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Navier-Stokes equations

The pair (u,p) solves the incompressible 3-D Navier-Stokes equations if

Pressure
du+ (u-V)u+ Vp =pAu, div(u) =0, and u(-,t) =ug

Momentum change Shear stress

for velocity u, pressure p and initial velocity ug. Here p is fluid viscosity
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Kuler equations

The pair (u, p) solves the incompressible 3-D Euler equations if

0
Ou+ (u-V)u+Vp=pgAy, div(u)=0, and u(-,t)=1up

for velocity u, pressure p and initial velocity ug.

Open Problem:

Does there exist smooth, finite energy initial condition Ug leading to a solution
blowing up in finite time?

-




FEuler equations

The pair (u, p) solves the incompressible 3-D Euler equations if

0
Ou+ (u-V)u+Vp=pgAy, div(u)=0, and u(-,t)=1up

for velocity u, pressure p and initial velocity ug.

Open Problem:

Does there exist smooth, finite energy initial condition Ug leading to a solution
blowing up in finite time?

du
e S u
1-D example dt

e =1



Blow-up solutions

The pair (u, p) solves the incompressible 3-D Euler equations if

0

du+ (u-V)u+ Vp = gAy, div(u) =0,

for velocity u, pressure p and initial velocity ug.

and u(-,t) =ug

t

—u = e° Solution:

(exponential increase)

u — o0 only when t — o0

10°

Open Problem:
Does there exist smooth, finite energy initial condition
leading to a solution blowing up in finite time? U

du

e

1-D example dt
0l
=1 101 0
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Blow-up solutions

The pair (u, p) solves the incompressible 3-D Euler equations if

0

du+ (u-V)u+ Vp = gAy, div(u) =0,

for velocity u, pressure p and initial velocity ug.

and u(-,t) =ug

105 T r—r—
Open Problem: —u = e Solution:
Does there exist smooth, finite energy initial condition (exponential increase)
leading to a solution blowing up in finite time? U
u — o0 only when t — o0
du = Jz faster than exponentia] ?
1-D example dt
e 100 — Akl Al
u(0) = 1 107 10° 10"



Blow-up solutions

The pair (u, p) solves the incompressible 3-D Euler equations if

0

du+ (u-V)u+ Vp = gAy, div(u) =0,

for velocity u, pressure p and initial velocity ug.

Open Problem:

Does there exist smooth, finite energy initial condition
leading to a solution blowing up in finite time?

du Jz

1-D example gt
e =1

8
and u(-,t) =ug
105 — t. :
u=e | (Blow-up)
—u=1/(1-1)
U | u—oowhent=1

(Singularity)




Blow-up solutions 9

The pair (u, p) solves the incompressible 3-D Euler equations if

0
Ou+H(u-V)uH Vp = gAy, div(u) =0, and u(-,t)=1ug
Nonlinearity
for velocity u, pressure p and initial velocity ug.

10° ————— .
Open Problem: —y = et (Bl )
_ ow-up
Does there exist smooth, finite energy initial condition —u=1/(1-1)
leading to a solution blowing up in finite time? U I u— oo whent—=1
Nonlinearity P (Singularity) !
du 2 / :
1-D example dt :
= 10° e
u(0) = 1 1072 107 10° 10



Kuler equations

The pair (u, p) solves the incompressible 3-D Euler equations if

0
Ou+H(u-V)uH Vp = gAy, div(u) =0, and u(-,t)=1ug

Nonlinearity
for velocity u, pressure p and initial velocity ug.

Open Problem:

Does there exist smooth, finite energy initial condition Ug leading to a solution
blowing up in finite time?

If it does exists » Local velocity goes infinity
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Kuler equations “

The pair (u, p) solves the incompressible 3-D Euler equations if

0
Ou+H(u-V)uH Vp = gAy, div(u) =0, and u(-,t)=1ug
Nonlinearity
for velocity u, pressure p and initial velocity ug.

Open Problem:

Does there exist smooth, finite energy initial condition Ug leading to a solution
blowing up in finite time?

If it does exists » Local velocity goes infinity

Numerical challenge: how to find the blow-up solution if it exits



Physics-informed neural networks

(PINNSs)

Raissi et. al. (2019), | Comp.Phys., 378
Karniadakis et. al. (2021), Nat. Rev. Phys., 3



Outlines

1. What is Physics-informed Neural Networks (PINNSs)

* Basic and key components
e Understand PINNs from the mathematics point of view

e Comparison with classical numerical scheme

2. Why can PINN:ss find self-similar blow-up solutions

e Advantages of PINNs over classical numerical scheme
e Steps to set up the PINNs

* Robustness and universality of PINNs
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Neural network 14

Karniadakis et. al. (2021), Nat. Rev. Phys., 3
Fully-connected Neural network

0] oe e o (0 0]

g Oe o o O )
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° o o o / Uu
g Oe ¢ ¢ O O'/
o) Oe o ¢ O 0]

Function U (QE )

o

Output

Input



Neural network 15

Karniadakis et. al. (2021), Nat. Rev. Phys., 3
Fully-connected Neural network

Neuron

(2-. o o (.7 o
5. @lhe
y u ’ Weights
l
Function U (Qj) w2 + 5" (both are free parameter)

T

Biases



Neural network

16

Karniadakis et. al. (2021), Nat. Rev. Phys., 3
Fully-connected Neural network

Oe ¢ ¢ O o)
Activation function (nonlinearity)
Function U ( aj) Common choice o (wgo)az + b§°>)
gtk — tanh(s) T
glx) =sm(z)

Output of a neuron



Neural network 17

Karniadakis et. al. (2021), Nat. Rev. Phys., 3
Fully-connected Neural network

Sum of the outputs from previous layer

l

> 1 0
Function U (ZIZ') o (Z w§i) o (’wz( )z + bgo)) gie bg-”)
=i

T

Output of a neuron in the second layer




Neural network 1

Fully-connected Neural network

g ge o e

0] Oe o o
® ()

()
o) Oe o o
o) Oe o o

Function U( ) Zwlk 0<Zw(” . ( (

o) 0

: 7

w: weights b : biases

s

(free parameters to be trained)

=

Karniadakis et. al. (2021), Nat. Rev. Phys., 3

S 0l o (0l +50) 1 bgl>> ) s bw) e

o(x): activation function

T

(fixed and selected by users)



Neural network 19

Karniadakis et. al. (2021), Nat. Rev. Phys., 3
Fully-connected Neural network

ge o e o

0'0 o o o
[ ]
[ ]

Oe o o 7

Oe o o

1 0 0 1 n . . .
u(z) w0 ( ( w;; (’w( 'z +b; )) + 0} )> ) + ;" Universal function approximator

w: Welghts b : biases  o(x): activation function Hornik et. al. (1989), Neural Netw. 2



Neural network

Fully-connected Neural network

20

Fourier series: u(x,wy,,b

ansm e =0

n=0
ge o e o
0'000 o
°
°
Oe o o o)
Oe o o 0]

> M( (s <>))

Universal function approximator
w: Welghts b : biases

o(x): activation function Hornik et. al. (1989), Neural Netw. 2



Neural network for regression 2

Karniadakis et. al. (2021), Nat. Rev. Phys., 3

u(z) = sin(mx)

Fully-connected Neural network

o) oe o o (0 o)
o Oe o o O 0}
° °
o /
0} Oe ¢ o O 0}
o) Oe o ¢ O 0]

0.8

06

04F

0.2F

— Ground truth |
- - NN approx.
X Sample data

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ul — Zwl(,?)a ( o (Z wﬁ) o (wgo)x 4 b,,(;o)) e b;”) ) 1 bl(n)
j=1 i=1
Updating variables: W: weights b : biases

ik i

Optimization <

eI O ) )

Gradient descent : : : ;
blrllE sl n VbJ(ZC,W(Z), b(@))

w(@ b : value at the i-th iteration n : learning rate

V
Loss

data‘elfuat z =2,

Cost function: mean squared error
e
J:’U7W7b ZZOSS = ’U,ZCZ',W,b —’U,(d)2
( ) A= ;[ ( ]



Physics-informed neural networks 2

Karniadakis et. al. (2021), Nat. Rev. Phys., 3
Fully-connected Neural network

Physical laws

o ge e ¢ O o I (governing equation)

g Oe o o O )

. - 3 - 0%u _|_ 28u
° [ ° ° / 033 —) f = 81’2 8:}5 u
0} Oe ¢ o O 0}
62
o Oe ¢ ¢ O o @
N
(n) @F 00 a0 (n) Data loss: 10554 = 3 i[“(f’%‘v w,b) — ;"
Ul — Zwlk Pul G ij’i o (wz 45 e A0 ) — bj e Ny s
=l =1l
Updating variables: W: WelghtS b : biases N, Equation loss
1
\ T / ! lossy = Ff;fQ(ij,U(xjaw,b))
Optimization < Loss - =
with) — w® _ 5 v J(z, w® b)) Cost function: data + equation loss

Gradient descent . . =
BE 0 e S Wb
J(x,w,b) = lossq + lossy

w(@ b : value at the i-th iteration n : learning rate



Physics-informed neural networks 23

Neural network for regression ( with data only)

B S S S S D S S S S S0 S S

® Finite data points (evaluate difference between NN and data)

ou
Physics-informed Neural network — f = e U Differential equation solver
X
@ < ¢ < < < - < oo C e oo
2 —l
X Infinite collocation points (evaluate equation balance)

& Only one data point (boundary condition 1. e. u(0) = 1)



Physics-informed neural networks 2

How does PINN evaluate the differential equation?

How does it different from classical numerical method?

Physics-informed Neural network — f = e U Differential equation solver
L

N AV A4 NN AV NN N e SN/ INC NZ A4 NA >< AV > a’/‘
FENTEEEA N /\ LN L SN Y NI NG /\ /\ /\ /\

X Infinite collocation points (evaluate equation balance)

& Only one data point (boundary condition 1. e. u(0) =1)



Differential equations

(derivatives)
du
Difficult mea = 1]
ffi Yy dZU

Ditferential equations

Numeric

PINNs

Algebraic equations

25



Numerical method

du

%:

Finite difference

%  Boundary condition %(0) =1

Differential equation »  Algebraic equation

Discretized points

/

du(z,—1)

U — o)

>
h: step size

e du

z =t =

Finite difference

o0 0 0 090 ¢ ¢ 0 06 0

Up — Up—1

= Unp—1

h

algebraic equations

Tp = Tp-1—h Output: value at each discretized points

26



Differential equations

(derivatives)
du
Difficult mea = 1]
ffi Yy dZU

Ditferential equations

Numeric PINNSs

(Finite difference)

\ 4

Algebraic equations

27



Physics-informed neural networks 28

Fourier series: 1-hidden layer network

N
s
u(x) ;w sm(Lnaz—l— )
Elementary base function: sin(x)

du N or 2m
@(CI}) = Z ~ MWr €O8 (fna: + bn)

n=0

Explicit expression for its exact derivative

l

Evaluate the derivative
— (no truncation error)

Truncation error

Output: a continuous function



Physics—inf()rmed neural networks 2

N
Fourier series: u(x Z Wy, sin (—m; +b ) Multi-layer Neural network

o g e e o o

O
o g e e g o
[ ® o [ ]
[ ] L L [ ] /
02 O e e 0} g
o g e e o o

Zwlkz . ( (Z w(l) <w(0):c 4 b(0)> + b§1)> ) + bl(”)
1-hidden layer network w: Welghts b : biases  o(x): activation function
W1 W2 i
_— O- > O' oooooooooo O- — y

dy dy da,, 1| |das||day| — each derivative is known exactly

Glhranile = —
dx dan—1 | |dan—2 dai| | dx Automatic differentiation




Comparison between two methods =

o e o A0
o R - 8 Classical numerical scheme
[ ]
[ } o [ }
A1) Ul
0 ge o o) ~
dx T h
0} goe e o)

Truncation error

PINNSs Numerical

Automatic differentiation Finite difference

No truncation error Has truncation error

Continuous function Discretized points



Comparison between two methods =

02 oe e o)
o ge o [ O Classical numerical scheme
[ ]
[ } o [ }
A1) Ul
0 ge o o) ~>
dx T h
0} oe o o)

Truncation error

PINNs Numerical

Automatic differentiation Finite difference
No truncation error Has truncation error
Continuous function Discretized points
Trapped in local minimal Fast convergence rate
Higher computational cost Computational etficient
O(min) For a linear ODE 0(0.1) sec

O(hour) For a linear PDE O(10) sec



Comparison between two methods =

o oe e o)
o) oe e 0l
)

° ) °
o e e o)
o oe e o)

Classical numerical scheme

du(x, - 1) - Up

dx h

T

Truncation error

PINNs Numerical

Automatic differentiation
No truncation error

Continuous function

Finite difference
Has truncation error

Discretized points

Trapped in local minimal
Higher computational cost

Newly-developed method

Fast convergence rate
Computational etficient

Well-developed and documented



Why is PINN able to find

self-similar blow-up solutions?



Incompressible Euler equation

The pair (u,p) solves the incompressible 3-D Euler equations if

ou+ (u-Viu+Vp=0, div(u)=0, and wu(-,t)=1ug

for velocity u, pressure p and initial velocity ug.

Open Problem:

Does there exist smooth, finite enerqy initial data g leading to a singularity in finite time?

X3
Under axi-symmetry, the equations become A
wey\ 1 2 P
(at = urafr - u38:133) (7) S ,r_48w3 (TUIQ) X3 Axial

(01; == urc?,r —+ Ugaxz))) (TU@) =)

Oy U, + s -0 e — L Wat—0,
r

where (u,, ug, us) is the velocity in cylindrical coordinates and wy is the angular
component of the vorticity (curl of the velocity).

34



l.uo-Hou Scenario

1 '
Inside a cylindrical o

container, the top and N
bottom halves of a fluid ._
rotate in opposite directions. :

2

These initial conditions lead

to the formation of more

I
complicated currents that Axis of —> Computer simulations suggest that vorticity —
symmetry (a measure of rotation) blows up along
cycle up and down. the boundary of the cylinder, where

opposing flows meet.

Luo-Huo 14 provided compelling numerical evidence for singularity formation in
this setting (growth by a factor of 3 x 10%). The numerics suggest an asymptotic
self-similar scaling at the time of singularity:.

35



Sell-similar Euler equation with boundary =

Considering the Euler exterior to the cylindrical boundary

(u"“7u3) = (1 i t)AU(Y7 8) = (1 £ t)A(Ul(Y7 8)7 U2(Y7 8))7
Wp — (1 = t)_lg(Y7 8)7 a?“ (Tu9)2 = (1 2 t)_2\Ij(Y7 3)7
Oz, (rug)” = (1 — ) 2d(y, s)

For self-similar coordinates

Yy = (y1,y2) = 25163—72)_13’ s = —log(1 —t)
e
w

e — -

,C




Self-similar Euler equation with boundary

Considering the Euler exterior to the cylindrical boundary

(’LLT, US) (1 e t)AU(YJ ) (1 =5 t)A(Ul (Y7 8)7 U2(Y7 8))7
== (1 = t) Q(Y? 8)7 a?“ (Tu9)2 = (1 i t)_2\Ij(Y7 3)7
Oz, (rug)” = (1 — ) 2d(y, s)

For self-similar coordinates

Yy = (y1,y2) = 25163—72)_1:2’ s = —log(1 —t)

We obtain the self-similar equations

(0: + 1)+ (1 +A)y +U) - VQ =2 + &
(Os +2+6‘y1U1) +(1+PN)y+U) - VO =-0,,U¥
(0s +2+ 0,09+ ((L+P)y +U) - V¥ =-0, U,
@=—0 0 0 divU = &

Exist at least one A, equations have smooth and finite energy solutions




Self-similar equation for Euler s

g lme g e e )

()
(il es bain):

&1 |E —yse

- . Us
S ) where s = —log(l1 —t) —» —00

So long as A > —1 then these errors act like decaying forcing.

|

(B: + D+ (1+ Ny +U)-VQ =0 H&

(0s +24+0,,U1) 2+ (1+Ny+U)-V®=-09, U,V

(0s+2+4+0,U) 0+ ((1+Ny+U) - V¥ =-9,U,®
= 00Uy — G0 div U ={ &,




Euler blow-up = Bousinessq blow-up =

oo e

(1 4 yoe=(1+A)s)4 2

i — =5

U
aiadis —(14+XM)s 2
Es e e

where s = —log(1 — ¥)

So long as A > —1 then these errors act like decaying forcing.

|

(0s + D+ (1 + Ny +U) V=0 + &

(0s+2+ 8, U)®+ (1 + Ny +U)-V® = -3, U, ¥

(0s+2+4+0,U) 0+ ((1+Ny+U) - V¥ =-9,U,®
Q= 8,,Us — 8,,U divU = & 0

1

Equal to the self-similar equations for the 2-D Bousinessq equations

u+u-Vu+Vp=(0,0), div(u)=0 and f+u-VO=0



Self-similar equations w0

Steady self-similar equations for axisymmetric Euler with boundary (Bousinessq)

Q+(L+Ny+U)-VQ =53

(2+ 8, U)®+ (1+ ANy +U) -Vl =—9, Us¥

© 0 Ul ey Y O e
O -0 -0 U divU =0

In addition, we impose

6. Solution smooth everywhere

1. Uy, D,€) are odd in 1

5 T T : > >  Symmetry of the solutions
. Ug, ¥ are even 1n ¥

3. Us(y1,0) =0 »  No-penetration condition
A g, 0y == »  Rescaling constraint

5. VU, @ and V¥ all vanish at infinity = Limiicicnerpy




Challenges to numerical method g

Steady self-similar equations for axisymmetric Euler with boundary (Bousinessq)

Q-+ (1+Ny+U) . VQ=25

240, U)®+ (1+Ny+U) VO =—-9, U,¥

2@ W F il sy s vl 0 D
Q=8,,Us —8,,U divU =0

Two big challenges: to be determined by the constraint of solution

1. Governing equation involves unknown parameter A

(Numerical method is only efficient at solving fully-known equations)

2. Solution should be smooth everywhere

(Numerical method is hard to deal with the smoothness condition due to discretization)



Advantages of PINNs G

Physics-informed Neural network for self-similar Euler equation with boundary

Fully-connected neural network

o) O e o o) (0}
o) O e o o g
° °
° °
o) O e o 0} 0}
0 O e o o) 0

o (Z W ( (Z oy + b;1>> ) T vAaTs
j=1 i=1 i=1

w: weights
b: biases

s

Updating variables:

Automatic

differentiation

Optimization <

Self-similar Euler equations

Boundary cond(it)ion constraints:
NI
. s .
)= Gy D
lOSSC NC(J) Zl[q (Y’MW)b) Q’L ]
(1=12,..5)
+ A: unknown in eqns Equation constraints
T
(o 2 :
| lOSSf —— N(k) Z fk: (YZ7Q(y’L)W7b))
I e e
Loss =

q(j ) 7-th output variable
qgj): data of ¢U) at y =y,

PINN solves the first challenges inherently



Challenges to numerical method @

Steady self-similar equations for axisymmetric Euler with boundary (Bousinessq)

U,
20 U & (f
(2+0,,U2)¥ + ((1

1+ M)y +U)-VQ=97
1+ Ay +U) - V® = —§,, U, U
e )\)y =1 U) YAl — —8y2U1<I>

Two big challenges: to be determined by the constraint of solution
1. Governing equation involves unknown parameter A V

(Numerical method is only efficient at solving fully-known equations)

2. Solution should be smooth everywhere

(Numerical method is hard to deal with the smoothness condition due to discretization)




1-D example - Burgers

Burgers’ equation
ur + vu, =0

Assuming the self-similar ansatz

M =)

we obtain the self-similar Burgers' equation

NN =0

Using a nice trick, the self-similar Burgers' equation can be implicitly solved:

i
N A0 G
for some constant C'. In order to obtain a smooth symmetric self-similar solution,

then )\ must be chosen such that

1

A= —
21 + 2

fori=01,2,...

—



Non-smooth solution 15

Self-similar equation for Burgers: f = —AU 4+ ((1 4+ Ny + U) 8,U
Impose symmetry: y = —sgn(y)|U| — sgn(y)\U\H%

4+ — Exact

- - PINN

2 -1 0 1 2 ) -1 0 1 2
Y Y

Large equation residues around the origin

cx107 | / 0.2

0.1
o3 f
ayg oN
-0.1
_1 ‘0.2
- -1 0 1 2 -2 -1 0 1 2



Non-smooth solution 16

Self-similar equation for Burgers: f = —AU + ((1+ ANy + U)o,U

Impose symmetry: y = —sgn(y)|U| — sgn(y)\U\H%

A=04

05¢
U
0 L
0.5r__ Exact
- - PINN
-1 L L
-2 -1 0 1 2
Yy
«1077

Additional constraint for smooth solution

lossei—1d . f (:1:)]2 — 0 around the origin

0.2
v
0.1
o3 f
3
oy 0
-0.1
-0.2 :
-2 -1 0 1 2



Smooth solution inferred 7

Self-similar equation for Burgers: f = —AU + ((1+ ANy + U)o,U

Impose symmetry: y = —sgn(y)|U| — sgn(y)\U\H%

"— Exact (A = 0.5)
- - PINN (inferred \)

%1078

Y

Additional constraint for smooth solution

lossei—1d . f (:1:)]2 — 0 around the origin

theoretical A = 0.5
inferred A = 0.49995

Very precise

Uniform higher-order derivatives everywhere

o k-

%1072

572 _
y® ol _




Challenges to numerical method .

Steady self-similar equations for axisymmetric Euler with boundary (Bousinessq)

U,
20 U & (f
(2+0,,U2)¥ + ((1

1+ M)y +U)-VQ=97
14+ Ny +U) -V = -9, U
e )\)y =1 U) YAl — —8y2U1<I>

Two big challenges: to be determined by the constraint of solution
1. Governing equation involves unknown parameter A V

(Numerical method is only efficient at solving fully-known equations)

2. Derived solution should be smooth everywhere

(Numerical method is hard to deal with the smoothness condition due to discretization)



Eixing -\ —.5

Self-similar equations for axisymmetric
Euler with boundary (Bousinessq)

Non-smooth solution for Euler (Bousinessq)+

i=0+((1+N)y+U)-VQ—- &

fa=0240,U1)2+ (1+Ny+U) -V®+9,,U¥

f3=02+0,U0)0+ ((1+AN)y+U) V¥ +9,,U;®

e 8y1U1 S5 ayQUQ

f5 =0 —(0,Us — 9,,U1)

Non-smooth self-similar solution at A = 5

TN

1

20

0

Q

20
20 10
0

Yo

1

0.5

04

-0.5 1

-1
-20

=

20
! 10
0

20 O
(! Y2

)

14
0.5+

0-
-0.5 1

14
-20

20
50 10
0

20 O
Yo



Comparison with literature 0

&
2

Define R= (y% T y%) and < = arctan (%) with o = o

Y1 1
Chen-Hou 21 constructed an approximate self-similar solution for a <1 (A > 1)

0 — —% (cos(v))" § iRR)z’ e _% el (1 iRR)?’

for v € [0, Z] (or equivalently y; > 0) and ¢ = 2 fog (cos(9))” sin(260) db

A=2D) Chen-Hou PINN A=215 Chen-Hou

0.2 ~4 0.2 1
0.1 0.1 4
() ()

0 1 0
-0.11 -0.11
-0.2 4 20 -0.2

\\%

-20 -20

0
0
— Cheanou I I I I I — Cheanou
02 B — PINN 7 02r — — PINN |
0.1} |
0 at yo = d at yo =0
of - o
0.1
A =05 (a=0.167) - A=15 (a=0.167) M
-0.2¢ 0.2} =
20 -15  -10 5 0 5 10 15 20 20 -15 -10 -5 0 5 10 15 20




Non-smooth solution for Euler (Bousinessq)s

T — O LAy SO
Self-similar equations for axisymmetric

Euler with boundary (Bousinessq) Jo=2+0,,U)2+ ((L+ Ay +U) V& + 9, Up¥

f3=02+0,U0)0+ ((1+AN)y+U) V¥ +9,,U;®
Eixing -\ —.5 =0, a >

f5 =0 —(0,Us — 9,,U1)

Non-smooth self-similar solution at A = 5

TN

Q

1 -

0.5+

04

-0.5 1

-1
-20

)

-

20
i 10
0

20 O
Y2

14
0.5+ ¢

04
-0.5

-1
-20

20
50 10
0

20

Y1 Y1 52 Y Y2
Large equation residues around the origin
- / y l k \m\
f l 0.05 - 0.005 4 l l

Ja

0-
-0.005

-0.01 -’\’// 20 -0.
-20 10 -
0

-0.02 +

0.04 \'\/20
) '_20’ 10
0

v

-0.05 ‘\’\/ 20
-20 10
0

20 0
Yo

-0.05 -\J\/ 20 ~\’\/ 20
-2 10 10
0 0 -

20
Y1 Y1 Y2



Smooth solution for Euler (Bousinessq) =

Self-similar equations for axisymmetric A9 (s v+ U VO -0
Euler with boundary (Bousinessq)

fo=02+0,,U1)2+ (1+Ny+U)- -V +9,U¥

Additional constraint for smooth solution fa=(2+8,U)0+(1+Ny+U) - VU +3,0,®

loss, = [0, f(x)]* — 0 around the origin

Ja= 8y1U1 s ay2U2
Inferred \ = 1.90 fs =Q—(0,,Us — 9,,U1)

(Luo-Hou A =1.91)

Smooth self-similar solution at A = 1.90
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Uniform and small equation residues everywhere
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Universality - other 1-D examples

Given a constant a € R, the generalized De (regorio equations are

Wt + QUW; = Wiy, where u = —/ (Hw)(s)ds = —A'w
0

T

(Hilbert transform)

X

Setting U = —A"1Q and y = T

leads to the equations

QA+ (1 + Xy —all)d,Q-90,U — 0

We assume €2 and U are odd and we fix

9,9(0) = 2

53



l.iterature review 54

Rigorous results:

I

The case a = 0 is the Constantin-Lax-Majda equation. Explicit selt-
similar blow up solutions can be constructed Constantin-Lax-Majda ’85

The case a = —1 is the Cordoba-Cordoba-Fontelos model, singularity
formulation is known (Cérdoba-Cérdoba-Fontelos '05).

. For a < 0, blowup (Castro-Cordoba '10).
. For a > 0, a small, selt-similar blow-up was proven by Elgindi ’19.

. The case a = 1 is the De Gregorio equation. Self-similar blow-up was

proven in Chen-Hou-Huang 19 via a computer assisted proof.

Numerical results:

Numerical results: In Lushnikov-Silantyev-Siegel '21, numerical self-similar so-
lutions were found for a € |[—1, 1] and beyond.



Generalized De Gregorio equation =

g »y fi =4 (1 + Ny —al)8,Q + Q8,U
- -4 Equations: e
fQ B HS) (numerical Hilbert Transform)
U |
o ce o [ O
Conditions: a2 () and U are odd
o ce o [ O o
Boundary condition constraints: Equation constraints (entire domain) Smoothness constraint (near origin)
loss. = @( =0,w,b) —2 : (k) 1 2 l el o~ [dh , W, b :
c dy Y y W lossf = Ff Zlfk (yi, w,b) 0855 = E ; @(qu, )
w: weights b : biases N¢: number of collo_cation points Ns: number of collocation points around origin
1 : I : N T T T
— Exact 3 Exact
L - PINN 2+-- PINN -
0.5f i
a =0 o a= '
9) U
0 Or I
Exact solution 1t Exact solution i
-0.5 2y 1
Qy) = 2 U(y) = 2arctany -
_1 1 1 1 -3 1 1 ] N
-20 -10 0 10 20 -20 -10 0 10 20



Generalized De Gregorio equation =

d »y ' 9 fi =4 (1 + Ny —al)8,Q + Q8,U
- -4 Equations: e
fQ = d— HS) (numerical Hilbert Transform)
y T | (Zhou et. al. 2009)
o ce o [ O
Conditions: a2 () and U are odd
o ce o | O o
Boundary condition constraints: Equation constraints (entire domain) Smoothness constraint (near origin)
dQ - Pl 1 e g 2
co 2z (o) . 2 B Y1,
loss, 7 (y=0,w,b) —2 loss;” = Ff Zlfk (yi, w,b) losss = N, ; [dy (y27W7b)]
w: weights b : biases N¢: number of collo_cation points Ns: number of collocation points around origin
3 I T T I T T
6
2 ' 4
1f § 2
0 U
0 0
—a=—1 —a=-1
-1t —a=0 - _2 —a =0 i
—a = 0.5 -4 —a = 0.5 i
_2 - —a = 06887 - e — 06887
3 L L '()\ — _1) -6 1 1 g)\ — _1) |
-20 -10 0 10 20 -20 -10 0 10 20



Generalized De Gregorio equation =

o
g y =0 — e A G
- -4 Equations: e
fQ = d— HS) (numerical Hilbert Transform)
y T | (Zhou et. al. 2009)
o ce o | O
Conditions: a2 () and U are odd
o i o o
Boundary condition constraints: Equation constraints (entire domain) Smoothness constraint (near origin)
co 2z (o) . 2 B Y1,
loss T (y=0,w,b) —2 lossy = N, ka (yi, W, b) losG: — N 2; {dy (yz,w,b)]
i=1 =
w: weights b : biases Ny: number of collocation points Ns: number of collocation points around origin
3 : : , A Versus a
1.5F ' ' ' .
2r ] 1t .
20 min (each point)
1F . 0.5 .
Q Yo
—a=—1 -0.5f
-1 —a=0 i
, —a=05 7
] —a = 0.6887 -1.5 O PINN inversion
3 . . ,()‘ — _1) P _—Results from Lushnikov et. al
-20 -10 0 10 20 P 0.5 0 0.5 1
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Universality - other 2-D examples

The incompressible porous media (IPM) equations are written

Op+div(pu) =0, divu=0, and u+ Vp=(0,p)

where the 2D vector u(x, t) is the velocity and the scalar p(x,t) is the density

we introduce ¢ = 0,,p and 1) = 0,,p and assume self-similar ansatz

u—_ (@ U@, o=@ 7 oly) and U (1 Gy

X
1— )i

with self-similar coordinates 'y = (y1,¥2) = (

We obtain the self-similar equations

(140,,U1)2+((1+Ny+U) - V& =-9,U,¥
(14 0,U)¥+((1+Ny+U) V¥ =-9,U;9
<I>:8y1U2—8y2U1 divU =0
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Smooth solution for IPM 5

Self-similar equations for IPM fi=1+4+0,U1)2+(1+N)y+U)-V&+ 09, UV

=(1+09,Us)V 4+ (1+ Ny +1U) VU +9,,U,®
Additional constraint for smooth solution f2 = ( y:U2) ( )y ) s

loss, = [0, f(x)]* — 0 around the origin =0 e

e
L Ja (0y, Uz — 0y, Un)

Smooth self-similar solution at A = 1.03
10" 10+ ‘ 11
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Uniform and small equation residues everywhere
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0 L
051 — Exact (A = 0.25)
- - PINN (inferred \)
1 - ' '
-2 -1 0 1 2

Advantages of PINNs

Self-similar equation for Burgers: f = —AU + ((1+ ANy + U)9,U

60

Impose symmetry: y = —sgn(y)|U| — sgn(y)\U\H%

Stable solution

A = 0.49995

O L
051 — Exact (A = 0.5)
- - PINN (inferred \)
1 - -
-2 -1 0 1 2
y

Unstable solution

A = 0.25007

6 — Exact (.)\ =0.5) Stable solution
- - PINN (inferred A
53U 4 |
o A = 0.49995
| 1
L _
2
_D -1 1 2

- - PINN (inferred \)

61 — Exact (l)\ = 0.25) |

Unstable solution




Summary g

» PINNSs is a differential equation solver (giving continuous function)

* PINNs solves equation with unknowns (as long as well-posed)

* PINNs can deal with the smoothness constraint (find blow-up solution)

Future works

Theoretical: make a rigorous proof = Computer-assisted

Numerical: 1. find self-similar blow-up solution for Fuler without boundary

2. find unstable solution for 2-D equations
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