

Loss

$$J(x, \mathbf{w}, \mathbf{b}) = loss_d = \frac{1}{N_d} \sum_{i=1}^{N_d} [u(x_i, \mathbf{w}, \mathbf{b}) - u_i^{(d)}]^2$$

Fully-connected Neural network

Karniadakis et. al. (2021), Nat. Rev. Phys., 3

Gradient descent

$$\mathbf{w}^{(i+1)} = \mathbf{w}^{(i)} - \eta \nabla_{\mathbf{w}} J(x, \mathbf{w}^{(i)}, \mathbf{b}^{(i)})$$
$$\mathbf{b}^{(i+1)} = \mathbf{b}^{(i)} - \eta \nabla_{\mathbf{b}} J(x, \mathbf{w}^{(i)}, \mathbf{b}^{(i)})$$

 $\mathbf{w}^{(i)}, \mathbf{b}^{(i)}$: value at the *i*-th iteration

 η : learning rate

Cost function: *data* + *equation loss*

$$J(x, \mathbf{w}, \mathbf{b}) = loss_d + loss_f$$

Neural network for regression (with data only)

• Finite data points (evaluate difference between NN and data)

Physics-informed Neural network

$$f = \frac{\partial u}{\partial x} - u$$

Differential equation solver

- X Infinite collocation points (evaluate equation balance)
- Only one data point (boundary condition i. e. u(0) = 1)

How does PINN evaluate the differential equation?

How does it different from classical numerical method?

$$f = \frac{\partial u}{\partial x} - u$$
 Differential equation solver

- Infinite collocation points (evaluate equation balance)
- Only one data point (boundary condition i. e. u(0) = 1)

Differential equations

(derivatives)

Difficulty
$$\left| \frac{du}{dx} \right| = u$$

Differential equations

Numeric

PINNs

Algebraic equations

Numerical method

$$\frac{du}{dx} = u \quad \text{Boundary condition} \quad u(0) = 1$$

Differential equation ——

Algebraic equation

Finite difference

$$\frac{du(x_{n-1})}{dx} \approx \frac{u_n - u_{n-1}}{h}$$

Finite difference

$$\frac{du}{dx} = u \implies \frac{u_n - u_{n-1}}{h} = u_{n-1}$$
 algebraic equations

 $u_n = u(x_n) \qquad x_n = x_{n-1} - h$

Output: value at each discretized points

Differential equations

(derivatives)

Difficulty
$$\left| \frac{du}{dx} \right| = u$$

Differential equations

Numeric (Finite difference) **PINNs**

Algebraic equations

Fourier series: 1-hidden layer network

$$u(x) = \sum_{n=0}^{N} w_n \sin\left(\frac{2\pi}{L}nx + b_n\right)$$

Elementary base function: sin(x)

$$\frac{du}{dx}(x) = \sum_{n=0}^{N} \frac{2\pi}{L} n w_n \cos\left(\frac{2\pi}{L} nx + b_n\right)$$

Explicit expression for its exact derivative

Evaluate the derivative (no truncation error)

Output: a continuous function

Fourier series:
$$u(x) = \sum_{n=0}^{N} w_n \sin\left(\frac{2\pi}{L}nx + b_n\right)$$

1-hidden layer network

Multi-layer Neural network

$$u(x) = \sum_{j=1} w_{lk}^{(n)} \sigma \left(\dots \sigma \left(\sum_{i=1} w_{ji}^{(1)} \sigma \left(w_i^{(0)} x + b_i^{(0)} \right) + b_j^{(1)} \right) \dots \right) + b_l^{(n)}$$

w: weights

b: biases $\sigma(x)$: activation function

Chain rule

$$\frac{dy}{dx} = \left| \frac{dy}{da_{n-1}} \right|.$$

$$\frac{1}{da_{n-1}} \left| \frac{da_{n-1}}{da_{n-2}} \right|$$

$$\dots \boxed{\frac{da_2}{da_1}}$$

$$\left| \frac{da_1}{da_2} \right|$$

each derivative is known exactly

Automatic differentiation

Comparison between two methods

Classical numerical scheme

$$\frac{du(x_{n-1})}{dx} \approx \frac{u_n - u_{n-1}}{h}$$
Truncation error

PINNs	Numerical
Automatic differentiation	Finite difference
No truncation error	Has truncation error
Continuous function	Discretized points

Comparison between two methods

O(hour)

Classical numerical scheme

$$\frac{du(x_{n-1})}{dx} \approx \frac{u_n - u_{n-1}}{h}$$
Truncation error

PINNs	Numerical
Automatic differentiation	Finite difference
No truncation error	Has truncation error
Continuous function	Discretized points
Trapped in local minimal	Fast convergence rate
Higher computational cost	Computational efficient
$O(\min)$	For a linear ODE $O(0.1)$ sec

For a linear PDE

Comparison between two methods

Classical numerical scheme

$$\frac{du(x_{n-1})}{dx} \approx \frac{u_n - u_{n-1}}{h}$$
Truncation error

PINNs	Numerical
Automatic differentiation	Finite difference
No truncation error	Has truncation error
Continuous function	Discretized points
Trapped in local minimal	Fast convergence rate
Higher computational cost	Computational efficient
Newly-developed method	Well-developed and documented

Why is PINN able to find self-similar blow-up solutions?

Incompressible Euler equation

The pair (u, p) solves the incompressible 3-D Euler equations if

$$\partial_t u + (u \cdot \nabla)u + \nabla p = 0$$
, $\operatorname{div}(u) = 0$, and $u(\cdot, t) = u_0$

for velocity u, pressure p and initial velocity u_0 .

Open Problem:

Does there exist smooth, finite energy initial data u_0 leading to a singularity in finite time?

Under axi-symmetry, the equations become

$$(\partial_t + u_r \partial_r + u_3 \partial_{x_3}) \left(\frac{\omega_\theta}{r}\right) = \frac{1}{r^4} \partial_{x_3} (r u_\theta)^2$$

$$(\partial_t + u_r \partial_r + u_3 \partial_{x_3}) (r u_\theta) = 0$$

$$\partial_r u_r + \frac{u_r}{r} + \partial_{x_3} u_3 = 0 \qquad \omega_\theta = \partial_{x_3} u_r - \partial_r u_3$$

where (u_r, u_θ, u_3) is the velocity in cylindrical coordinates and ω_θ is the angular component of the vorticity (curl of the velocity).

Luo-Hou Scenario

1

Inside a cylindrical container, the top and bottom halves of a fluid rotate in opposite directions.

2

These initial conditions lead to the formation of more complicated currents that cycle up and down.

Luo-Huo '14 provided compelling numerical evidence for singularity formation in this setting (growth by a factor of 3×10^8). The numerics suggest an asymptotic self-similar scaling at the time of singularity.

Self-similar Euler equation with boundary

Considering the Euler exterior to the cylindrical boundary

$$(u_r, u_3) = (1 - t)^{\lambda} \mathbf{U}(\mathbf{y}, s) = (1 - t)^{\lambda} (U_1(\mathbf{y}, s), U_2(\mathbf{y}, s)),$$

$$\omega_{\theta} = (1 - t)^{-1} \Omega(\mathbf{y}, s), \quad \partial_r (ru_{\theta})^2 = (1 - t)^{-2} \Psi(\mathbf{y}, s),$$

$$\partial_{x_3} (ru_{\theta})^2 = (1 - t)^{-2} \Phi(\mathbf{y}, s)$$

For self-similar coordinates

$$\mathbf{y} = (y_1, y_2) = \frac{(x_3, r - 1)}{(1 - t)^{1 + \lambda}}, \quad s = -\log(1 - t)$$

Self-similar Euler equation with boundary

Considering the Euler exterior to the cylindrical boundary

$$(u_r, u_3) = (1 - t)^{\lambda} \mathbf{U}(\mathbf{y}, s) = (1 - t)^{\lambda} (U_1(\mathbf{y}, s), U_2(\mathbf{y}, s)),$$

 $\omega_{\theta} = (1 - t)^{-1} \Omega(\mathbf{y}, s), \quad \partial_r (ru_{\theta})^2 = (1 - t)^{-2} \Psi(\mathbf{y}, s),$
 $\partial_{x_3} (ru_{\theta})^2 = (1 - t)^{-2} \Phi(\mathbf{y}, s)$

For self-similar coordinates

$$\mathbf{y} = (y_1, y_2) = \frac{(x_3, r - 1)}{(1 - t)^{1 + \lambda}}, \quad s = -\log(1 - t)$$

We obtain the self-similar equations

$$(\partial_{s} + 1)\Omega + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla\Omega = \Phi + \mathcal{E}_{1}$$

$$(\partial_{s} + 2 + \partial_{y_{1}}U_{1})\Phi + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla\Phi = -\partial_{y_{1}}U_{2}\Psi$$

$$(\partial_{s} + 2 + \partial_{y_{2}}U_{2})\Psi + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla\Psi = -\partial_{y_{2}}U_{1}\Phi$$

$$\Omega = \partial_{y_{1}}U_{2} - \partial_{y_{2}}U_{1} \qquad \text{div } \mathbf{U} = \mathcal{E}_{2}$$

Exist at least one λ , equations have **smooth** and **finite energy** solutions

Self-similar equation for Euler

$$\mathcal{E}_{1} = -y_{2}e^{-(1+\lambda)s} \frac{(y_{2}e^{-(1+\lambda)s} + 2)(y_{2}^{2}e^{-2(1+\lambda)s} + 2y_{2}e^{-(1+\lambda)s} + 2)}{(1+y_{2}e^{-(1+\lambda)s})^{4}} \Phi$$

$$\mathcal{E}_{2} = -e^{-(1+\lambda)s} \frac{U_{2}}{1+y_{2}e^{-(1+\lambda)s}} \quad \text{where } s = -\log(1-t) \longrightarrow -\infty$$

So long as $\lambda > -1$ then these errors act like decaying forcing.

$$(\partial_{s} + 1)\Omega + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla\Omega = \Phi + \mathcal{E}_{1}$$

$$(\partial_{s} + 2 + \partial_{y_{1}}U_{1})\Phi + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla\Phi = -\partial_{y_{1}}U_{2}\Psi$$

$$(\partial_{s} + 2 + \partial_{y_{2}}U_{2})\Psi + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla\Psi = -\partial_{y_{2}}U_{1}\Phi$$

$$\Omega = \partial_{y_{1}}U_{2} - \partial_{y_{2}}U_{1} \qquad \text{div } \mathbf{U} = \mathcal{E}_{2}$$

Euler blow-up = Bousinessq blow-up

$$\mathcal{E}_{1} = -y_{2}e^{-(1+\lambda)s} \frac{(y_{2}e^{-(1+\lambda)s} + 2)(y_{2}^{2}e^{-2(1+\lambda)s} + 2y_{2}e^{-(1+\lambda)s} + 2)}{(1+y_{2}e^{-(1+\lambda)s})^{4}} \Phi$$

$$\mathcal{E}_{2} = -e^{-(1+\lambda)s} \frac{U_{2}}{1+y_{2}e^{-(1+\lambda)s}} \qquad \text{where } s = -\log(1-t)$$

So long as $\lambda > -1$ then these errors act like decaying forcing.

$$(\partial_{s} + 1)\Omega + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla\Omega = \Phi + \mathcal{E}_{\mathbf{I}}$$

$$(\partial_{s} + 2 + \partial_{y_{1}}U_{1})\Phi + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla\Phi = -\partial_{y_{1}}U_{2}\Psi$$

$$(\partial_{s} + 2 + \partial_{y_{2}}U_{2})\Psi + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla\Psi = -\partial_{y_{2}}U_{1}\Phi$$

$$\Omega = \partial_{y_{1}}U_{2} - \partial_{y_{2}}U_{1} \qquad \text{div } \mathbf{U} = \mathcal{E}_{\mathbf{I}} \mathbf{0}$$

Equal to the self-similar equations for the 2-D Bousinessq equations

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = (0, \theta), \quad \text{div}(\mathbf{u}) = 0 \quad \text{and} \quad \partial_t \theta + \mathbf{u} \cdot \nabla \theta = 0$$

Self-similar equations

Steady self-similar equations for axisymmetric Euler with boundary (Bousinessq)

$$\Omega + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla \Omega = \Phi$$

$$(2 + \partial_{y_1} U_1)\Phi + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla \Phi = -\partial_{y_1} U_2 \Psi$$

$$(2 + \partial_{y_2} U_2)\Psi + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla \Psi = -\partial_{y_2} U_1 \Phi$$

$$\Omega = \partial_{y_1} U_2 - \partial_{y_2} U_1 \qquad \text{div } \mathbf{U} = 0$$

In addition, we impose

6. Solution smooth everywhere

- 1. U_1, Φ, Ω are odd in y_1
- 2. U_2, Ψ are even in y_1

Symmetry of the solutions

3. $U_2(y_1,0)=0$

- No-penetration condition
- 4. $\partial_{y_1} \Omega(0) = -1$ Rescaling constraint
- 5. $\nabla \mathbf{U}$, Φ and Ψ all vanish at infinity \longrightarrow Finite energy

Challenges to numerical method

Steady self-similar equations for axisymmetric Euler with boundary (Bousinessq)

$$\Omega + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla \Omega = \Phi$$

$$(2 + \partial_{y_1} U_1)\Phi + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla \Phi = -\partial_{y_1} U_2 \Psi$$

$$(2 + \partial_{y_2} U_2)\Psi + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla \Psi = -\partial_{y_2} U_1 \Phi$$

$$\Omega = \partial_{y_1} U_2 - \partial_{y_2} U_1 \qquad \text{div } \mathbf{U} = 0$$

Two big challenges:

to be determined by the constraint of solution

1. Governing equation involves ${\it unknown}$ parameter λ

(Numerical method is only efficient at solving fully-known equations)

2. Solution should be **smooth** everywhere

(Numerical method is hard to deal with the smoothness condition due to **discretization**)

Advantages of PINNs

Physics-informed Neural network for self-similar Euler equation with boundary

Updating variables:

b: biases $+ \lambda$: unknown in eqns

Optimization

Equation constraints $loss_f^{(k)} = \frac{1}{N_f^{(k)}} \sum_{i=1}^{N_f^{(k)}} f_k^2(\mathbf{y}_i, q(\mathbf{y}_i, \mathbf{w}, \mathbf{b}))$ (k = 1, 2, ..., 5)

 $q^{(j)}$: j-th output variable $q_i^{(j)}$: data of $q^{(j)}$ at $\mathbf{y} = \mathbf{y}_i$

 q_i . Gava or q

Loss

Challenges to numerical method

Steady self-similar equations for axisymmetric Euler with boundary (Bousinessq)

$$\Omega + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla \Omega = \Phi$$

$$(2 + \partial_{y_1} U_1)\Phi + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla \Phi = -\partial_{y_1} U_2 \Psi$$

$$(2 + \partial_{y_2} U_2)\Psi + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla \Psi = -\partial_{y_2} U_1 \Phi$$

$$\Omega = \partial_{y_1} U_2 - \partial_{y_2} U_1 \qquad \text{div } \mathbf{U} = 0$$

Two big challenges:

to be determined by the constraint of solution

1. Governing equation involves **unknown** parameter λ

(Numerical method is only efficient at solving fully-known equations)

2. Solution should be **smooth** everywhere

(Numerical method is hard to deal with the smoothness condition due to discretization)

1-D example - Burgers

Burgers' equation

$$u_t + uu_x = 0$$

Assuming the self-similar ansatz

$$u = (1 - t)^{\lambda} U\left(\frac{x}{(1 - t)^{1 + \lambda}}\right)$$

we obtain the self-similar Burgers' equation

$$-\lambda U + ((1+\lambda)y + U)\partial_y U = 0$$

Using a nice trick, the self-similar Burgers' equation can be implicitly solved:

$$y = -U - CU^{1 + \frac{1}{\lambda}}$$

for some constant C. In order to obtain a **smooth symmetric** self-similar solution, then λ must be chosen such that

$$\lambda = \frac{1}{2i+2}$$
 for $i = 0, 1, 2, \dots$

Non-smooth solution

Self-similar equation for Burgers: $f = -\lambda U + ((1 + \lambda)y + U)\partial_y U$

Impose symmetry: $y = -\operatorname{sgn}(y)|U| - \operatorname{sgn}(y)|U|^{1+\frac{1}{\lambda}}$

Large equation residues around the origin

Non-smooth solution

Self-similar equation for Burgers: $f = -\lambda U + ((1 + \lambda)y + U)\partial_y U$

Impose symmetry: $y = -\operatorname{sgn}(y)|U| - \operatorname{sgn}(y)|U|^{1+\frac{1}{\lambda}}$

Additional constraint for smooth solution $loss_s = [\partial_{xxx} f(x)]^2 \rightarrow 0$ around the origin

Smooth solution inferred

Self-similar equation for Burgers: $f = -\lambda U + ((1 + \lambda)y + U)\partial_y U$

Impose symmetry: $y = -\operatorname{sgn}(y)|U| - \operatorname{sgn}(y)|U|^{1+\frac{1}{\lambda}}$

Additional constraint for smooth solution $loss_s = [\partial_{xxx} f(x)]^2 \to 0$ around the origin

theoretical $\lambda = 0.5$ inferred $\lambda = 0.49995$ Very precise

Uniform higher-order derivatives everywhere

Challenges to numerical method

Steady self-similar equations for axisymmetric Euler with boundary (Bousinessq)

$$\Omega + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla \Omega = \Phi$$

$$(2 + \partial_{y_1} U_1)\Phi + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla \Phi = -\partial_{y_1} U_2 \Psi$$

$$(2 + \partial_{y_2} U_2)\Psi + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla \Psi = -\partial_{y_2} U_1 \Phi$$

$$\Omega = \partial_{y_1} U_2 - \partial_{y_2} U_1 \qquad \text{div } \mathbf{U} = 0$$

Two big challenges:

to be determined by the constraint of solution

1. Governing equation involves ${\it unknown}$ parameter λ

(Numerical method is only efficient at solving fully-known equations)

(Numerical method is hard to deal with the smoothness condition due to **discretization**)

Non-smooth solution for Euler (Bousinessq)49

Self-similar equations for axisymmetric Euler with boundary (Bousinessq)

Fixing
$$\lambda = 5$$

$$f_{1} = \Omega + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla\Omega - \Phi$$

$$f_{2} = (2 + \partial_{y_{1}}U_{1})\Phi + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla\Phi + \partial_{y_{1}}U_{2}\Psi$$

$$f_{3} = (2 + \partial_{y_{2}}U_{2})\Psi + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla\Psi + \partial_{y_{2}}U_{1}\Phi$$

$$f_{4} = \partial_{y_{1}}U_{1} + \partial_{y_{2}}U_{2}$$

$$f_{5} = \Omega - (\partial_{y_{1}}U_{2} - \partial_{y_{2}}U_{1})$$

Comparison with literature

Define
$$R = (y_1^2 + y_2^2)^{\frac{\alpha}{2}}$$
 and $\gamma = \arctan\left(\frac{y_2}{y_1}\right)$ with $\alpha = \frac{1}{1+\lambda}$

Chen-Hou '21 constructed an approximate self-similar solution for $\alpha \ll 1 \ (\lambda \gg 1)$

$$\Omega = -\frac{\alpha}{c} \left(\cos(\gamma)\right)^{\alpha} \frac{3R}{(1+R)^{2}}, \quad \Phi = -\frac{\alpha}{c} \left(\cos(\gamma)\right)^{\alpha} \frac{6R}{(1+R)^{3}}$$
for $\gamma \in [0, \frac{\pi}{2}]$ (or equivalently $y_{1} \geq 0$) and $c = \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \left(\cos(\theta)\right)^{\alpha} \sin(2\theta) d\theta$

Non-smooth solution for Euler (Bousinessq)51

Self-similar equations for axisymmetric Euler with boundary (Bousinessq)

Fixing
$$\lambda = 5$$

-0.04 ⁻ -20

 y_1

20 0

-0.05

-20

$$f_{1} = \Omega + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla\Omega - \Phi$$

$$f_{2} = (2 + \partial_{y_{1}}U_{1})\Phi + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla\Phi + \partial_{y_{1}}U_{2}\Psi$$

$$f_{3} = (2 + \partial_{y_{2}}U_{2})\Psi + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla\Psi + \partial_{y_{2}}U_{1}\Phi$$

$$f_{4} = \partial_{y_{1}}U_{1} + \partial_{y_{2}}U_{2}$$

$$f_{5} = \Omega - (\partial_{y_{1}}U_{2} - \partial_{y_{2}}U_{1})$$

-0.01

-20

20

20 0

-0.02

-20

 y_1

20 0

20

20 0

-0.05

20 0

Smooth solution for Euler (Bousinessq)

Self-similar equations for axisymmetric Euler with boundary (Bousinessq)

Additional constraint for **smooth** solution $loss_s = [\partial_x f(x)]^2 \to 0$ around the origin

Inferred
$$\lambda = 1.90$$
 (Luo-Hou $\lambda = 1.91$)

$$f_{1} = \Omega + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla\Omega - \Phi$$

$$f_{2} = (2 + \partial_{y_{1}}U_{1})\Phi + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla\Phi + \partial_{y_{1}}U_{2}\Psi$$

$$f_{3} = (2 + \partial_{y_{2}}U_{2})\Psi + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla\Psi + \partial_{y_{2}}U_{1}\Phi$$

$$f_{4} = \partial_{y_{1}}U_{1} + \partial_{y_{2}}U_{2}$$

$$f_{5} = \Omega - (\partial_{y_{1}}U_{2} - \partial_{y_{2}}U_{1})$$

Universality - other 1-D examples

Given a constant $a \in \mathbb{R}$, the **generalized De Gregorio** equations are

$$\omega_t + au\omega_x = \omega u_x,$$
 where $u = -\int_0^x (H\omega)(s) \, ds = -\Lambda^{-1}\omega$ (Hilbert transform)

Setting
$$U = -\Lambda^{-1}\Omega$$
 and $y = \frac{x}{(1-t)^{1+\lambda}}$, leads to the equations

$$\Omega + ((1+\lambda)y - aU)\partial_y \Omega + \Omega \partial_y U = 0$$

We assume Ω and U are odd and we fix

$$\partial_y \Omega(0) = 2$$

Literature review

Rigorous results:

- 1. The case a=0 is the Constantin-Lax-Majda equation. Explicit self-similar blow up solutions can be constructed Constantin-Lax-Majda '85
- 2. The case a=-1 is the Córdoba-Córdoba-Fontelos model, singularity formulation is known (Córdoba-Córdoba-Fontelos '05).
- 3. For a < 0, blowup (Castro-Córdoba '10).
- 4. For a > 0, a small, self-similar blow-up was proven by Elgindi '19.
- 5. The case a=1 is the De Gregorio equation. Self-similar blow-up was proven in Chen-Hou-Huang '19 via a computer assisted proof.

Numerical results:

Numerical results: In Lushnikov-Silantyev-Siegel '21, numerical self-similar solutions were found for $a \in [-1, 1]$ and beyond.

Generalized De Gregorio equation

$$f_1 = \Omega + ((1+\lambda)y - aU)\partial_y\Omega + \Omega\partial_yU$$

Equations:

$$f_2 = rac{dU}{dy} + ilde{H}\Omega$$
 (numerical Hilbert Transform)

Conditions:

$$\partial_y \Omega(0) = 2$$

 Ω and U are odd

Boundary condition constraints:

$$loss_c = \left[\frac{d\Omega}{dy}(y=0,\mathbf{w},\mathbf{b}) - 2\right]^2$$

w: weights

b: biases

Equation constraints (entire domain)

$$loss_f^{(k)} = \frac{1}{N_f} \sum_{i=1}^{N_f} f_k^2(y_i, \mathbf{w}, \mathbf{b})$$

 N_f : number of collocation points

Smoothness constraint (near origin)

$$loss_s = \frac{1}{N_s} \sum_{i=1}^{N_s} \left[\frac{df_1}{dy} (y_i, \mathbf{w}, \mathbf{b}) \right]^2$$

 N_s : number of collocation points around origin

Generalized De Gregorio equation

$$f_1 = \Omega + ((1+\lambda)y - aU)\partial_y\Omega + \Omega\partial_yU$$

Equations:

$$f_2 = rac{dU}{dy} + ilde{H}\Omega$$
 (numerical Hilbert Transform) (Zhou et. al. 2009)

Conditions:

$$\partial_y \Omega(0) = 2$$

 Ω and U are odd

Boundary condition constraints:

$$loss_c = \left[\frac{d\Omega}{dy}(y=0,\mathbf{w},\mathbf{b}) - 2\right]^2$$

w: weights

b: biases

Equation constraints (entire domain)

$$loss_f^{(k)} = \frac{1}{N_f} \sum_{i=1}^{N_f} f_k^2(y_i, \mathbf{w}, \mathbf{b})$$

 N_f : number of collocation points

Smoothness constraint (near origin)

$$loss_s = \frac{1}{N_s} \sum_{i=1}^{N_s} \left[\frac{df_1}{dy} (y_i, \mathbf{w}, \mathbf{b}) \right]^2$$

 N_s : number of collocation points around origin

Generalized De Gregorio equation

$$f_1 = \Omega + ((1+\lambda)y - aU)\partial_y\Omega + \Omega\partial_yU$$

Equations:

$$f_2 = rac{dU}{dy} + ilde{H}\Omega$$
 (numerical Hilbert Transform) (Zhou et. al. 2009)

Conditions:

$$\partial_y \Omega(0) = 2$$

 Ω and U are odd

Boundary condition constraints:

$$loss_c = \left[\frac{d\Omega}{dy}(y=0,\mathbf{w},\mathbf{b}) - 2\right]^2$$

w: weights

b: biases

Equation constraints (entire domain)

$$loss_f^{(k)} = \frac{1}{N_f} \sum_{i=1}^{N_f} f_k^2(y_i, \mathbf{w}, \mathbf{b})$$

 N_f : number of collocation points

Smoothness constraint (near origin)

$$loss_s = \frac{1}{N_s} \sum_{i=1}^{N_s} \left[\frac{df_1}{dy} (y_i, \mathbf{w}, \mathbf{b}) \right]^2$$

 N_s : number of collocation points around origin

Universality - other 2-D examples

The incompressible porous media (IPM) equations are written

$$\partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = 0$$
, $\operatorname{div} \mathbf{u} = 0$, and $\mathbf{u} + \nabla p = (0, \rho)$

where the 2D vector $\mathbf{u}(\mathbf{x},t)$ is the velocity and the scalar $\rho(x,t)$ is the density

we introduce $\phi = \partial_{x_1} \rho$ and $\psi = \partial_{x_2} \rho$ and assume self-similar ansatz

$$\mathbf{u} = (1-t)^{\lambda} \mathbf{U}(\mathbf{y}), \quad \Phi = (1-t)^{-1} \phi(\mathbf{y}) \quad \text{and} \quad \Psi = (1-t)^{-1} \psi(\mathbf{y})$$

with self-similar coordinates $\mathbf{y} = (y_1, y_2) = \frac{\mathbf{x}}{(1-t)^{1+\lambda}}$

We obtain the self-similar equations

$$(1 + \partial_{y_1} U_1)\Phi + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla \Phi = -\partial_{y_1} U_2 \Psi$$
$$(1 + \partial_{y_2} U_2)\Psi + ((1 + \lambda)\mathbf{y} + \mathbf{U}) \cdot \nabla \Psi = -\partial_{y_2} U_1 \Phi$$
$$\Phi = \partial_{y_1} U_2 - \partial_{y_2} U_1 \qquad \text{div } \mathbf{U} = 0$$

Smooth solution for IPM

Self-similar equations for IPM

Additional constraint for **smooth** solution $loss_s = [\partial_x f(x)]^2 \to 0$ around the origin

Inferred $\lambda = 1.03$

$$f_1 = (1 + \partial_{y_1} U_1) \Phi + ((1 + \lambda) \mathbf{y} + \mathbf{U}) \cdot \nabla \Phi + \partial_{y_1} U_2 \Psi$$

$$f_2 = (1 + \partial_{y_2} U_2)\Psi + ((1 + \frac{\lambda}{\lambda})\mathbf{y} + \mathbf{U}) \cdot \nabla \Psi + \partial_{y_2} U_1 \Phi$$

$$f_3 = \partial_{y_1} U_1 + \partial_{y_2} U_2$$

$$f_4 = \Phi - (\partial_{y_1} U_2 - \partial_{y_2} U_1)$$

Smooth self-similar solution at $\lambda = 1.03$

Uniform and small equation residues everywhere

Advantages of PINNs

Self-similar equation for Burgers: $f = -\lambda U + ((1 + \lambda)y + U)\partial_y U$

Impose symmetry: $y = -\operatorname{sgn}(y)|U| - \operatorname{sgn}(y)|U|^{1+\frac{1}{\lambda}}$

Summary

- * PINNs is a differential equation solver (giving continuous function)
- * PINNs solves equation with unknowns (as long as well-posed)
- * PINNs can deal with the smoothness constraint (find blow-up solution)

Future works

Theoretical: make a rigorous proof \Rightarrow Computer-assisted

Numerical: 1. find self-similar blow-up solution for Euler without boundary

2. find unstable solution for 2-D equations

Acknowledgements

Prof. Ching-Yao Lai

Department of Geoscience, Princeton University

Prof. Tristan Buckmaster

Department of Mathematics, Princeton University & Institute of Advanced Study

Prof. Javier Gómez-Serran

Department of Mathematics
Brown University &
Universitat de Barcelona

Charlie Cowen-Breen '22 Department of Mathematics, Princeton University

Ray (Ming-Ruey) Chou Department of Geosciences, Princeton University

Thank you and questions

Yongji Wang

yw1705@princeton.edu