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Mean-field PDE models

4



Regularized scalar conservation laws

Consider
∂tu+∇ · f(u) = β∇ · (A(u)∇u),

where the known variable is u = u(t, x), (t, x) ∈ R+ × Rd, f : Rd → Rd

is a flux function, A(u) ∈ Rd×d is a positive semi-definite matrix
function, and β > 0 is a viscosity constant.

The PDE is known as a regularized scalar conservation law.
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Conservation laws and generalized optimal transport

Based on recent thanksgiving holiday studies 2019–2021, we are working
on conservation laws, generalized optimal transport and mean field
control problems.

As is known in literature, there are actively joint studies to work on
entropy, Fisher information, and transportation. Nowadays, these
connections have applications in mean field games, information theory,
AI, quantum computing, computational graphics, computational physics
and Bayesian inverse problems.

In this talk, we connect Lax’s entropy-entropy flux in conservation laws
with optimal transport type metric spaces. Following this connection, we
further design variational discretizations for conservation laws and mean
field control of conservation laws. This includes a new and efficient
method for developing unconditionally stable in time implicit
approximations to regularized conservation laws and many other initial
value problems.
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Entropy, Information, transportation
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Heat equation and Entropy dissipation

Consider the heat equation in Rd by

∂u(t, x)

∂t
= ∇ · (∇u(t, x)) = ∆u(t, x).

Consider the negative Boltzmann-Shannon entropy given by

H(u) = −
∫
Rd

u(x)(log u(x)− 1)dx.

Along the time evolution of heat equation, the following dissipation
relation holds:

d

dt
H(u(t, ·)) =

∫
Rd

∥∇xlog u(t, x)∥2u(t, x)dx = I(u(t, ·)),

where I(u) is the Fisher information functional.

There is a formulation behind this relation, namely

▶ The heat flow is a gradient descent flow of entropy in optimal
transport metric.
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Optimal transport

What is the optimal way to move or transport the mountain with shape
X, density u0(x) to another shape Y with density u1(y)?
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Literature

The optimal transport problem was first introduced by Monge in 1781
and relaxed by Kantorovich (Nobel prize) in 1940. It defines a distance in
the space of probability distributions, named optimal transport,
Wasserstein distance, or Earth Mover’s distance.

▶ Mapping/Monge-Ampére equation: Gangbo, Brenier, et.al;

▶ Gradient flows: Otto, Villani, Ambrosio, Gigli, Savare, Carillo,
Mielke, et.al;

▶ Hamiltonian flows: Compressible Euler equations, Potential mean
field games, Schrodinger bridge problems, Schrodinger equations:
Benamou, Brenier, Lions, Georgiou, Nelson, Lafferty, et.al.

▶ Numerical OT and MFG: Benamou, Nurbekyan, Oberman, Osher,
Achdou, et.al.

We first review the classical optimal transport and its relations with
entropy. We next design generalized optimal transport problems and
mean field controls for conservation laws with entropy-entropy flux pairs.
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Entropy dissipation = Lyapunov methods

The gradient flow of the negative entropy

−H(u) =

∫
Rd

u(x)log u(x)dx,

w.r.t. optimal transport metric distance satisfies

∂u

∂t
= ∇ · (u∇log u) = ∆u.

Here the major trick is that

u∇ log u = ∇u.

In this way, one can study the entropy dissipation by

− d

dt
H(u) = −

∫
Rd

log u∇ · (u∇log u)dx =

∫
Rd

∥∇ log u∥2udx.
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Lyapunov method induced calculus

Informally speaking, Wasserstein-Otto metric refers to the following
bilinear form:

⟨u̇1,G(u)u̇2⟩ =
∫
(u̇1, (−∆u)

−1u̇2)dx.

In other words, denote
∆u = ∇ · (u∇),

and u̇i = −∆uϕi = −∇ · (u∇ϕi), i = 1, 2, then

⟨ϕ1,G(u)−1ϕ2⟩ = ⟨ϕ1,−∇ · (u∇)ϕ2⟩ =
∫
(∇Φ1,∇Φ2)udx,

where u ∈ P(Ω), u̇i is the tangent vector in P(Ω) with∫
u̇idx = 0,

and ϕi ∈ C∞(Ω) are cotangent vectors in P(Ω) at the point u. Here ∇·,
∇ are standard divergence and gradient operators in Ω.
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Gradient flows

The Wasserstein gradient flow of an energy functional F(u) leads to

∂tu =− G(u)−1 δ

δu
F(u)

=∇ · (u∇ δ

δu
F(u)).

▶ If F(u) =
∫
F (x)u(x)dx, then

∂tu = ∇ · (u∇F (x)).

▶ If F(u) =
∫
u(x) log u(x)dx, then

∂tu = ∇ · (u∇ log u) = ∆u.
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Hamiltonian flows

Consider the Lagrangian functional

L(u, ∂tu) =
1

2

∫ (
∂tu, (−∇ · (u∇))−1∂tu

)
dx−F(u).

By the Legendre transform,

H(u, ϕ) = sup
∂tu

∫
∂tuϕdx− L(u, ∂tu).

And the Hamiltonian system follows

∂tu =
δ

δϕ
H(u, ϕ), ∂tϕ = − δ

δu
H(u, ϕ),

where δ
δu ,

δ
δϕ are L2 first variation operators w.r.t. u, ϕ, respectively and

the density Hamiltonian forms

H(u, ϕ) =
1

2

∫
∥∇ϕ∥2udx+ F(u).

Here u is the “density” state variable and ϕ is the “density” moment
variable.
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Examples: Optimal transport and mean field games

Thus, the Hamiltonian flow satisfies
∂tu+∇ · (u∇ϕ) = 0

∂tϕ+
1

2
∥∇ϕ∥2 = − δ

δu
F(u).

This is a well known dynamic, which is studied in potential mean field
games, optimal transport and PDE.
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Optimal transport type formulaisms

We are currently working on the “universe” of generalized optimal
transport and mean field games.

▶ AI theory, inference, and computations;

▶ Quantum computing;

▶ Algorithms of mean-field MCMC algorithms, and numerical PDEs.

In this lecture, we point out that there are optimal transport type
formalisms to study the control of conservation laws and to design
variational numerical schemes.

Related works
▶ Godunov (1970);

▶ Lax–Friedrichs (1971);

▶ Brenier (2018);

▶ Osher, Shu, Harten, van Leer: Monotone schemes, TVD schemes,
ENO, WENO, et.al.
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Main topic: Controlling conservation laws

17



Entropy-Entropy flux pairs

Consider
∂tu(t, x) +∇x · f(u) = 0.

where
u : R+ × Rn → Rd,

and
f : Rd → Rd.

Definition (Entropy-entropy flux pair for systems (Lax))
We call (G,Ψ) an entropy-entropy flux pair for the above conservation
law system if there exists a convex function G : Rd → R, and
Ψ: Rd → R, such that

Ψ′(u) = G′(u)f ′(u).

And an entropy solution satisfies

∂tG(u) +∇x ·Ψ(u) ≤ 0.

This is trivial for scalar conservation laws, where d = 1. 18



Lyapunov methods: Entropy-Entropy flux

Denote

G(u) =
∫
Ω

G(u)dx.

In this case, ∫
Ω

G′(u)∇ · f(u)dx =

∫
Ω

G′(u)(f ′(u),∇u)dx

=

∫
Ω

(Ψ′(u),∇u)dx

=

∫
Ω

∇ ·Ψ(u)dx = 0,

where we apply the fact that f ′(u)G′(u) = Ψ′(u) and
∫
Ω
∇·Ψ(u)dx = 0.
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Lyapunov methods: Viscosity

In addition,∫
Ω

G′(u)∇ · (A(u)∇u)dx =−
∫
Ω

(
∇G′(u), A(u)∇u

)
dx

=−
∫
Ω

(
∇G′(u), A(u)G′′(u)−1∇G′(u)

)
dx,

where we apply
∇G′(u) = G′′(u)∇u,

in the last equality. We require that

A(u)G′′(u)−1 ⪰ 0,

and A is nonnegative definite, G′′(u) > 0.
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Entropy-Entropy flux-Fisher information dissipation

Hence we know that

∂tG(u) =
∫
Ω

G′(u) · ∂tudx

=− β

∫
Ω

(
∇G′(u), A(u)G′′(u)−1∇G′(u)

)
dx ≤ 0.

This implies that G(u) is a Lyapunov functional for regularized
conservation laws.
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Entropy-Entropy flux-transport metrics

Definition (Entropy-entropy flux-metric condition)
We call (G,Ψ) an entropy-entropy flux pair-metric for conservation laws
if there exists a convex function G : Rd → R, and Ψ: Rd → R, such that

Ψ′(u) = G′(u)f ′(u),

and
A(u)G′′(u)−1 is symmetric positive semi-definite.
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Lyapunov methods induced transport metrics

Under the entropy-entropy flux-metric condition, there is a metric
operator for regularized conservation laws. Define the space of function u
by

M =
{
u ∈ C∞(Ω):

∫
Ω

u(x)dx = constant
}
.

The tangent space of M(u) at point u satisfies

TuM =
{
σ ∈ C∞(Ω):

∫
Ω

σ(x)dx = 0
}
.

Denote an elliptic operator LC : C
∞(Ω) → C∞(R) by

LC(u) = −∇ · (A(u)G′′(u)−1∇).
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Lyapunov methods induced transport metrics

Definition (Metric)
The inner product g(u) : TuM× TuM → R is given below.

g(u)(σ1, σ2) =

∫
Ω

(Φ1, LC(u)Φ2)dx

=−
∫
Ω

Φ1∇ · (A(u)G′′(u)−1∇Φ2)dx

=

∫
Ω

(∇Φ1, A(u)G
′′(u)−1∇Φ2)dx

=

∫
Ω

σ1Φ2dx =

∫
Ω

σ2Φ1dx,

where Φi ∈ C∞(Ω) satisfies

σi = −∇ · (A(u)G′′(u)−1∇Φi), i = 1, 2.
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Entropy induced Gradient flows

Proposition (Gradient flow)
Given an energy functional E : M → R, the gradient flow of E in (M,g)
satisfies

∂tu = ∇ · (A(u)G′′(u)−1∇ δ

δu
E(u)).

If E(u) = G(u) =
∫
Ω
G(u)dx, then the above gradient flow satisfies

∂tu = ∇ · (A(u)∇u).
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Flux-gradient flows

Definition (Flux–gradient flow)
Given an energy functional E : M → R, consider a class of PDE

∂tu+∇x · f1(x, u) = β∇x · (A(u)G′′(u)−1∇x
δ

δu
E(u)), (1)

where f1 : Ω× R1 → Rn is a flux function satisfying∫
Ω

f1(x, u) · ∇x
δ

δu(x)
E(u)dx = 0.
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Example
If E(u) = G(u) =

∫
Ω
G(u)dx and f1(x, u) = f(u), then equation (1)

forms regularized conservation laws.

∂tu+∇x · f(u) =β∇x · (A(u)G′′(u)−1∇x
δ

δu
G(u))

=β∇x · (A(u)G′′(u)−1∇xG
′(u))

=β∇x · (A(u)G′′(u)−1G′′(u)∇xu)

=β∇x · (A(u)∇u),

and ∫
Ω

∇x
δ

δu
G(u) · f(u)dx =

∫
Ω

∇xG
′(u) · f(u)dx

=−
∫
Ω

G′(u) ·
(
∇x · f(u)

)
dx

=−
∫
Ω

∇ ·Ψ(u)dx

=0.
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Controlling flux-gradient flows

Given smooth functionals F , H : M → R, consider a variational problem

inf
u,v,u1

∫ 1

0

[ ∫
Ω

1

2

(
v,A(u)G′′(u)−1v

)
dx−F(u)

]
dt+H(u1),

where the infimum is taken among variables v : [0, 1]× Ω → Rn,
u : [0, 1]× Ω → R, and u1 : Ω → R satisfying

∂tu+∇ · f(u) +∇ · (A(u)G′′(u)−1v) = β∇ · (A(u)∇u),

and
u(0, x) = u0(x).
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Primal-dual conservation laws

Proposition (Hamiltonian flows of conservation laws)
The critical point system of the variational problem is given below. There
exists a function Φ: [0, 1]× Ω → R, such that

v(t, x) = ∇Φ(t, x),

and
∂tu+∇ · f(u) +∇ · (A(u)G′′(u)−1∇Φ) = β∇ · (A(u)∇u),

∂tΦ+ (∇Φ, f ′(u)) +
1

2
(∇Φ, (A(u)G′′(u)−1)′∇Φ) +

δ

δu
F(u)

= −β∇ · (A(u)∇Φ) + β(∇Φ, A′(u)∇u).

(2)

Here ′ represents the derivative w.r.t. variable u. The initial and terminal
time conditions satisfy

u(0, x) = u0(x),
δ

δu1
H(u1) + Φ(1, x) = 0.
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Hamiltonian flows of conservation laws

Proposition
The primal-dual conservation law system (2) has the following
Hamiltonian flow formulation.

∂tu =
δ

δΦ
HG(u,Φ), ∂tΦ = − δ

δu
HG(u,Φ),

where we define the Hamiltonian functional HG : M× C∞(Ω) → R by

HG(u,Φ) =

∫
Ω

[1
2
(∇Φ, A(u)G′′(u)−1∇Φ) + (∇Φ, f(u))

− β(∇Φ, A(u)∇u)
]
dx+ F(u).

In other words, the Hamiltonian functional HG(u,Φ) is conserved along
Hamiltonian dynamics:

d

dt
HG(u,Φ) = 0.
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Modeling: Controlling traffic flows

Position control. The unknown variable u in traffic flows represents the
density function of cars (particles) in a given spatial domain. Here, the
background dynamics of u is the classical traffic flow. The control
variable is the velocity for enforcing each car’s velocity in addition to its
background traffic flow dynamics. The goal is to control the “total
enforced kinetic energy” of all cars, in which individual cars can
determine their velocities through both noise and traffic flow interactions.
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Controlling Traffic flow problems

Consider

inf
u,v,u1

∫ 1

0

[ ∫
Ω

1

2
∥v(t, x)∥2u(t, x)dx−F(u)

]
dt+H(u1), (3a)

such that
0 ≤ u(t, x) ≤ 1, for all t ∈ [0, 1],

and

∂tu(t, x)+∇·
(
u(t, x)(1−u(t, x))

)
+∇·

(
u(t, x)v(t, x)

)
= β∆u(t, x), (3b)

with
u(0, x) = u0(x).

32



Controlling traffic flow dynamics

There exists a scalar function Φ, such that

v(t, x) = ∇Φ(t, x),

and 
∂tu+∇ ·

(
u(1− u)

)
+∇ ·

(
u∇Φ

)
= β∆u,

∂tΦ+
(
1− 2u,∇Φ

)
+

1

2
∥∇Φ∥2 + δ

δu
F(u) = −β∆Φ.
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The Primal-dual Algorithms

The classical primal-dual hybrid gradient algorithms (PDHG) solves the
following saddle point problem

min
z

max
p

⟨Kz, p⟩L2 + g(z)− h∗(p).

When the operator K is nonlinear, we apply its extension with

K(z) ≈ K(z̄) +∇K(z̄)(z − z̄).

Here, the extension of the PDHG scheme is as follows

zn+1 = argmin
z

⟨z, [∇K(zn)]T p̄n⟩L2 + g(z) +
1

2τ
∥z − zn∥2

L2 ,

pn+1 = argmax
p

⟨K(zn+1), p⟩L2 − h∗(p)−
1

2σ
∥p− pn∥2

L2 ,

p̄n+1 = 2pn+1 − pn.

Set

z = (u,m), p = Φ,

K ((u,m)) = ∂tu+∇ · f(u) +∇ ·m− β∆u,

g ((u,m)) =

∫ 1

0

(∫
Ω

∥m∥2

2u
+ 1[0,1](u)dx−F(u)

)
dt,

h(Kz) =

{
0 if Kz = 0

+∞ else
. 34



Solve the Control Problem with Primal-dual Algorithms

We rewrite the varational problem as follows:

inf
u,m

sup
Φ

L(u,m,Φ), with u(0, x) = u0(x), Φ(1, x) = − δ

δu(1, x)
H(u),

L(u,m,Φ) =

∫ 1

0

(∫
Ω

∥m∥2

2u
+ 1[0,1](u)dx−F(u)

)
dt

+

∫ 1

0

∫
Ω

Φ (∂tu+∇ · f(u) +∇ ·m− β∆u) dxdt,

and f(u) = u(1− u) is the traffic flux function. We denote the indicator

function by 1A(x) =

{
+∞ x /∈ A

0 x ∈ A
.
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Algorithm

Algorithm :PDHG for the conservation law control system

While k < Maximal number of iteration(
u(k+1),m(k+1)

)
= argminu L(u,m, Φ̄(k)) + 1

2τ ∥(u,m)− (u(k),m(k))∥2L2 ;

Φ(k+1) = argmaxΦ L(u(k+1),m(k+1),Φ)− 1
2σ∥Φ− Φ(k)∥2

H2
1
;

Φ̄(k+1) = 2Φ(k+1) − Φ(k);

36



Monotone schemes

Definition
For p, q ∈ N, a scheme

uk+1
j = G(uk

j−p−1, ..., u
k
j+q)

is called a monotone scheme if G is a monotonically nondecreasing function of
each argument.

Lax–Friedrichs Scheme. For discretization ∆t,∆x in time and space, denote
uk
j = u(k∆t, j∆x), then the Lax–Friedrichs scheme is as follows

uk+1
j = uk

j−
∆t

2∆x

(
f(uk

j+1)− f(uk
j−1)

)
+(β+c∆x)

∆t

(∆x)2

(
uk
j+1 − 2uk

j + uk
j−1

)
.

To guarantee that the above scheme is monotone, we need:

1− 2(β + c∆x)
∆t

(∆x)2
≥ 0, −

∆t

2∆x
|f ′(u)|+ (β + c∆x)

∆t

(∆x)2
≥ 0.

As we want the scheme works when β → 0, the restriction on c and space–time
stepsizes can be simplified as follows:

c ≥
1

2
|f ′(u)|, (∆x)2 ≥ 2(β + c∆x)∆t.

The first inequality suggests the artificial viscosity we need to add. The second one

impose a strong restriction on the stepsize in time when β > 0.
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Discretization of the control problem

We consider the control problem of scalar conservation law defined in
[0, b]× [0, 1] with periodic boundary condition on the spatial domain.
Given Nx, Nt > 0, we have ∆x = b

Nx
, ∆t = 1

Nt
. For xi = i∆x, tl = l∆t,

define
ul
i = u(tl, xi) 1 ≤ i ≤ Nx, 0 ≤ l ≤ Nt,

ml
1,i = (mx1 (tl, xi))

+ 1 ≤ i ≤ Nx, 0 ≤ l ≤ Nt − 1,

ml
2,i = − (mx1 (tl, xi))

− 1 ≤ i ≤ Nx, 0 ≤ l ≤ Nt − 1,

Φl
i = Φ(tl, xi) 1 ≤ i ≤ Nx, 0 ≤ l ≤ Nt,

ΦNt
i = −

δ

δu(1, xi)
H(uNt

i ) 1 ≤ i ≤ Nx,

where u+ := max(u, 0) and u− = u+ − u. Note here ml
1,i ∈ R+,ml

2,i ∈ R−. Denote

(Du)i :=
ui+1 − ui

∆x

[Du]i :=
(
(Du)i , (Du)i−1

)
̂[Du]i =

(
(Du)+i ,− (Du)−i−1

)
Lap(u)i =

ui+1 − 2ui + ui−1

(∆x)2
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Discretization of the control problem

The first conservation law equation adapted from the Lax–Friedrichs
scheme satisfies(
ul+1
i − ul

i

)
∆t

+

(
f(ul+1

i+1)− f(ul+1
i−1)

)
2∆x

+(Dm)l1,i−1+(Dm)l2,i = (β+c∆x)Lap(u)l+1
i .

Following the discretization of the conservation law, the discrete saddle point problem
has the following form:

min
u,m

max
Φ

L(u,m,Φ),

where

L(u,m,Φ) = ∆x∆t
∑
i,l

(ml−1
1,i )2 + (ml−1

2,i )2

2ul
i

+ 1[0,1](u
l
i)−∆t

∑
l

F(ul) + ∆x
∑
i

H(uNt
i )

+ ∆x∆t
∑
i,l

Φl
i

(ul+1
i − ul

i

∆t
+

f(ul+1
i+1)− f(ul+1

i−1)

2∆x
+ (Dm)l1,i−1 + (Dm)l2,i

− (β + c∆x)Lap(u)l+1
i

)
.
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Discretization of the control problem

By taking the first order derivative of ul
i, we automatically get the

implicit finite difference scheme for the dual equation of Φ that is
backward in time:

1

∆t

(
Φl+1

i − Φl
i

)
+
(Φl

i+1 − Φl
i−1)

2∆x
f ′(ul

i)+
1

2
∥[D̂Φ]li∥2+

δF(ul
i)

δu
= −(β+c∆x)Lap(Φ)li.

The discrete form of the Hamiltonian functional at t = tl takes the form

HG(u,Φ) =
∑
i

(
1

2
∥[D̂Φ]li∥2ul

i +
(Φl

i+1 − Φl
i−1)

2∆x
f(ul

i) + (β + c∆x)ul
iLap(Φ)li

)
−F(ul).

▶ When f(u) = 0, the above discretization reduces to the finite difference
scheme for the mean-field game system.

▶ When F = 0, H = c for some constant c, the variational problem
becomes classical conservation laws with initial data. No control will be
enforced on the density function u.

▶ Our algorithm provides an alternative way to solve the nonlinear
conservation law with implicit discretization in time.
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Example 1: Traffic flows

We consider the traffic flow equation

∂tu+ ∂xf(u) = 0, u(0, x) =

{
0.8, 1 ≤ x ≤ 2

0 else
,

where f(u) = 1
2
u(1− u),F = 0,H = 0, β = 0, k = 0.5.

Figure: Left: a comparison with the exact entropy solution at t = 1; middle:
the numerical solution via solving the control problem; right: the numerical
solution to the conservation law using Lax–Friedrichs scheme.
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Example 2: Traffic flows transport problems

We consider the traffic flow equation with f(u) = u(1− u), β = 0.1,
F = 0, c = 0.5. The final cost functional

H(u(1, ·)) = µ

∫
Ω

u(1, x) log(
u(1, x)

u1
)dx, µ = 1.

We set

u0 = 0.001 + 0.9e−10(x−2)2 ,

u1 = 0.001 + 0.45e−10(x−1)2 + 0.45e−10(x−3)2 .

We also compare the result from the control of conservation law with a
mean-field game problem, i.e., f = 0.
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Example 2: Traffic flows transport problems
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Figure: From left to right: initial configurations of u0, u1, solution u(1, x) for
the control of conservation law, solution u(1, x) for the mean-field game
problem.

Figure: Left: solution u(t, x) for the problem of controlling the conservation
law; right: solution u(t, x) for the mean-field game problem. 43



Example 3: Traffic control

Consider the traffic flow equation with f(u) = u(1− u),
β = 10−3,F = −α

∫
Ω
u log(u)dx, α ≥ 0. The final cost functional

H(u(1, ·)) =
∫
Ω
u(1, x)g(x)dx. The initial density and final cost function

are as follows

u0(x) =

{
0.4 0.5 ≤ x ≤ 1.5

10−3 else
, g(x) = −0.1 sin(2πx).

Figure: Solution u(t, x) for the problem of controlling the conservation law.
From left to right: α = 0, 0.5, 1.
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Example 3: Traffic control
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Figure: Left: boundary conditions for the control problems u0. Middle: solution
u(1, x) for the problem of controlling the conservation law. Right: the
numerical Hamiltonian HG(u,Φ).

Figure: Solution u(t, x) for the problem of controlling the conservation law.
From left to right: α = 0, 0.5, 1. 45



Extending to systems of conservation law

Figure: Control 1D compressible Navier-Stokes equations. Top: no control.
Bottom: with control.
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Road Ahead: Entropy, Information, transportation,

conservation laws

▶ Conservation law induced mean-field games;

▶ Conservation law enhanced sampling and AI optimization algorithms;

▶ Variational numerical schemes for conservation laws;

▶ Conservation law Quantum computing;

▶ Entropy dissipation of conservation law equations in generalized
optimal transport space.
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