The de Rham / Spencer Double Complex and the Geometry of Forms on Supermanifolds

Simone Noja

TQFT Club @ Lisbon - May 25, 2022

Motivations & Premises

Geometry VS Supergeometry: Why Forms?

- Geometry: well known facts:
 - geometric theory of differential forms related to integration on manifolds;
 - many applications to physics, now become standard;

Geometry VS Supergeometry: Why Forms?

- Geometry: well known facts:
 - geometric theory of differential forms related to integration on manifolds;
 - many applications to physics, now become standard;
- Supergeometry: less known facts:
 - richer mathematical theory of forms related to integration on supermanifolds & having quite unique features;
 - important applications to physics (e.g. SUSY theories / BV quantization...)

Geometry VS Supergeometry: Why Forms?

- Geometry: well known facts:
 - geometric theory of differential forms related to integration on manifolds;
 - many applications to physics, now become standard;
- Supergeometry: less known facts:
 - richer mathematical theory of forms related to integration on supermanifolds & having quite unique features;
 - important applications to physics (e.g. SUSY theories / BV quantization...)

- S.L. Cacciatori, S. N., R. Re, The Universal de Rham / Spencer Double Complex on a Supermanifold, Doc. Math. 27, 489-518 (2022)
- S. Noja, R. Re, A Note on Super Koszul Complex and the Berezinian, Ann. Mat. Pura Appl. (1923 -) 201 (1), 403-421 (2022)
- S. N., On the Geometry of Forms on Supermanifolds, ArXiv:2111.12841
- S. N., On BV Supermanifolds and the Super Atiyah Class, ArXiv:2202.08136

de Rham Complex over a Manifold

In a **commutative** setting the de Rham complex of a manifold M is bounded from above by the dimension of the manifold

$$0 \longrightarrow \mathcal{O}_M \longrightarrow \Omega^1_M \longrightarrow \ldots \longrightarrow \Omega^{\dim M}_M \longrightarrow 0$$

...this is so for differential 1-forms are anticommuting.

de Rham Complex over a Manifold

In a **commutative** setting the de Rham complex of a manifold M is bounded from above by the dimension of the manifold

$$0 \longrightarrow \mathcal{O}_M \longrightarrow \Omega^1_M \longrightarrow \ldots \longrightarrow \Omega^{\dim M}_M \longrightarrow 0$$

...this is so for differential 1-forms are anticommuting.

Top-Forms and Integration over *M*

• You can integrate sections of $\Omega_M^{\dim M}$ over M.

de Rham Complex over a Manifold

In a **commutative** setting the de Rham complex of a manifold M is bounded from above by the dimension of the manifold

$$0 \longrightarrow \mathcal{O}_M \longrightarrow \Omega^1_M \longrightarrow \ldots \longrightarrow \Omega^{\dim M}_M \longrightarrow 0$$

...this is so for differential 1-forms are anticommuting.

Top-Forms and Integration over *M*

- You can integrate sections of $\Omega_M^{\dim M}$ over M.
- More in general, you can integrate sections of $\Omega_M^{\dim M-p}$ over submanifolds of codimension p in M.

Our Setting

Here we work over a supermanifold \mathcal{M} of dimension p|q, meaning that we have a system of p **even** local coordinate and q **odd** local coordinate, which we write as $x_1, \ldots, x_p | \theta_1, \ldots, \theta_q$.

de Rham Complex over a Supermanifold

We took the de Rham differential $d: \mathcal{O}_{\mathcal{M}} \to \Omega^1_{\mathcal{M}}$ to be an **odd** derivation.

Our Setting

Here we work over a supermanifold \mathcal{M} of dimension p|q, meaning that we have a system of p **even** local coordinate and q **odd** local coordinate, which we write as $x_1, \ldots, x_p | \theta_1, \ldots, \theta_q$.

de Rham Complex over a Supermanifold

We took the de Rham differential $d: \mathcal{O}_{\mathcal{M}} \to \Omega^1_{\mathcal{M}}$ to be an **odd** derivation. It follows that:

- *dx*₁,..., *dx*_p are **odd**;
- $d\theta_1, \ldots, d\theta_q$ are **even**.

Our Setting

Here we work over a supermanifold \mathcal{M} of dimension p|q, meaning that we have a system of p **even** local coordinate and q **odd** local coordinate, which we write as $x_1, \ldots, x_p | \theta_1, \ldots, \theta_q$.

de Rham Complex over a Supermanifold

We took the de Rham differential $d: \mathcal{O}_{\mathcal{M}} \to \Omega^1_{\mathcal{M}}$ to be an **odd** derivation. It follows that:

- *dx*₁,..., *dx*_p are **odd**;
- $d\theta_1, \ldots, d\theta_q$ are **even**.

Since $d\theta_i$ is even for any *i*, we have that $d\theta_i^n \neq 0$ for any *i*.

It follows that the de Rham complex is \mathbf{not} bounded from above:

$$0 \longrightarrow \mathcal{O}_{\mathcal{M}} \longrightarrow \Omega^{1}_{\mathcal{M}} \longrightarrow \ldots \longrightarrow \Omega^{k}_{\mathcal{M}} \longrightarrow \ldots$$

Differential Forms: Geometry VS Supergeometry

Where is my Top-Form?

There is no top differential form in the de Rham complex over a supermanifold!

Where is my Top-Form?

There is no top differential form in the de Rham complex over a supermanifold!

Differential Forms and Integration over Supermanifolds

Differential forms can be integrated only over ordinary (non super) submanifolds of a supermanifold.

- Let *ι* : *M* → *M* be an immersion of an ordinary *k*-dimensional manifold in a *p*|*q*-dimensional supermanifolds *M*.
- 2 Let $\omega \in \Omega^k_{\mathcal{M}}$ be a degree k differential form.
- It make sense to integrate $\iota^* \omega$ over M (notice that the integral can be zero).

If \mathcal{M} is a supermanifold of dimension p|q, differential forms can be integrated over ordinary submanifolds M of codimension k|q, with $0 \le k \le p$ in \mathcal{M} .

Differential Forms: Geometry VS Supergeometry

Differential Forms and Integration

- (Geometric) integration of differential forms over supermanifolds does **not** involve odd directions.
- Need to look for something different if want odd directions be part of integration process.

Integral Forms and their Complex

Let $\mathcal M$ be a supermanifold of dimension p|q. An integral form of degree p-k is a section of the sheaf

$$\Sigma^{p-k}_{\mathscr{M}}:=\mathcal{B}er(\mathscr{M})\otimes_{\mathcal{O}_{\mathscr{M}}}S^{k}\Pi\mathcal{T}_{\mathscr{M}}$$

Where we have that

- $\mathcal{B}er(\mathcal{M})$ is the Berezinian sheaf of \mathcal{M} (...in a moment...);
- S^kΠT_M is the k-fold (super)symmetric product of the "parity-shifted" tangent sheaf, so that ΠT_M ≃ (Ω¹_M)*.

$$\begin{aligned} (\mathcal{T}_{\mathcal{M}})_0 &\ni \partial_x \stackrel{\Pi}{\longmapsto} \pi \partial_x \in (\Pi \mathcal{T}_{\mathcal{M}})_1 \quad \rightsquigarrow \quad (dx)^* = \pi \partial_x \\ (\mathcal{T}_{\mathcal{M}})_1 &\ni \partial_\theta \stackrel{\Pi}{\longmapsto} \pi \partial_\theta \in (\Pi \mathcal{T}_{\mathcal{M}})_0 \quad \rightsquigarrow \quad (d\theta)^* = \pi \partial_\theta \end{aligned}$$

Integral Forms

Integral Forms and their Complex

Let $\mathcal M$ be a supermanifold of dimension p|q. An integral form of degree p-k is a section of the sheaf

$$\Sigma^{p-k}_{\mathscr{M}}:=\mathcal{B}er(\mathscr{M})\otimes_{\mathcal{O}_{\mathscr{M}}}S^{k}\Pi\mathcal{T}_{\mathscr{M}}$$

This can be structured into an actual complex:

$$\ldots \rightarrow \mathcal{B}er(\mathcal{M}) \otimes S^k \sqcap \mathcal{T}_{\mathcal{M}} \rightarrow \ldots \rightarrow \mathcal{B}er(\mathcal{M}) \otimes \sqcap \mathcal{T}_{\mathcal{M}} \rightarrow \mathcal{B}er(\mathcal{M}) \rightarrow 0.$$

Integral Forms and their Complex

Let $\mathcal M$ be a supermanifold of dimension p|q. An integral form of degree p-k is a section of the sheaf

$$\Sigma^{p-k}_{\mathscr{M}} := \mathcal{B}er(\mathscr{M}) \otimes_{\mathcal{O}_{\mathscr{M}}} S^k \Pi \mathcal{T}_{\mathscr{M}}$$

This can be structured into an actual complex:

$$\ldots o \mathcal{B}er(\mathcal{M})\otimes S^k\Pi\mathcal{T}_{\mathcal{M}} o \ldots o \mathcal{B}er(\mathcal{M})\otimes \Pi\mathcal{T}_{\mathcal{M}} o \mathcal{B}er(\mathcal{M}) o 0.$$

The differential of this complex is a bit tricky:

$$\delta(\mathcal{D}(x)f\otimes_k\pi\partial^I)=-\sum_a(-1)^{|\mathsf{x}_a||f|+|\pi\partial^I|}\mathcal{D}(x)(\partial_a f)\otimes_k\partial_{\pi\partial_a}(\pi\partial^I)$$

where $\mathcal{D}(x) \in \mathcal{B}er(\mathcal{M})$, $f \in \mathcal{O}_{\mathcal{M}}$, $\pi \partial^{I} \in S^{k} \Pi \mathcal{T}_{\mathcal{M}}$.

The Berezinian

Definition (Berezinian - via Transition Functions)

The Berezinian sheaf $\mathcal{B}er(\mathcal{M})$ is the locally-free sheaf of $\mathcal{O}_{\mathcal{M}}$ -modules of rank $\delta_{0,p+q}|\delta_{0,p+q+1}$, whose local generators $\{\mathcal{D}_{U_i}(x_{U_i}, \theta_{U_i})\}$ transforms as

$$\mathcal{D}_{U_j \lfloor u_i \cap u_j}(\mathsf{x}_{U_j} | \theta_{U_j}) = \mathcal{D}_{U_i \lfloor u_i \cap u_j}(\mathsf{x}_{U_i} | \theta_{U_i}) Ber(\mathcal{J}ac(\varphi_{ij}))$$

with

$$Ber(\mathcal{J}ac(\varphi_{ij})) = \det(A - BD^{-1}C)\det(D)^{-1},$$

where $\mathcal{J}ac(\varphi_{ij})$ is the super Jacobian of the change of coordinates

$$\begin{aligned} \varphi_{ij} &: U_i \lfloor_{U_i \cap U_j} \longrightarrow U_j \lfloor_{U_i \cap U_j} \\ x_{U_i} | \theta_{U_i} \longmapsto \varphi_{ij,0}(x|\theta) = x_{U_j} | \varphi_{ij,1}(x|\theta) = \theta_{U_j}, \end{aligned}$$

and where we have posed

$$\left(\begin{array}{c|c} A & B \\ \hline C & D \end{array}\right) := \left(\begin{array}{c|c} \partial_x \varphi_{ij,0} & \partial_\theta \varphi_{ij,0} \\ \hline \partial_x \varphi_{ij,1} & \partial_\theta \varphi_{ij,1} \end{array}\right) = \mathcal{J}ac(\varphi_{ij}).$$

Simone Noja

Forms in Supergeometry

Definition (Berezinian - via Koszul Complex)

We call the Berezinian sheaf of \mathcal{M} is the locally-free sheaf of $\mathcal{O}_{\mathcal{M}}$ -modules of rank $\delta_{0,p+q}|\delta_{0,p+q+1}$ defined by the only non-trivial cohomology class of the Koszul complex of $\Omega^1_{\mathcal{M}}$,

$$\mathcal{B}er(\mathcal{M}) := \mathcal{E}xt^{p}_{S^{ullet}(\Omega^{1}_{\mathcal{M}})^{*}}(\mathcal{O}_{\mathcal{M}}, S^{ullet}(\Omega^{1}_{\mathcal{M}})^{*}),$$

In particular $\mathcal{B}er(\mathcal{M})$ is locally generated on an open set U by the class

$$\mathcal{B}er(\mathcal{M})(U) = [dx_1 \dots dx_p \otimes \partial_{\theta_1} \dots \partial_{\theta_q}] \cdot \mathcal{O}_{\mathcal{M}}(U).$$

Remarks

- The analogous construction for ordinary manifolds yields the *canonical sheaf* $\Omega^p_{\mathcal{M}}$, generated by $[dx_1 \dots dx_p]$;
- Make a sense out of the catch-phrase for Berezin integral:

"Berezin integral = integrate the x's and derive the θ 's"

Integral Forms and their Complex

Let $\mathcal M$ be a supermanifold of dimension p|q. An integral form of degree p-k is a section of the sheaf

$$\Sigma^{p-k}_{\mathcal{M}} := \mathcal{B}er(\mathcal{M}) \otimes_{\mathcal{O}_{\mathcal{M}}} S^k \Pi \mathcal{T}_{\mathcal{M}}$$

They fit into the complex

$$\ldots
ightarrow \mathcal{B}er(\mathcal{M})\otimes \mathcal{S}^k\Pi\mathcal{T}_{\mathcal{M}}
ightarrow \ldots
ightarrow \mathcal{B}er(\mathcal{M})\otimes \Pi\mathcal{T}_{\mathcal{M}}
ightarrow \mathcal{B}er(\mathcal{M})
ightarrow 0.$$

Integral forms of degree p - k can be integrated over sub-supermanifolds of codimension k|0 in \mathcal{M} .

- Can integrate sections of $\mathcal{B}er(\mathcal{M})$ over \mathcal{M} ;
- Can integrate sections of Ber(M) ⊗ ΠT_M over a sub-supermanifold of codimension 1|0 in M
- Can integrate sections of Ber(M) ⊗ S²ΠT_M over a sub-supermanifold of codimension 2|0 in M...

Where To Go?

Where we are...

On a supermanifold \mathcal{M} of dimension p|q, for $k \geq 0$:

- Differential Forms: control integration on sub-manifolds of codim. k|q;
- Integral Forms: control integration on sub-supermanifold of codim. k|0;

Where to go...

Will try to make these notions "go together"

• ...coming out of a certain spectral sequence of a double complex...

Where we are...

On a supermanifold \mathcal{M} of dimension p|q, for $k \ge 0$:

- Differential Forms: control integration on sub-manifolds of codim. k|q;
- Integral Forms: control integration on sub-supermanifold of codim. k|0;

Where to go...

- Will try to make these notions "go together"
 - ...coming out of a certain spectral sequence of a double complex...
- Output: A state of the same invariant related to the supermanifold
 - ...which is the de Rham cohomology of the reduced space

Definition (The Sheaf $\mathcal{D}_{\mathcal{M}}$)

We define $\mathcal{D}_{\mathcal{M}}$ to be the subsheaf of $\mathcal{E}nd_k(\mathcal{O}_{\mathcal{M}})$ generated by $\mathcal{O}_{\mathcal{M}}$ and $\mathcal{T}_{\mathcal{M}}$, and we call it the *sheaf* $\mathcal{D}_{\mathcal{M}}$ of differential operators on \mathcal{M} .

Definition (The Sheaf $\mathcal{D}_{\mathcal{M}}$)

We define $\mathcal{D}_{\mathcal{M}}$ to be the subsheaf of $\mathcal{E}nd_k(\mathcal{O}_{\mathcal{M}})$ generated by $\mathcal{O}_{\mathcal{M}}$ and $\mathcal{T}_{\mathcal{M}}$, and we call it the *sheaf* $\mathcal{D}_{\mathcal{M}}$ of differential operators on \mathcal{M} .

Locally...

We have a local trivialization of $\mathcal{D}_{\mathcal{M}} \lfloor_{U}$, where $x_i \in \mathcal{O}_{\mathcal{M}} \lfloor_{U}$ and $\partial_i \in \mathcal{T}_{\mathcal{M}} \lfloor_{U}$, satisfying the **Clifford-Weyl algebra**: $[x_i, x_j] = 0$, $[\partial_i, \partial_j] = 0$, $[x_i, \partial_j] = \delta_{ij}$. One has

 $U \mapsto \mathcal{D}_{\mathcal{M}}(U) := \{ D_U \text{ is a differential operator on } \mathcal{O}_{\mathcal{M}}(U) \}.$

with $D_U = \bigoplus_{\alpha \in \mathbb{N}^n} \mathcal{O}_{\mathcal{M}} \lfloor_U \partial_x^{\alpha}$ where $\partial_x^{\alpha} := \partial_1^{\alpha_1} \partial_2^{\alpha_2} \cdots \partial_n^{\alpha_n}$.

Definition (Left/Right $\mathcal{D}_{\mathcal{M}}$ -Modules)

We say that a sheaf \mathcal{E} is a sheaf of $left/right \mathcal{D}_{\mathcal{M}}$ -modules (a $\mathcal{D}_{\mathcal{M}}$ -module, for short) if $\mathcal{E}(U)$ is endowed with a $left/right \mathcal{D}_{\mathcal{M}}(U)$ -module structure for any open set U, which is compatible with the restriction morphisms.

Definition (Universal de Rham Sheaf of \mathcal{M})

Given a supermanifold \mathcal{M} , we call the sheaf $\Omega^{\bullet}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} \mathcal{D}_{\mathcal{M}}$ the universal de Rham sheaf of \mathcal{M} .

Definition (The Operator D)

For $\omega \otimes F \in \Omega^{\bullet}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} \mathcal{D}_{\mathcal{M}}$ such that ω and F are homogeneous, we let D be the operator

$$\mathcal{D}: \Omega^{\bullet}_{\mathcal{M}} \otimes_{\mathbb{K}} \mathcal{D}_{\mathcal{M}} \longrightarrow \Omega^{\bullet}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} \mathcal{D}_{\mathcal{M}}$$

 $\omega \otimes F \longmapsto D(\omega \otimes F) := d\omega \otimes F + \sum_{a} (-1)^{|\omega||x_{a}|} dx_{a} \omega \otimes \partial_{x_{a}} \cdot F,$

where the index a runs over all of the even and odd coordinates.

L

Lemma (Properties of D)

The operator D has the following properties:

- it is globally well-defined i.e. it is invariant under generic change of coordinates;
- $\textbf{ it is } \mathcal{O}_{\mathcal{M}} \text{-defined, i.e. it induces an operator } D: \Omega^{\bullet}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} \mathcal{D}_{\mathcal{M}} \to \Omega^{\bullet}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} \mathcal{D}_{\mathcal{M}};$
- 3 it is nilpotent, i.e. $D^2 = 0$.

Theorem (Homology of the Universal de Rham Complex)

Let \mathcal{M} be a supermanifold and let $(\Omega^{\bullet}_{\mathcal{M},odd}, D)$ be the universal de Rham complex of \mathcal{M} . Then there exists a canonical isomorphism

$$H_{ullet}(\Omega^{ullet}_{\mathcal{M}}\otimes_{\mathcal{O}_{\mathcal{M}}}\mathcal{D}_{\mathcal{M}},D)\cong\mathcal{B}er(\mathcal{M}),$$

where $Ber(\mathcal{M})$ is the Berezinian sheaf of \mathcal{M} .

Universal de Rham Complex III

Nods to the Proof

• Construct a homotopy H for D, that is we need DH + HD = 1

Universal de Rham Complex III

Nods to the Proof

• Construct a homotopy H for D, that is we need DH + HD = 1

$$H(dx^{I} \otimes \partial^{J} f) := \sum_{a} (-1)^{|x_{a}|(|\omega|+|\partial^{J}|+1)} \partial_{dx_{a}} dx^{I} \otimes [\partial^{J}, x_{a}] f.$$

• the homotopy fails on $[dz_1 \dots dz_p \otimes \partial_{\theta_1} \dots \partial_{\theta_q}]$, which generates $\mathcal{B}er(\mathcal{M})$.

Universal de Rham Complex III

Nods to the Proof

• Construct a homotopy H for D, that is we need DH + HD = 1

$$H(dx^{I} \otimes \partial^{J} f) := \sum_{a} (-1)^{|x_{a}|(|\omega|+|\partial^{J}|+1)} \partial_{dx_{a}} dx^{I} \otimes [\partial^{J}, x_{a}] f.$$

• the homotopy fails on $[dz_1 \dots dz_p \otimes \partial_{\theta_1} \dots \partial_{\theta_q}]$, which generates $\mathcal{B}er(\mathcal{M})$.

Corollary $(\mathcal{B}er(\mathcal{M})$ is a Right $\mathcal{D}_{\mathcal{M}}$ -Module / Lie Derivative)

Let \mathcal{M} be a supermanifold. The right action

$$H_{\bullet}(\Omega^{\bullet}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} \mathcal{D}_{\mathcal{M}}, D) \otimes_{\mathcal{O}_{\mathcal{M}}} \mathcal{D}_{\mathcal{M}} \longrightarrow H_{\bullet}(\Omega^{\bullet}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} \mathcal{D}_{\mathcal{M}}, D)$$

is uniquely characterized by $\mathcal{D}(x) \cdot \partial_a := [dz_1 \dots dz_p \otimes \partial_{\theta_1} \otimes \dots \partial_{\theta_q}] \cdot \partial_a = 0$ for any a, and it is given by the Lie derivative on $\mathcal{B}er(\mathcal{M})$.

< 回 > < 三 > < 三 >

Theorem ($\mathcal{D}_{\mathcal{M}}$ -Modules and $\mathcal{O}_{\mathcal{M}}$ -Modules)

 \mathcal{E} is a sheaf of right $\mathcal{D}_{\mathcal{M}}$ -module on $\mathcal{M} \iff \mathcal{E}$ is a sheaf of $\mathcal{O}_{\mathcal{M}}$ -modules endowed with a flat right connection Δ_R .

Theorem ($\mathcal{D}_{\mathcal{M}}$ -Modules and $\mathcal{O}_{\mathcal{M}}$ -Modules)

 \mathcal{E} is a sheaf of right $\mathcal{D}_{\mathcal{M}}$ -module on $\mathcal{M} \iff \mathcal{E}$ is a sheaf of $\mathcal{O}_{\mathcal{M}}$ -modules endowed with a flat right connection Δ_R .

Definition ((Flat) Right Connection on \mathcal{E})

A **right connection** on \mathcal{E} a \mathbb{C} -bilinear morphism $\Delta_R : \mathcal{E} \otimes_{\mathbb{C}} \mathcal{D}^{(1)}_{\mathcal{M}} \to \mathcal{E}$ such that the following are satisfied for any $f \in \mathcal{O}_{\mathcal{M}}$, $X \in \mathcal{T}_{\mathcal{M}}$ and $e \in \mathcal{E}$:

$$\ \ \, {\bf O}_R(e\otimes X\circ f)=\Delta_R(e\otimes X)f; \ ({\rm Leibniz \ rule})$$

where by definition $X \circ f := X(f) + (-1)^{|X||f|} f \circ X$. A right connection is flat if

$$\Delta_R(-\otimes [X,Y]) = [\Delta_R(-\otimes X), \Delta_R(-\otimes Y)].$$

Definition ((Flat) Right Connection on \mathcal{E})

A **right connection** on \mathcal{E} a \mathbb{C} -bilinear morphism $\Delta_R : \mathcal{E} \otimes_{\mathbb{C}} \mathcal{D}^{(1)}_{\mathcal{M}} \to \mathcal{E}$ such that the following are satisfied for any $f \in \mathcal{O}_{\mathcal{M}}$, $X \in \mathcal{T}_{\mathcal{M}}$ and $e \in \mathcal{E}$:

where by definition $X \circ f := X(f) + (-1)^{|X||f|} f \circ X$. A right connection is flat if

$$\Delta_R(-\otimes [X,Y]) = [\Delta_R(-\otimes X), \Delta_R(-\otimes Y)].$$

The Canonical and Berezinian Sheaf are Right $\mathcal{D}_{\mathcal{M}}$ -Modules

• If ω^{top} is a section of \mathcal{K}_M , then one poses $\Delta_R(\omega^{top}\otimes X) = -\mathcal{L}_X(\omega)$.

・ 同 ト ・ 三 ト ・ 三

Definition ((Flat) Right Connection on \mathcal{E})

A **right connection** on \mathcal{E} a \mathbb{C} -bilinear morphism $\Delta_R : \mathcal{E} \otimes_{\mathbb{C}} \mathcal{D}^{(1)}_{\mathcal{M}} \to \mathcal{E}$ such that the following are satisfied for any $f \in \mathcal{O}_{\mathcal{M}}$, $X \in \mathcal{T}_{\mathcal{M}}$ and $e \in \mathcal{E}$:

where by definition $X \circ f := X(f) + (-1)^{|X||f|} f \circ X$. A right connection is **flat** if

$$\Delta_R(-\otimes [X,Y]) = [\Delta_R(-\otimes X), \Delta_R(-\otimes Y)].$$

The Canonical and Berezinian Sheaf are Right $\mathcal{D}_{\mathcal{M}}$ -Modules

• If ω^{top} is a section of \mathcal{K}_M , then one poses $\Delta_R(\omega^{top}\otimes X) = -\mathcal{L}_X(\omega)$.

• If \mathcal{D} is a section of $\mathcal{B}er(\mathcal{M})$, then one poses $\Delta_R(\mathcal{D}\otimes X) = -\mathcal{L}_X(\mathcal{D})$

くぼう くほう くほう

Lie Derivative and Right $\mathcal{D}_{\mathcal{M}}\text{-modules}$

Ordinary Manifolds

$$0 \longrightarrow \mathcal{O}_{\mathcal{M}} \longrightarrow \Omega^{1}_{M} \longrightarrow \ldots \longrightarrow \Omega^{\dim M}_{M} \longrightarrow 0$$

• left and right \mathcal{D}_M -module in the same complex

Supermanifolds

Differential Forms:
$$0 \longrightarrow \mathcal{O}_{\mathcal{M}} \longrightarrow \Omega^1_{\mathcal{M}} \longrightarrow \dots$$

Integral Forms: $\ldots \longrightarrow \mathcal{B}er(\mathcal{M}) \otimes \Pi \mathcal{T}_{\mathcal{M}} \longrightarrow \mathcal{B}er(\mathcal{M}) \longrightarrow 0$

- *left* $\mathcal{D}_{\mathcal{M}}$ -module \rightsquigarrow differential forms;
- *right* $\mathcal{D}_{\mathcal{M}}$ -module \rightsquigarrow integral forms.

- 4 同 6 4 日 6 4 日 6

Definition (Universal Spencer Sheaf of \mathcal{M})

Given a supermanifold \mathcal{M} , we call the sheaf $\mathcal{D}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} (\Omega^{\bullet}_{\mathcal{M}})^* \cong \mathcal{D}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} S^{\bullet} \Pi \mathcal{T}_{\mathcal{M}}$ the universal Spencer sheaf of \mathcal{M} .

Definition (Universal Spencer Sheaf of \mathcal{M})

Given a supermanifold \mathcal{M} , we call the sheaf $\mathcal{D}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} (\Omega^{\bullet}_{\mathcal{M}})^* \cong \mathcal{D}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} S^{\bullet} \Pi \mathcal{T}_{\mathcal{M}}$ the universal Spencer sheaf of \mathcal{M} .

Definition (The Operator δ)

For $F \otimes \tau \in \mathcal{D}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} (\Omega^{\bullet}_{\mathcal{M}})^*$ such that F and τ are homogeneous, we let δ be the operator

$$F \otimes au \longmapsto \delta(F \otimes au) \coloneqq (-1)^{| au|} F \sum_{a} \partial_{a} \otimes \langle dx_{a}, au
angle - (-1)^{| au|} F \otimes \mathfrak{e}_{x}(au)$$

where the index a runs over all of the even and odd coordinates.

Definition (Operator \mathfrak{e}_{\times})

Let $\tau \in (\Omega^{\bullet}_{\mathcal{M}})^*$. We define the operator $\mathfrak{e}_{\mathsf{x}}$ to be such that

$$au \longmapsto \mathfrak{e}_x(au) \coloneqq \sum_a \langle dx_a, \mathfrak{L}_{\partial_a}(au)
angle$$

Universal Spencer Complex II

Lemma (Properties of δ)

The operator δ has the following properties:

- it is globally well-defined, i.e. it is invariant under generic change of coordinates;
- it is O_M-defined, i.e. it induces an operator
 δ : D_M ⊗_{O_M} (Ω[•]_M)^{*} → D_M ⊗_{O_M} (Ω[•]_M)^{*};
- (a) it is nilpotent, i.e. $\delta^2 = 0$.

Theorem (Homology of Universal Spencer Complex)

Let \mathcal{M} be a supermanifold and let $\mathcal{D}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{H}}} (\Omega^{\bullet}_{\mathcal{M}})^*$ be its universal Spencer complex. There exists a canonical isomorphism

$$H_{\bullet}(\mathcal{D}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} (\Omega^{\bullet}_{\mathcal{M}})^*, \delta) \cong \mathcal{O}_{\mathcal{M}}.$$
Universal Spencer Complex III

Nods to the Proof

• Construct a homotopy K for δ , that is we need $\delta K + K\delta = 1$

$$K(F \otimes \tau) = (-1)^{|\tau|} \sum_{a} [F, x_a] \otimes \pi \partial_a \cdot \tau.$$

• the homotopy fails on functions, that is on $\mathcal{O}_{\mathcal{M}}$.

Universal Spencer Complex III

Nods to the Proof

• Construct a homotopy K for δ , that is we need $\delta K + K \delta = 1$

$$K(F \otimes \tau) = (-1)^{|\tau|} \sum_{a} [F, x_a] \otimes \pi \partial_a \cdot \tau.$$

• the homotopy fails on functions, that is on $\mathcal{O}_{\mathcal{M}}$.

What Did We Get?

- $H_{\bullet}(\Omega^{\bullet}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} \mathcal{D}_{\mathcal{M}}, D) \cong \mathcal{B}er(\mathcal{M}) \ (\rightsquigarrow \text{ right } \mathcal{D}_{\mathcal{M}}\text{-module})$
- $H_{\bullet}(\mathcal{D}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} (\Omega^{\bullet})^*_{\mathcal{M}}, \delta) \cong \mathcal{O}_{\mathcal{M}} (\rightsquigarrow \text{ left } \mathcal{D}_{\mathcal{M}}\text{-module})$

...we now aim at relating the two constructions!

Definition (Sheaf of Virtual Forms)

Let \mathcal{M} be a supermanifold, we call $\Omega^{\bullet}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} \mathcal{D}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} (\Omega^{\bullet}_{\mathcal{M}})^*$ the sheaf of virtual forms.

Definition (Sheaf of Virtual Forms)

Let \mathcal{M} be a supermanifold, we call $\Omega^{\bullet}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} \mathcal{D}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} (\Omega^{\bullet}_{\mathcal{M}})^*$ the sheaf of virtual forms.

Corollary

Let \mathcal{M} be a supermanifold and let $D \otimes 1$ and $1 \otimes \delta$ act on the sheaf of virtual superforms. Then $D \otimes 1$ and $1 \otimes \delta$ commute with each other, i.e.

 $[1 \otimes \delta, D \otimes 1] := (1 \otimes \delta) \circ (D \otimes 1) - (D \otimes 1) \circ (1 \otimes \delta) = 0.$

Definition (Sheaf of Virtual Forms)

Let \mathcal{M} be a supermanifold, we call $\Omega^{\bullet}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} \mathcal{D}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} (\Omega^{\bullet}_{\mathcal{M}})^*$ the sheaf of virtual forms.

Corollary

Let \mathcal{M} be a supermanifold and let $D \otimes 1$ and $1 \otimes \delta$ act on the sheaf of virtual superforms. Then $D \otimes 1$ and $1 \otimes \delta$ commute with each other, i.e.

$$[1 \otimes \delta, D \otimes 1] := (1 \otimes \delta) \circ (D \otimes 1) - (D \otimes 1) \circ (1 \otimes \delta) = 0.$$

Definition (The operators \hat{d} and $\hat{\delta}$ on Virtual Forms)

Let $\omega \otimes F \otimes \tau \in \Omega^{\bullet}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} \mathcal{D}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} (\Omega^{\bullet}_{\mathcal{M}})^*$ be a virtual superform. We define:

$$\widehat{d}(\omega\otimes F\otimes au):=(D\otimes 1)(\omega\otimes F\otimes au),$$

 $\widehat{\delta}(\omega\otimes F\otimes au):=(-1)^{|\omega|+|F|+| au|}(1\otimes \delta)(\omega\otimes F\otimes au).$

Definition (Virtual Superforms Double Complex)

We define ${}_{\mathcal{D}}\mathcal{V}_{\mathcal{M}}^{\bullet\bullet} := (\Omega_{\mathcal{M}}^{\bullet} \otimes_{\mathcal{O}_{\mathcal{M}}} \mathcal{D}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} (\Omega_{\mathcal{M}}^{\bullet})^*, \hat{d}, \hat{\delta})$ to be the virtual forms double complex. We define the bi-degrees of the double complex so that the differential \hat{d} moves *vertically* and $\hat{\delta}$ moves *horizontally*.

Definition (Virtual Superforms Double Complex)

We define ${}_{\mathcal{D}}\mathcal{V}_{\mathcal{M}}^{\bullet\bullet} := (\Omega_{\mathcal{M}}^{\bullet} \otimes_{\mathcal{O}_{\mathcal{M}}} \mathcal{D}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} (\Omega_{\mathcal{M}}^{\bullet})^*, \hat{d}, \hat{\delta})$ to be the virtual forms double complex. We define the bi-degrees of the double complex so that the differential \hat{d} moves *vertically* and $\hat{\delta}$ moves *horizontally*.

Definition (Spectral Sequences E_r^{Ω} and E_r^{Σ})

Let _DV^{••}_M be the virtual superform double complex of *M*. We call
(E^Ω_r, d^Ω_r) the spectral sequence w.r.t. the *vertical* filtration;
(E^Σ_r, d^Σ_r) the spectral sequence w.r.t. the *horizontal* filtration.

Definition (Virtual Superforms Double Complex)

We define ${}_{\mathcal{D}}\mathcal{V}_{\mathcal{M}}^{\bullet\bullet} := (\Omega_{\mathcal{M}}^{\bullet} \otimes_{\mathcal{O}_{\mathcal{M}}} \mathcal{D}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} (\Omega_{\mathcal{M}}^{\bullet})^*, \hat{d}, \hat{\delta})$ to be the virtual forms double complex. We define the bi-degrees of the double complex so that the differential \hat{d} moves *vertically* and $\hat{\delta}$ moves *horizontally*.

Definition (Spectral Sequences E_r^{Ω} and E_r^{Σ})

Let ${}_{\mathcal{D}}\mathcal{V}^{\bullet\bullet}_{\mathcal{M}}$ be the virtual superform double complex of \mathcal{M} . We call • $(E_r^{\Omega}, d_r^{\Omega})$ the spectral sequence w.r.t. the *vertical* filtration; • $(E_r^{\Sigma}, d_r^{\Sigma})$ the spectral sequence w.r.t. the *horizontal* filtration.

Definition (Čech-Virtual Forms Triple Complex)

Let \mathcal{M} be a supermanifold and \mathcal{U} an open cover of \mathcal{M} . We call the triple complex $_{\mathcal{T}}\mathcal{V}_{\mathcal{M}}^{\bullet\bullet\bullet\bullet} := (\check{C}^{\bullet}(\mathcal{U}, \Omega_{\mathcal{M}}^{\bullet} \otimes_{\mathcal{O}_{\mathcal{H}}} \mathcal{D}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{H}}} (\Omega_{\mathcal{M},odd}^{\bullet})^*, \check{\delta}, \hat{d}, \hat{\delta})$ Čech-virtual superforms triple complex or Čech-virtual superforms complex for short.

Theorem (Differential Forms from ${}_{\mathcal{D}}\mathcal{V}^{\bullet\bullet}_{\mathcal{M}}$)

Let \mathcal{M} be a supermanifold and let $(E_r^{\Omega}, d_r^{\Omega})$ be the spectral sequence of the double complex ${}_{\mathcal{D}}\mathcal{V}_{\mathcal{M}}^{\bullet\bullet}$ defined as above. Then

Theorem (Differential Forms from ${}_{\mathcal{D}}\mathcal{V}^{\bullet \bullet}_{\mathcal{M}}$)

Let \mathcal{M} be a supermanifold and let $(E_r^{\Omega}, d_r^{\Omega})$ be the spectral sequence of the double complex ${}_{\mathcal{D}}\mathcal{V}_{\mathcal{M}}^{\bullet\bullet}$ defined as above. Then

- **2** $E_2^{\Omega} = E_{\infty}^{\Omega} \cong \mathbb{K}_{\mathcal{M}}$, for \mathcal{M} real or complex supermanifold

where $\mathbb{K}_{\mathcal{M}}$ is the constant sheaf valued in the field \mathbb{K} (\mathbb{R} or \mathbb{C}).

Theorem (Differential Forms from ${}_{\mathcal{D}}\mathcal{V}^{\bullet \bullet}_{\mathcal{M}}$)

Let \mathcal{M} be a supermanifold and let $(E_r^{\Omega}, d_r^{\Omega})$ be the spectral sequence of the double complex ${}_{\mathcal{D}}\mathcal{V}_{\mathcal{M}}^{\bullet\bullet}$ defined as above. Then

- **2** $E_2^{\Omega} = E_{\infty}^{\Omega} \cong \mathbb{K}_{\mathcal{M}}$, for \mathcal{M} real or complex supermanifold

where $\mathbb{K}_{\mathcal{M}}$ is the constant sheaf valued in the field \mathbb{K} (\mathbb{R} or \mathbb{C}).

Theorem (Integral Forms from ${}_{\mathcal{D}}\mathcal{V}^{\bullet \bullet}_{\mathcal{M}}$)

Let \mathcal{M} be a supermanifold and let $(E_r^{\Sigma}, d_r^{\Sigma})$ be the spectral sequence of the double complex ${}_{\mathcal{D}}\mathcal{V}_{\mathcal{M}}^{\bullet\bullet}$ defined as above. Then

•
$$E_1^{\Sigma} \cong \mathcal{B}er(\mathcal{M}) \otimes_{\mathcal{O}_{\mathcal{M}}} (\Omega^{\bullet}_{\mathcal{M},odd})^*;$$

Theorem (Differential Forms from ${}_{\mathcal{D}}\mathcal{V}^{\bullet \bullet}_{\mathcal{M}}$)

Let \mathcal{M} be a supermanifold and let $(E_r^{\Omega}, d_r^{\Omega})$ be the spectral sequence of the double complex ${}_{\mathcal{D}}\mathcal{V}_{\mathcal{M}}^{\bullet\bullet}$ defined as above. Then

- $\ \, {\it O} \ \, {\it E}_2^\Omega = {\it E}_\infty^\Omega \cong \mathbb{K}_{\mathcal{M}}, \ \, {\it for} \ \, \mathcal{M} \ \, {\it real} \ \, {\it or} \ \, {\it complex} \ \, {\it supermanifold} \ \,$

where $\mathbb{K}_{\mathcal{M}}$ is the constant sheaf valued in the field \mathbb{K} (\mathbb{R} or \mathbb{C}).

Theorem (Integral Forms from ${}_{\mathcal{D}}\mathcal{V}^{\bullet ullet}_{\mathcal{M}})$

Let \mathcal{M} be a supermanifold and let $(E_r^{\Sigma}, d_r^{\Sigma})$ be the spectral sequence of the double complex ${}_{\mathcal{D}}\mathcal{V}_{\mathcal{M}}^{\bullet\bullet}$ defined as above. Then

•
$$E_1^{\Sigma} \cong \mathcal{B}er(\mathcal{M}) \otimes_{\mathcal{O}_{\mathcal{M}}} (\Omega^{\bullet}_{\mathcal{M},odd})^*;$$

2 $E_2^{\Sigma} = E_{\infty}^{\Sigma} \cong \mathbb{K}_{\mathcal{M}}$, for \mathcal{M} real or complex supermanifolds

where $\mathbb{K}_{\mathcal{M}}$ is the constant sheaf valued in the field \mathbb{K} (\mathbb{R} or \mathbb{C}).

・ 同 ト ・ 三 ト ・ 三

Theorem (Poincaré Lemma for Diff. Forms)

The de Rham complex $\Omega^{\bullet}_{\mathcal{M}}$ is a right resolution of $\mathbb{K}_{\mathcal{M}}$, i.e.

$$H^k_d(\Omega^ullet_{\mathscr{M}})\cong \left\{egin{array}{cc} \mathbb{K}_{\mathscr{M}} & k=0\ 0 & k>0. \end{array}
ight.$$

In particular, any closed form is locally exact.

...exactly the same as over an *ordinary* manifold! The homotopy can be constructed in the same way:

$$h(\omega) = \int_{t=0}^{t=1} dt \left(\iota_{\partial_t} G_t^*(\omega)
ight) \in \Omega^{k-1}_{\mathscr{M}}.$$

Theorem (Poincaré Lemma for Int. Forms)

The cohomology of the complex of integral forms $\Sigma^{ullet}_{\mathcal{M}}$ is given by

$$H^k_\delta(\Sigma^{p-ullet}_{\mathcal{M}})\cong \left\{egin{array}{cc} \mathbb{K}_{\mathcal{M}} & k=0\ 0 & k
eq 0. \end{array}
ight.$$

In particular, $H^0_{\delta}(\Sigma^{p-\bullet}_{\mathcal{M}})$ is generated by the section $s_0 = \mathcal{D} \theta_1 \dots \theta_q \otimes \pi \partial_{x_1} \dots \pi \partial_{x_p}$, where \mathcal{D} is a generating section of the Berezinian sheaf.

Once again the homotopy involves and integral!

$$h(\mathcal{D}f\otimes F):=(-1)^{|f|+|F|}\mathcal{D}\sum_{b}(-1)^{|f|(|x_b|+1)}\left(\int_{t=0}^{t=1}dt\,t^{Q_s}x_bG_t^*f\right)\otimes\pi\partial_bF,$$

What is the Triple Complex good for?

Using the Čech-Virtual superforms complex, one can prove prove that differential forms and integral forms computes exactly the same topological invariants related to a real supermanifold \mathcal{M} , namely the (co)homology $\check{H}^{\bullet}(\mathcal{M}, \mathbb{R}_{\mathcal{M}})$. We define

$$H^{ullet}_{d\! R}(\mathcal{M}) := H_d(\Omega^{ullet}_{\mathcal{M}}(\mathcal{M})) \quad ext{ and } \quad H^{ullet}_{\mathcal{S}p}(\mathcal{M}) := H_\delta(\Sigma^{ullet}_{\mathcal{M}}(\mathcal{M})).$$

Theorem (Equivalence of Cohomology of Diff. & Int. Forms)

Let \mathcal{M} be a real supermanifold. The cohomology of differential forms $H^{\bullet}_{d\mathcal{R}}(\mathcal{M})$ and the cohomology of integral forms $H^{\bullet}_{Sv}(\mathcal{M})$ are isomorphic:

$$H^{ullet}_{d\mathcal{R}}(\mathcal{M})\cong\check{H}^{ullet}(\mathcal{M},\mathbb{R}_{\mathcal{M}})\cong H^{ullet}_{\mathcal{Sp}}(\mathcal{M}).$$

In particular the complex of differential and integral forms are quasi-isomorphic.

Where do we go from here?

 $\Omega^{\bullet}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} \mathcal{D}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} (\widetilde{\Omega^{\bullet}_{\mathcal{M}}})^{*}$ ŝ â

Where do we go from here?

$$\hat{d}$$
 $\Omega^{ullet}_{\mathcal{M}}\otimes_{\mathcal{O}_{\mathcal{M}}}\mathcal{D}_{\mathcal{M}}\otimes_{\mathcal{O}_{\mathcal{M}}}(\Omega^{ullet}_{\mathcal{M}})^{*}$ $\hat{\delta}$

"De-Quantization" (?)

$$\Omega^{\bullet}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} \mathcal{D}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} (\Omega^{\bullet}_{\mathcal{M}})^* \xrightarrow{de-quantization} \Omega^{\bullet}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} S^{\bullet} \mathcal{T}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} (\Omega^{\bullet}_{\mathcal{M}})^*.$$

...geometry?

Is this "approximation" canonically related to any geometrical object?

Where do we go from here?

$$\hat{d}$$
 $\Omega^{ullet}_{\mathcal{M}}\otimes_{\mathcal{O}_{\mathcal{M}}}\mathcal{D}_{\mathcal{M}}\otimes_{\mathcal{O}_{\mathcal{M}}}(\Omega^{ullet}_{\mathcal{M}})^{*}$ $\hat{\delta}$

"De-Quantization" (?)

$$\Omega^{\bullet}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} \mathcal{D}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} (\Omega^{\bullet}_{\mathcal{M}})^* \xrightarrow{de-quantization} \Omega^{\bullet}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} S^{\bullet} \mathcal{T}_{\mathcal{M}} \otimes_{\mathcal{O}_{\mathcal{M}}} (\Omega^{\bullet}_{\mathcal{M}})^*.$$

...geometry?

Is this "approximation" canonically related to any geometrical object?

There exists a natural construction on a (super)manifold leading to this approximation?

Definition (Total Cotangent / BV Supermanifold)

Let \mathcal{M} be a supermanifold. We set (X, \mathcal{O}_X) with

$$X := \operatorname{Tot}(\Omega^1_{\mathscr{M}}) \qquad \mathcal{O}_X := (\Omega^{ullet}_{\mathscr{M}})^*$$

This means that functions on X are polynomial functions on the fibers $\mathcal{T}^*_{\mathcal{M},x}$. If $(U, x_a := x_i | \vartheta_\alpha)$ is a local chart \mathcal{M} , then $(\pi^{-1}(U), x_a, p_a := q_\alpha | p_i)$ is a chart for X with

$$p_{\mathsf{a}} := (-1)^{|x_{\mathsf{a}}|} \partial_{\mathsf{d} \mathsf{x}_{\mathsf{a}}}.$$

Definition (Total Cotangent / BV Supermanifold)

Let \mathcal{M} be a supermanifold. We set (X, \mathcal{O}_X) with

$$X := \operatorname{\mathsf{Tot}}(\Omega^1_{\mathscr{M}}) \qquad \mathcal{O}_X := (\Omega^ullet_{\mathscr{M}})^*$$

This means that functions on X are polynomial functions on the fibers $\mathcal{T}^*_{\mathcal{M},x}$. If $(U, x_a := \chi_i | \vartheta_\alpha)$ is a local chart \mathcal{M} , then $(\pi^{-1}(U), x_a, p_a := q_\alpha | p_i)$ is a chart for X with

$$p_{\mathsf{a}} := (-1)^{|x_{\mathsf{a}}|} \partial_{\mathsf{d} x_{\mathsf{a}}}.$$

X	even	odd
base coordinates	$\chi_i \longleftrightarrow fields$	$\vartheta_{lpha} \longleftrightarrow ghosts$
fiber coordinates	$q_{lpha} \longleftrightarrow anti-ghosts$	$p_i \longleftrightarrow anti-fields$

Geometry of Forms on X

Forms on X: the sheaf Ω^1_X

On $X = (Tot(\Omega^1_{\mathcal{M}}), (\Omega^{\bullet}_{\mathcal{M}})^*)$ we have the following canonical exact sequence

$$0 \longrightarrow \pi^* \Omega^1_{\mathcal{M}} \longrightarrow \Omega^1_X \longrightarrow \Omega^1_{X/\mathcal{M}} \longrightarrow 0$$

Geometry of Forms on X

Forms on X: the sheaf Ω^1_X

On $X = (Tot(\Omega^1_{\mathcal{M}}), (\Omega^{\bullet}_{\mathcal{M}})^*)$ we have the following canonical exact sequence

$$0 \longrightarrow \pi^* \Omega^1_{\mathcal{M}} \longrightarrow \Omega^1_X \longrightarrow \Omega^1_{X/\mathcal{M}} \longrightarrow 0.$$

$$dx_a = dz_b \left(\frac{\partial x_a}{\partial z_b}
ight), \quad dp_a = \left(\frac{\partial z_b}{\partial x_a}
ight) dq_b + (-1)^{|x_a| + |z_b|} d\left(\frac{\partial z_b}{\partial x_a}
ight) q_b.$$

• The transition functions shows that

$$0 \longrightarrow \pi^* \Omega^1_{\mathcal{M}} \longrightarrow \Omega^1_X \longrightarrow \pi^* \mathcal{T}_{\mathcal{M}} \longrightarrow 0.$$

• For \mathcal{M} smooth, this is (non-canonically) split so that $\Omega^1_X \cong \pi^* \Omega^1_{\mathcal{M}} \oplus \pi^* \mathcal{T}_{\mathcal{M}}$.

$$\Omega^{\bullet}_X \cong S^{\bullet}_{\mathcal{O}_X}(\Omega^1_X) \cong \Omega^{\bullet}_{\mathcal{M}} \otimes S^{\bullet} \mathcal{T}_{\mathcal{M}} \otimes (\Omega^{\bullet}_{\mathcal{M}})^*$$

Definition (Odd Symplectic Forms on X)

We call $\omega := \sum_{a} dx_{a} dp_{a} \in (\Omega_{X}^{2})_{1}$ the odd symplectic form of the supermanifold X.

Observation

The odd symplectic form is invariant and nilpotent:

$$\eta := (-1)^{|x_a|+1} dx_a p_a \quad \rightsquigarrow \quad \omega = d\eta$$

Definition (Odd Symplectic Forms on X)

We call $\omega := \sum_{a} dx_{a} dp_{a} \in (\Omega_{X}^{2})_{1}$ the odd symplectic form of the supermanifold X.

Observation

The odd symplectic form is invariant and nilpotent:

$$\eta := (-1)^{|x_a|+1} dx_a p_a \quad \rightsquigarrow \quad \omega = d\eta$$

Lemma (d commutes with ω)

Let d and ω be the de Rham differential and the multiplication by the odd symplectic form, then $[d, \omega] = 0$. In particular the triple $(\Omega_X^{\bullet}, \omega, d)$ is a double complex, called the **deformed** de Rham complex.

Definition (Odd Symplectic Forms on X)

We call $\omega := \sum_{a} dx_{a} dp_{a} \in (\Omega_{X}^{2})_{1}$ the odd symplectic form of the supermanifold X.

Observation

The odd symplectic form is invariant and nilpotent:

$$\eta := (-1)^{|x_a|+1} dx_a p_a \quad \rightsquigarrow \quad \omega = d\eta$$

Lemma (d commutes with ω)

Let d and ω be the de Rham differential and the multiplication by the odd symplectic form, then $[d, \omega] = 0$. In particular the triple $(\Omega_X^{\bullet}, \omega, d)$ is a double complex, called the **deformed** de Rham complex.

This observation has been first made by Ševera (Lett.Math.Phys. 78 55 (2006))

伺下 イヨト イヨト

Theorem (Integral Forms & BV Laplacian)

Let E_i^{ω} the spectral sequence of the deformed de Rham complex. Then

(1) the first page of the spectral sequence E_i^{ω} is isomorphic to the integral forms on \mathcal{M} , i.e.

$$\mathsf{E}_1^\omega\cong\pi^*\mathcal{B}er(\mathscr{M})\otimes_{\mathcal{O}_{\mathscr{M}}}(\Omega^ullet_{\mathscr{M}})^*;$$

In turn, this is isomorphic to semi-densities on X, i.e. $E_1^{\omega} \cong \mathcal{D}ens^{1/2}(X)$.

- (2) the second differential δ_2 of the spectral sequence E_i^{ω} is zero. In particular the second page of the spectral sequence is $E_2^{\omega} = E_1^{\omega}$.
- (3) the third differential δ_3 of the spectral sequence E_i^{ω} is

$$\Delta_2^{\mathcal{BV}}(\mathcal{D}\otimes f) \coloneqq \mathcal{D}\otimes \sum_{a} \frac{\partial^2}{\partial x_a \partial p_a} f$$

In particular, the spectral sequence converges at page three and we have $E_3^{\omega} \cong \mathbb{R}_{\mathcal{M}} \cong E_{\infty}^{\omega}$. A representative of this homology class if given by

 $[dx_1 \ldots dx_n \otimes dp_{n+1} \ldots dp_{n+m}] \otimes x_{n+1} \ldots x_{n+m} p_1 \ldots p_n \in \pi^* \mathcal{B}er(\mathcal{M}) \otimes (\Omega^n_{\mathcal{M}})^*.$

Integral Forms and BV Laplacians

The BV Laplacian acting on semi-densities reflects the action of the Spencer differential $\hat{\delta}$ acting on integral forms.

Let us consider \mathcal{M} a complex supermanifold and look at forms on $X = Tot(\Omega^1_{\mathcal{M}})$

$$0 \longrightarrow \pi^* \Omega^1_{\mathcal{M}} \longrightarrow \Omega^1_X \longrightarrow \pi^* \mathcal{T}_{\mathcal{M}} \longrightarrow 0.$$

Splitting of this exact sequence is controlled by $Ext^1_X(\pi^*\mathcal{T}_{\mathcal{M}},\pi^*\Omega^1_{\mathcal{M}})$.

Let us consider \mathcal{M} a complex supermanifold and look at forms on $X = \text{Tot}(\Omega^1_{\mathcal{M}})$

$$0 \longrightarrow \pi^* \Omega^1_{\mathcal{M}} \longrightarrow \Omega^1_X \longrightarrow \pi^* \mathcal{T}_{\mathcal{M}} \longrightarrow 0.$$

Splitting of this exact sequence is controlled by $Ext^1_X(\pi^*\mathcal{T}_{\mathcal{M}},\pi^*\Omega^1_{\mathcal{M}})$.

Theorem (Projection to ${\mathcal M})$

Let \mathcal{M} be a complex supermanifold, let X as above and let $\pi : X \to \mathcal{M}$ be the projection map. Then one has the following natural isomorphism

$$Ext^1_X(\pi^*\mathcal{T}_{\mathcal{M}},\pi^*\Omega^1_{\mathcal{M}})\cong H^1(\mathcal{M},\mathcal{T}^*_{\mathcal{M}}\otimes \mathcal{E}nd(\mathcal{T}_{\mathcal{M}})).$$

Cocycles are elements of the form $-(dg_{ij})g_{ij}^{-1}$, for g_{ij} transition functions of $\mathcal{T}_{\mathcal{M}}$.

Let \mathcal{M} be a complex supermanifold, let X as above and let $\pi : X \to \mathcal{M}$ be the projection map. Then one has the following natural isomorphism

 $Ext^{1}(\pi^{*}\mathcal{T}_{\mathcal{M}},\pi^{*}\Omega^{1}_{\mathcal{M}})\cong H^{1}(\mathcal{M},\mathcal{T}^{*}_{\mathcal{M}}\otimes \mathcal{E}nd(\mathcal{T}_{\mathcal{M}})).$

Cocycles are elements of the form $-(dg_{ij})g_{ij}^{-1}$, for g_{ij} transition functions of $\mathcal{T}_{\mathcal{M}}$.

Super Atiyah Class

$$\mathfrak{At}_{\mathcal{T}_{\mathcal{M}}}: H^{0}(\mathcal{M}, \mathcal{E}nd(\mathcal{T}_{\mathcal{M}})) \longrightarrow H^{1}(\mathcal{M}, \mathcal{T}_{\mathcal{M}}^{*} \otimes \mathcal{E}nd(\mathcal{T}_{\mathcal{M}}))$$

 $id_{\mathcal{T}_{\mathcal{M}}^{*} \otimes \mathcal{T}_{\mathcal{M}}} \longmapsto \mathfrak{At}(\mathcal{T}_{\mathcal{M}}) := \delta(id_{\mathcal{T}_{\mathcal{M}}^{*} \otimes \mathcal{T}_{\mathcal{M}}}).$

Let \mathcal{M} be a complex supermanifold, let X as above and let $\pi : X \to \mathcal{M}$ be the projection map. Then one has the following natural isomorphism

 $Ext^{1}(\pi^{*}\mathcal{T}_{\mathcal{M}},\pi^{*}\Omega^{1}_{\mathcal{M}})\cong H^{1}(\mathcal{M},\mathcal{T}^{*}_{\mathcal{M}}\otimes \mathcal{E}nd(\mathcal{T}_{\mathcal{M}})).$

Cocycles are elements of the form $-(dg_{ij})g_{ij}^{-1}$, for g_{ij} transition functions of $\mathcal{T}_{\mathcal{M}}$.

Super Atiyah Class

$$\mathfrak{At}_{\mathcal{T}_{\mathcal{M}}}: H^{0}(\mathcal{M}, \mathcal{E}nd(\mathcal{T}_{\mathcal{M}})) \longrightarrow H^{1}(\mathcal{M}, \mathcal{T}_{\mathcal{M}}^{*} \otimes \mathcal{E}nd(\mathcal{T}_{\mathcal{M}}))$$
$$id_{\mathcal{T}_{\mathcal{M}}^{*} \otimes \mathcal{T}_{\mathcal{M}}} \longmapsto \mathfrak{At}(\mathcal{T}_{\mathcal{M}}) := \delta(id_{\mathcal{T}_{\mathcal{M}}^{*} \otimes \mathcal{T}_{\mathcal{M}}}).$$

• Representatives are again given by $-(dg_{ij})g_{ij}^{-1}$;

• $\mathfrak{A}\mathfrak{t}(\mathcal{T}_{\mathcal{M}}) = 0$ if and only if \mathcal{M} admits an affine connection (same as usual!).

Let \mathcal{M} be a complex supermanifold, let X as above and let $\pi : X \to \mathcal{M}$ be the projection map. Then one has the following natural isomorphism

$$\operatorname{Ext}^1(\pi^*\mathcal{T}_{\mathcal{M}},\pi^*\Omega^1_{\mathcal{M}})\cong H^1(\mathcal{M},\mathcal{T}^*_{\mathcal{M}}\otimes \operatorname{\mathcal{E}nd}(\mathcal{T}_{\mathcal{M}})).$$

In particular, the extension

$$0 \longrightarrow \pi^*\Omega^1_{\mathcal{M}} \longrightarrow \Omega^1_X \longrightarrow \pi^*\mathcal{T}_{\mathcal{M}} \longrightarrow 0$$

is split if and only if $\mathfrak{A}(\mathcal{T}_{\mathcal{M}})$ is trivial if and only if \mathcal{M} admits an affine connection.

Let \mathcal{M} be a complex supermanifold, let X as above and let $\pi : X \to \mathcal{M}$ be the projection map. Then one has the following natural isomorphism

$$\operatorname{Ext}^1(\pi^*\mathcal{T}_{\mathcal{M}},\pi^*\Omega^1_{\mathcal{M}})\cong H^1(\mathcal{M},\mathcal{T}^*_{\mathcal{M}}\otimes \operatorname{\mathcal{E}nd}(\mathcal{T}_{\mathcal{M}})).$$

In particular, the extension

$$0 \longrightarrow \pi^*\Omega^1_{\mathcal{M}} \longrightarrow \Omega^1_X \longrightarrow \pi^*\mathcal{T}_{\mathcal{M}} \longrightarrow 0$$

is split if and only if $\mathfrak{A}(\mathcal{T}_{\mathcal{M}})$ is trivial if and only if \mathcal{M} admits an affine connection.

...this is related to \mathcal{M} being "split"...

Structural Exact Sequence for \mathcal{M}

$$0 \longrightarrow \mathcal{J}_{\mathcal{M}} \longrightarrow \mathcal{O}_{\mathcal{M}} \longrightarrow \mathcal{O}_{\mathcal{M}_{red}} \longrightarrow 0.$$

Structural Exact Sequence for \mathcal{M}

$$0 \longrightarrow \mathcal{J}_{\mathcal{M}} \longrightarrow \mathcal{O}_{\mathcal{M}} \longrightarrow \mathcal{O}_{\mathcal{M}_{red}} \longrightarrow 0.$$

- J_M, the *nilpotent sheaf*, is a sheaf of ideals generated by all the nilpotent sections in O_M.
- **2** $\mathcal{F}_{\mathcal{M}} := \mathcal{J}_{\mathcal{M}} / \mathcal{J}_{\mathcal{M}}^2$, the *fermionic sheaf*, is a locally-free sheaf of $\mathcal{O}_{\mathcal{M}_{red}}$ -modules.

Structural Exact Sequence for \mathcal{M}

$$0 \longrightarrow \mathcal{J}_{\mathcal{M}} \longrightarrow \mathcal{O}_{\mathcal{M}} \longrightarrow \mathcal{O}_{\mathcal{M}_{red}} \longrightarrow 0.$$

- J_M, the *nilpotent sheaf*, is a sheaf of ideals generated by all the nilpotent sections in O_M.
- $\ \, {\cal G}_{\mathcal M}:={\cal J}_{\mathcal M}/{\cal J}^2_{\mathcal M}, \ \, \text{the fermionic sheaf, is a locally-free sheaf of } {\cal O}_{{\cal M}_{red}}-\text{modules}.$

Projected and Split Supermanifolds

9 \mathcal{M} is *projected* if $\mathcal{O}_{\mathcal{M}} \cong \mathcal{O}_{\mathcal{M}_{red}} \oplus \mathcal{J}_{\mathcal{M}} \iff$ the above sequence splits;

 $\textbf{@} \ \mathcal{M} \text{ is } \textit{split} \text{ if } \mathcal{O}_{\mathcal{M}} \cong \wedge^{\bullet}_{\mathcal{M}_{red}} \mathcal{F}_{\mathcal{M}} \iff \mathcal{O}_{\mathcal{M}} \text{ is a sheaf of exterior } \mathcal{O}_{\mathcal{M}_{red}} \text{-algebras}.$
Total Cotangent Space and Complex Supermanifolds

Structural Exact Sequence for \mathcal{M}

$$0 \longrightarrow \mathcal{J}_{\mathcal{M}} \longrightarrow \mathcal{O}_{\mathcal{M}} \longrightarrow \mathcal{O}_{\mathcal{M}_{red}} \longrightarrow 0.$$

- *J*_M, the *nilpotent sheaf*, is a sheaf of ideals generated by all the nilpotent sections in *O*_M.
- $\ \, {\cal S}_{\mathcal M}:={\cal J}_{\mathcal M}/{\cal J}^2_{\mathcal M}, \ \, \text{the fermionic sheaf, is a locally-free sheaf of } {\cal O}_{{\cal M}_{red}}-\text{modules.}$

Projected and Split Supermanifolds

9 \mathcal{M} is *projected* if $\mathcal{O}_{\mathcal{M}} \cong \mathcal{O}_{\mathcal{M}_{red}} \oplus \mathcal{J}_{\mathcal{M}} \iff$ the above sequence splits;

 $\textbf{ @ } \mathcal{M} \text{ is } \textit{split} \text{ if } \mathcal{O}_{\mathcal{M}} \cong \wedge^{\bullet}_{\mathcal{M}_{red}} \mathcal{F}_{\mathcal{M}} \iff \mathcal{O}_{\mathcal{M}} \text{ is a sheaf of exterior } \mathcal{O}_{\mathcal{M}_{red}} \text{-algebras}.$

Obstruction Theory (to Splitting \mathcal{M})

Even Obstructions : $H^1(\mathcal{M}, \mathcal{H}om_{\mathcal{O}_{\mathcal{M}_{red}}}(\wedge^{2i+2}\mathcal{F}^*_{\mathcal{M}}, \mathcal{T}_{\mathcal{M}_{red}}))$

 $\mathsf{Odd} \; \mathsf{Obstructions} : H^1(\mathcal{M}, \mathcal{H}\textit{om}_{\mathcal{O}_{\mathcal{M}_{red}}}(\wedge^{2i+1}\mathcal{F}^*_{\mathcal{M}}, \mathcal{F}^*_{\mathcal{M}}))$

Split and Projected Supermanifolds

Structural Exact Sequence for \mathcal{M}

$$0 \longrightarrow \mathcal{J}_{\mathcal{M}} \longrightarrow \mathcal{O}_{\mathcal{M}} \longrightarrow \mathcal{O}_{\mathcal{M}_{red}} \longrightarrow 0.$$

- J_M, the *nilpotent sheaf*, is a sheaf of ideals generated by all the nilpotent sections in O_M.
- $\ \, {\cal S}_{\mathcal M}:={\cal J}_{\mathcal M}/{\cal J}^2_{\mathcal M}, \ \, \text{the fermionic sheaf, is a locally-free sheaf of } {\cal O}_{{\cal M}_{red}}-\text{modules.}$

Projected and Split Supermanifolds

• \mathcal{M} is projected if $\mathcal{O}_{\mathcal{M}} \cong \mathcal{O}_{\mathcal{M}_{red}} \oplus \mathcal{J}_{\mathcal{M}}$;

$$\mathfrak{M} \text{ is } split \text{ if } \mathcal{O}_{\mathcal{M}} \cong \wedge^{\bullet}_{\mathcal{M}_{red}} \mathcal{F}_{\mathcal{M}}.$$

Obstruction Theory

Fundamental Obstruction: $H^1(\mathcal{M}, \mathcal{T}_{\mathcal{M}_{red}} \otimes_{\mathcal{O}_{\mathcal{M}_{red}}} \wedge^2 \mathcal{F}_{\mathcal{M}}))$

(日) (同) (日) (日)

Split and Projected Supermanifolds

Structural Exact Sequence for \mathcal{M}

$$0 \longrightarrow \mathcal{J}_{\mathcal{M}} \longrightarrow \mathcal{O}_{\mathcal{M}} \longrightarrow \mathcal{O}_{\mathcal{M}_{red}} \longrightarrow 0.$$

- If J_M, the *nilpotent sheaf*, is a sheaf of ideals generated by all the nilpotent sections in O_M.
- **2** $\mathcal{F}_{\mathcal{M}} := \mathcal{J}_{\mathcal{M}} / \mathcal{J}_{\mathcal{M}}^2$, the *fermionic sheaf*, is a locally-free sheaf of $\mathcal{O}_{\mathcal{M}_{red}}$ -modules.

Projected and Split Supermanifolds

1 \mathcal{M} is projected if $\mathcal{O}_{\mathcal{M}} \cong \mathcal{O}_{\mathcal{M}_{red}} \oplus \mathcal{J}_{\mathcal{M}}$;

9
$$\mathcal{M}$$
 is *split* if $\mathcal{O}_{\mathcal{M}} \cong \wedge^{\bullet}_{\mathcal{M}_{red}} \mathcal{F}_{\mathcal{M}}$.

A Non-Projected Supermanifold

$$X^2 + Y^2 + Z^2 + \Theta_1 \Theta_2 = 0 \quad \subseteq \quad \mathbb{CP}^{2|2}$$

A > < > > < >

Theorem (Koszul (1994))

If \mathcal{M} admits an affine connection, then it is split. In particular, the affine connection defines a unique splitting of the supermanifold.

Theorem (Koszul (1994))

If \mathcal{M} admits an affine connection, then it is split. In particular, the affine connection defines a unique splitting of the supermanifold.

Theorem (Donagi & Witten (2014))

The restriction $\mathcal{T}_M \lfloor_{\mathcal{M}_{red}}$ of the tangent sheaf to \mathcal{M}_{red} induces the following decomposition

$$\mathfrak{At}(\mathcal{T}_{\mathcal{M}}) \mid_{\mathcal{M}_{red}} = \mathfrak{At}(\mathcal{T}_{\mathcal{M}_{red}}) \oplus \omega_{\mathcal{M}} \oplus \mathfrak{At}(\mathcal{J}_{\mathcal{M}}/\mathcal{J}_{\mathcal{M}}^2).$$

where:

$$\ \ \, \mathfrak{At}(\mathcal{T}_{\mathcal{M}_{red}})\in H^1(\mathcal{M},\mathcal{H}om(S^2\mathcal{T}_{\mathcal{M}_{red}},\mathcal{T}_{\mathcal{M}_{red}}))= the \ \, Atiyah \ \, class \ of \ \, \mathcal{T}_{\mathcal{M}_{red}};$$

ω_M ∈ H¹(M, T<sub>M_{red} ⊗ ∧²F_M) = first obstruction class to splitting M;
 𝔄 𝔅𝔅(F_M) ∈ H¹(M, Hom(T_{M_{red}} ⊗ F_M, F_M)) = Atiyah class of F_M.
</sub>

Total Cotangent Space and Complex Supermanifolds

Theorem

The extension exact sequence for Ω^1_X

$$0 \longrightarrow \pi^*\Omega^1_{\mathcal{M}} \longrightarrow \Omega^1_X \longrightarrow \pi^*\mathcal{T}_{\mathcal{M}} \longrightarrow 0$$

is split if and only if $\mathfrak{At}(\mathcal{T}_{\mathcal{M}})$ is trivial if and only if \mathcal{M} admits an affine connection.

For this to be true, necessary conditions to be satisfied are:

- $\mathcal{T}_{\mathcal{M}_{red}}$ admits a holomorphic connection;
- $\mathcal{F}_{\mathcal{M}}$ admits a holomorphic connection;
- M is split.

That's a lot to ask for..

A class of complex supermanifolds satisfying the above are complex Lie supergroups.

Comments & Outlooks

For a complex (compact Kähler) manifold At(T_X) contains informations on all Chern classes c_k(X) : if At(T_X) = 0 then c_k(T_X) = 0 for every k.

 $\mathfrak{At}(\mathcal{T}_{\mathcal{M}})$ contains informations on all the Chern classes of $\mathcal{T}_{\mathcal{M}_{rel}}$ and $\mathcal{F}_{\mathcal{M}}$ but also on all the obstructions to splitting \mathcal{M} !

Comments & Outlooks

For a complex (compact Kähler) manifold At(T_X) contains informations on all Chern classes c_k(X) : if At(T_X) = 0 then c_k(T_X) = 0 for every k.

 $\mathfrak{At}(\mathcal{T}_{\mathcal{M}})$ contains informations on all the Chern classes of $\mathcal{T}_{\mathcal{M}_{red}}$ and $\mathcal{F}_{\mathcal{M}}$ but also on all the obstructions to splitting \mathcal{M} !

Odd symplectic geometry in the holomorphic category?

Theorem (Schwarz)

Every odd symplectic supermanifold (\mathcal{M}, ω) is globally symplectomorphic to a total cotangent space supermanifold X.

Couple of Questions...

- Does this hold true in the holomorphic category?
- Can one find an example of complex supermanifold admitting a (globally defined holomorphic) odd symplectic form which does not fall in Schwarz's class?

< 回 > < 三 > < 三

... THANKS A LOT ...!

2

・ロト ・回ト ・ヨト ・ヨト