
Introducing homotopy.io:
a proof assistant for geometrical

higher category theory

Jamie Vicary
Department of Computer Science, University of Cambridge

With Nathan Corbyn, Lukas Heidemann,
Nick Hu, David Reutter and Calin Tataru

Topological Quantum Field Theory Club
Instituto Superior Técnico, Portugal

4 May 2022

Working with higher categories

Higher categories are now important in many areas of mathematics
and computer science, including homotopy theory, quantum field
theory, type theory, and representation theory.

Working with higher categories

Higher categories are now important in many areas of mathematics
and computer science, including homotopy theory, quantum field
theory, type theory, and representation theory.

However, working with these structures poses many difficulties.

Working with higher categories

Higher categories are now important in many areas of mathematics
and computer science, including homotopy theory, quantum field
theory, type theory, and representation theory.

However, working with these structures poses many difficulties.

• How can we formally define the structure we are working with
(higher proof, manifold, 2-group, knot, etc)?

Working with higher categories

Higher categories are now important in many areas of mathematics
and computer science, including homotopy theory, quantum field
theory, type theory, and representation theory.

However, working with these structures poses many difficulties.

• How can we formally define the structure we are working with
(higher proof, manifold, 2-group, knot, etc)?

• How can we communicate it to collaborators and readers, and
learn more about it ourselves?

Working with higher categories

Higher categories are now important in many areas of mathematics
and computer science, including homotopy theory, quantum field
theory, type theory, and representation theory.

However, working with these structures poses many difficulties.

• How can we formally define the structure we are working with
(higher proof, manifold, 2-group, knot, etc)?

• How can we communicate it to collaborators and readers, and
learn more about it ourselves?

• How can we modify it, discover its properties, and prove
theorems about it?

Working with higher categories

Higher categories are now important in many areas of mathematics
and computer science, including homotopy theory, quantum field
theory, type theory, and representation theory.

However, working with these structures poses many difficulties.

• How can we formally define the structure we are working with
(higher proof, manifold, 2-group, knot, etc)?

• How can we communicate it to collaborators and readers, and
learn more about it ourselves?

• How can we modify it, discover its properties, and prove
theorems about it?

• How can we use computers to help us achieve these goals, not
only theoretically, but practically?

Working with higher categories

Higher categories are now important in many areas of mathematics
and computer science, including homotopy theory, quantum field
theory, type theory, and representation theory.

However, working with these structures poses many difficulties.

• How can we formally define the structure we are working with
(higher proof, manifold, 2-group, knot, etc)?

• How can we communicate it to collaborators and readers, and
learn more about it ourselves?

• How can we modify it, discover its properties, and prove
theorems about it?

• How can we use computers to help us achieve these goals, not
only theoretically, but practically?

This is the mathematics of the 21st century.
We are only starting to glimpse what is possible.

Graphical calculus
It is conjectured that n-categories have an n-dimensional graphical
calculus, which is the dual of the ordinary ‘commutative diagrams’.

s

t

Graphical calculus
It is conjectured that n-categories have an n-dimensional graphical
calculus, which is the dual of the ordinary ‘commutative diagrams’.

A

B

C

D
E

f

s

t

Graphical calculus
It is conjectured that n-categories have an n-dimensional graphical
calculus, which is the dual of the ordinary ‘commutative diagrams’.

s

t

Graphical calculus
It is conjectured that n-categories have an n-dimensional graphical
calculus, which is the dual of the ordinary ‘commutative diagrams’.

s

t

• Idea of formal graphical calculus goes back to Penrose in 1971.

Graphical calculus
It is conjectured that n-categories have an n-dimensional graphical
calculus, which is the dual of the ordinary ‘commutative diagrams’.

s

t

• Idea of formal graphical calculus goes back to Penrose in 1971.
• Strict associativity and unitality comes “built in”.

Graphical calculus
It is conjectured that n-categories have an n-dimensional graphical
calculus, which is the dual of the ordinary ‘commutative diagrams’.

s

t

• Idea of formal graphical calculus goes back to Penrose in 1971.
• Strict associativity and unitality comes “built in”.
• Joyal and Street developed these ideas for monoidal categories

with braiding and symmetry in 1991.

Graphical calculus
It is conjectured that n-categories have an n-dimensional graphical
calculus, which is the dual of the ordinary ‘commutative diagrams’.

s

t

• Idea of formal graphical calculus goes back to Penrose in 1971.
• Strict associativity and unitality comes “built in”.
• Joyal and Street developed these ideas for monoidal categories

with braiding and symmetry in 1991.
• Extension to Gray categories (special case of n = 3) given by

Barrett, Meusburger and Schaumann in 2012.

Graphical calculus
It is conjectured that n-categories have an n-dimensional graphical
calculus, which is the dual of the ordinary ‘commutative diagrams’.

s

t

• Idea of formal graphical calculus goes back to Penrose in 1971.
• Strict associativity and unitality comes “built in”.
• Joyal and Street developed these ideas for monoidal categories

with braiding and symmetry in 1991.
• Extension to Gray categories (special case of n = 3) given by

Barrett, Meusburger and Schaumann in 2012.
• In higher dimensions, no formal theory has been developed.

Graphical calculus
It is conjectured that n-categories have an n-dimensional graphical
calculus, which is the dual of the ordinary ‘commutative diagrams’.

s

t

• Idea of formal graphical calculus goes back to Penrose in 1971.
• Strict associativity and unitality comes “built in”.
• Joyal and Street developed these ideas for monoidal categories

with braiding and symmetry in 1991.
• Extension to Gray categories (special case of n = 3) given by

Barrett, Meusburger and Schaumann in 2012.
• In higher dimensions, no formal theory has been developed.
• Nonetheless, regularly used as an informal language.

Homotopy

The graphical calculus suggests homotopy as a basic mechanism
with which to manipulate terms and execute computations.

Homotopy

The graphical calculus suggests homotopy as a basic mechanism
with which to manipulate terms and execute computations.

The ‘strictest’ definitions of higher category do not allow these
manipulations, and are known to be insufficiently general.

Homotopy

The graphical calculus suggests homotopy as a basic mechanism
with which to manipulate terms and execute computations.

The ‘strictest’ definitions of higher category do not allow these
manipulations, and are known to be insufficiently general.

At the opposite end of the spectrum, the ‘weakest’ definitions allow
not only these manipulations, but far more besides.

Weak Strict

Homotopy

The graphical calculus suggests homotopy as a basic mechanism
with which to manipulate terms and execute computations.

The ‘strictest’ definitions of higher category do not allow these
manipulations, and are known to be insufficiently general.

At the opposite end of the spectrum, the ‘weakest’ definitions allow
not only these manipulations, but far more besides.

Weak Strict
Semistrict

A model of higher categories is semistrict if it is as strict as possible,
while still allowing arbitrary homotopy. However, yields long proofs!

Homotopy

The graphical calculus suggests homotopy as a basic mechanism
with which to manipulate terms and execute computations.

The ‘strictest’ definitions of higher category do not allow these
manipulations, and are known to be insufficiently general.

At the opposite end of the spectrum, the ‘weakest’ definitions allow
not only these manipulations, but far more besides.

Weak Strict
Semiweak Semistrict

A model of higher categories is semistrict if it is as strict as possible,
while still allowing arbitrary homotopy. However, yields long proofs!

For proof construction, better to be semiweak: as weak as possible,
except strictly associative and unital. Yields unique composites.

The proof assistant homotopy.io

We introduce a proof assistant for semiweak higher category theory,
based on an underlying theory called associative n-categories.

The proof assistant homotopy.io

We introduce a proof assistant for semiweak higher category theory,
based on an underlying theory called associative n-categories.

• The proof assistant lets you build terms in a finitely-presented
associative n-category.

The proof assistant homotopy.io

We introduce a proof assistant for semiweak higher category theory,
based on an underlying theory called associative n-categories.

• The proof assistant lets you build terms in a finitely-presented
associative n-category.

• Internal encoding via zigzags, a simple combinatorial structure.

The proof assistant homotopy.io

We introduce a proof assistant for semiweak higher category theory,
based on an underlying theory called associative n-categories.

• The proof assistant lets you build terms in a finitely-presented
associative n-category.

• Internal encoding via zigzags, a simple combinatorial structure.

• Terms have an immediate geometrical representation.

The proof assistant homotopy.io

We introduce a proof assistant for semiweak higher category theory,
based on an underlying theory called associative n-categories.

• The proof assistant lets you build terms in a finitely-presented
associative n-category.

• Internal encoding via zigzags, a simple combinatorial structure.

• Terms have an immediate geometrical representation.

• All interaction is by direct manipulation (“point and click”).

The proof assistant homotopy.io

We introduce a proof assistant for semiweak higher category theory,
based on an underlying theory called associative n-categories.

• The proof assistant lets you build terms in a finitely-presented
associative n-category.

• Internal encoding via zigzags, a simple combinatorial structure.

• Terms have an immediate geometrical representation.

• All interaction is by direct manipulation (“point and click”).

• Composition is strictly associative and unital.

The proof assistant homotopy.io

We introduce a proof assistant for semiweak higher category theory,
based on an underlying theory called associative n-categories.

• The proof assistant lets you build terms in a finitely-presented
associative n-category.

• Internal encoding via zigzags, a simple combinatorial structure.

• Terms have an immediate geometrical representation.

• All interaction is by direct manipulation (“point and click”).

• Composition is strictly associative and unital.

• All the weak structure is in homotopies of composites.

The proof assistant homotopy.io

We introduce a proof assistant for semiweak higher category theory,
based on an underlying theory called associative n-categories.

• The proof assistant lets you build terms in a finitely-presented
associative n-category.

• Internal encoding via zigzags, a simple combinatorial structure.

• Terms have an immediate geometrical representation.

• All interaction is by direct manipulation (“point and click”).

• Composition is strictly associative and unital.

• All the weak structure is in homotopies of composites.

• High-level methods assist construction of complex homotopies.

Monotone functions
Consider the following string diagram in a bicategory.

B f Y H G J R

B f Y β G δ R

B f Y G R H G J R

B α R H G J R

B f R H G J R

B f R H G γ G J R

B f R H G J R

Monotone functions
Consider the following string diagram in a bicategory.

It gives rise to an alternating sequence of monotone functions.

3

3

4

3

3

4

3

B f Y H G J R

B f Y β G δ R

B f Y G R H G J R

B α R H G J R

B f R H G J R

B f R H G γ G J R

B f R H G J R

Zigzags
Definition. For a category C, we define its category of zigzags ZC as:

Zigzags
Definition. For a category C, we define its category of zigzags ZC as:

• an object X is a sequence of cospans in C;

R0R0 S0 R1 S1 R2 S2 RR3X

Zigzags
Definition. For a category C, we define its category of zigzags ZC as:

• an object X is a sequence of cospans in C;
• a morphism f : X → X ′ is:

R0R0 S0 R1 S1 R2 S2 RR3X

R′
0R′
0 S′

0 R′
1 S′

1 R′
2 S′

2 R′
3 S′

3 R′
0R′
4X ′

f

Zigzags
Definition. For a category C, we define its category of zigzags ZC as:

• an object X is a sequence of cospans in C;
• a morphism f : X → X ′ is:

– a monotone function between singular levels,

R0R0 S0 R1 S1 R2 S2 RR3X

R′
0R′
0 S′

0 R′
1 S′

1 R′
2 S′

2 R′
3 S′

3 R′
0R′
4X ′

f

Zigzags
Definition. For a category C, we define its category of zigzags ZC as:

• an object X is a sequence of cospans in C;
• a morphism f : X → X ′ is:

– a monotone function between singular levels,
– built from morphisms of C,

R0R0 S0 R1 S1 R2 S2 RR3X

R′
0R′
0 S′

0 R′
1 S′

1 R′
2 S′

2 R′
3 S′

3 R′
0R′
4X ′

f

Zigzags
Definition. For a category C, we define its category of zigzags ZC as:

• an object X is a sequence of cospans in C;
• a morphism f : X → X ′ is:

– a monotone function between singular levels,
– built from morphisms of C,
– with identities between regular levels,

R0R0 S0 R1 S1 R2 S2 RR3X

R′
0R′
0 S′

0 R′
1 S′

1 R′
2 S′

2 R′
3 S′

3 R′
0R′
4X ′

f

Zigzags
Definition. For a category C, we define its category of zigzags ZC as:

• an object X is a sequence of cospans in C;
• a morphism f : X → X ′ is:

– a monotone function between singular levels,
– built from morphisms of C,
– with identities between regular levels,
– such that all squares commute.

R0R0 S0 R1 S1 R2 S2 RR3X

R′
0R′
0 S′

0 R′
1 S′

1 R′
2 S′

2 R′
3 S′

3 R′
0R′
4X ′

f X X X X X X X

Zigzags
Definition. For a category C, we define its category of zigzags ZC as:

• an object X is a sequence of cospans in C;
• a morphism f : X → X ′ is:

– a monotone function between singular levels,
– built from morphisms of C,
– with identities between regular levels,
– such that all squares commute.

R0R0 S0 R1 S1 R2 S2 RR3X

R′
0R′
0 S′

0 R′
1 S′

1 R′
2 S′

2 R′
3 S′

3 R′
0R′
4X ′

f X X X X X X X

Definition. Write Δ for the category of nonempty finite total orders
and monotone functions, Δ+ when including the empty set, and Δ=

for the subcategory preserving max & min. Clearly Δ= ↪→ Δ ↪→ Δ+.

Zigzags
Definition. For a category C, we define its category of zigzags ZC as:

• an object X is a sequence of cospans in C;
• a morphism f : X → X ′ is:

– a monotone function between singular levels,
– built from morphisms of C,
– with identities between regular levels,
– such that all squares commute.

R0R0 S0 R1 S1 R2 S2 RR3X

R′
0R′
0 S′

0 R′
1 S′

1 R′
2 S′

2 R′
3 S′

3 R′
0R′
4X ′

f X X X X X X X

Definition. Write Δ for the category of nonempty finite total orders
and monotone functions, Δ+ when including the empty set, and Δ=

for the subcategory preserving max & min. Clearly Δ= ↪→ Δ ↪→ Δ+.

Lemma. There is an equivalence of categories Δ+ ' (Δ=)op.

Zigzags
Definition. For a category C, we define its category of zigzags ZC as:

• an object X is a sequence of cospans in C;
• a morphism f : X → X ′ is:

– a monotone function between singular levels,
– built from morphisms of C,
– with identities between regular levels,
– such that all squares commute.

R0R0 S0 R1 S1 R2 S2 RR3X

R′
0R′
0 S′

0 R′
1 S′

1 R′
2 S′

2 R′
3 S′

3 R′
0R′
4X ′

f X X X X X X X

Definition. Write Δ for the category of nonempty finite total orders
and monotone functions, Δ+ when including the empty set, and Δ=

for the subcategory preserving max & min. Clearly Δ= ↪→ Δ ↪→ Δ+.

Lemma. There is an equivalence of categories Δ+ ' (Δ=)op.

Thus we obtain S : ZC → Δ+ and R : Zop
C → Δ=.

Diagrams from zigzags

Definition. An untyped n-diagram is an object of Zn
1 := ZZ...Z1

.

Diagrams from zigzags
Definition. An untyped n-diagram is an object of Zn

1 := ZZ...Z1
.

Here are 53 examples of 0-diagrams, all objects of 1:

B f Y H G J R

B f Y β G δ R

B f Y G R H G J R

B α R H G J R

B f R H G J R

B f R H G γ G J R

B f R H G J R

Diagrams from zigzags
Definition. An untyped n-diagram is an object of Zn

1 := ZZ...Z1
.

Here are 7 examples of 1-diagrams, all objects of Z1 = Δ+:

B f Y H G J R

B f Y β G δ R

B f Y G R H G J R

B α R H G J R

B f R H G J R

B f R H G γ G J R

B f R H G J R

Diagrams from zigzags
Definition. An untyped n-diagram is an object of Zn

1 := ZZ...Z1
.

Here is 1 example of a 2-diagram, an object of ZΔ+:

B f Y H G J R

B f Y β G δ R

B f Y G R H G J R

B α R H G J R

B f R H G J R

B f R H G γ G J R

B f R H G J R

Types
These diagrams are untyped.

B f Y H G J R

B f Y β G δ R

B f Y G R H G J R

B α R H G J R

B f R H G J R

B f R H G γ G J R

B f R H G J R

Types
These diagrams are untyped. To add types, we decorate with labels.

B f Y H G J R

B f Y β G δ R

B f Y G R H G J R

B α R H G J R

B f R H G J R

B f R H G γ G J R

B f R H G J R

Types
These diagrams are untyped. To add types, we decorate with labels.

The standard graphical calculus is just a prettier version of this.

B f Y H G J R

B f Y β G δ R

B f Y G R H G J R

B α R H G J R

B f R H G J R

B f R H G γ G J R

B f R H G J R

Types
These diagrams are untyped. To add types, we decorate with labels.

The standard graphical calculus is just a prettier version of this.

B f Y H G J R

B f Y β G δ R

B f Y G R H G J R

B α R H G J R

B f R H G J R

B f R H G γ G J R

B f R H G J R

Type checking verifies that label neighbourhoods match definition.

Types
These diagrams are untyped. To add types, we decorate with labels.

The standard graphical calculus is just a prettier version of this.

B f Y H G J R

B f Y β G δ R

B f Y G R H G J R

B α R H G J R

B f R H G J R

B f R H G γ G J R

B f R H G J R

B

B

B f R

G

R

Rf Y

Type checking verifies that label neighbourhoods match definition.

Types
These diagrams are untyped. To add types, we decorate with labels.

The standard graphical calculus is just a prettier version of this.

B f Y H G J R

B f Y β G δ R

B f Y G R H G J R

B α R H G J R

B f R H G J R

B f R H G γ G J R

B f R H G J RG

G

G

G

Type checking verifies that label neighbourhoods match definition.

Relationship to type theory
In Martin-Löf type theory, coherences for path types (such as
associators, unitors) must be inserted by hand where necessary.

HoTT

Relationship to type theory
In Martin-Löf type theory, coherences for path types (such as
associators, unitors) must be inserted by hand where necessary.

The homotopy.io project is a geometrical system where some of this
structure is trivialized.

homotopy.io HoTT

Relationship to type theory
In Martin-Löf type theory, coherences for path types (such as
associators, unitors) must be inserted by hand where necessary.

The homotopy.io project is a geometrical system where some of this
structure is trivialized.

Separate project on type theories for semistrict higher category
theory (with Eric Finster, David Reutter, Alex Rice.)

homotopy.io Cattsua Catt HoTT

Relationship to type theory
In Martin-Löf type theory, coherences for path types (such as
associators, unitors) must be inserted by hand where necessary.

The homotopy.io project is a geometrical system where some of this
structure is trivialized.

Separate project on type theories for semistrict higher category
theory (with Eric Finster, David Reutter, Alex Rice.)

homotopy.io Cattsua Catt HoTT

The goal is to understand the relationships between these, with
conversation algorithms to move proofs between models.

Relationship to type theory
In Martin-Löf type theory, coherences for path types (such as
associators, unitors) must be inserted by hand where necessary.

The homotopy.io project is a geometrical system where some of this
structure is trivialized.

Separate project on type theories for semistrict higher category
theory (with Eric Finster, David Reutter, Alex Rice.)

homotopy.io Cattsua Catt HoTT
X X∼

The goal is to understand the relationships between these, with
conversation algorithms to move proofs between models.

X = done

Relationship to type theory
In Martin-Löf type theory, coherences for path types (such as
associators, unitors) must be inserted by hand where necessary.

The homotopy.io project is a geometrical system where some of this
structure is trivialized.

Separate project on type theories for semistrict higher category
theory (with Eric Finster, David Reutter, Alex Rice.)

homotopy.io Cattsua Catt HoTT
X X∼

∙ ∙ ∙

The goal is to understand the relationships between these, with
conversation algorithms to move proofs between models.

X = done ∙ ∙ ∙ = in progress

Relationship to type theory
In Martin-Löf type theory, coherences for path types (such as
associators, unitors) must be inserted by hand where necessary.

The homotopy.io project is a geometrical system where some of this
structure is trivialized.

Separate project on type theories for semistrict higher category
theory (with Eric Finster, David Reutter, Alex Rice.)

homotopy.io Cattsua Catt HoTT
? X X∼

∙ ∙ ∙? ?

The goal is to understand the relationships between these, with
conversation algorithms to move proofs between models.

X = done ∙ ∙ ∙ = in progress ? = too hard (for now!)

Relationship to type theory
In Martin-Löf type theory, coherences for path types (such as
associators, unitors) must be inserted by hand where necessary.

The homotopy.io project is a geometrical system where some of this
structure is trivialized.

Separate project on type theories for semistrict higher category
theory (with Eric Finster, David Reutter, Alex Rice.)

homotopy.io Cattsua Catt HoTT
? X X∼

∙ ∙ ∙? ?

The goal is to understand the relationships between these, with
conversation algorithms to move proofs between models.

X = done ∙ ∙ ∙ = in progress ? = too hard (for now!)

Thanks for listening!

Type checking

Definition. Given an untyped n-diagram D, its volume |D| is defined
to be 1 if n = 0, or else we define |D| =

∑
i |Si|, the sum of the

volumes of the singular levels.

Type checking

Definition. Given an untyped n-diagram D, its volume |D| is defined
to be 1 if n = 0, or else we define |D| =

∑
i |Si|, the sum of the

volumes of the singular levels.

This 2-diagram has |D| = 10, meaning it has 10 “pieces”:

B f Y H G J R

B f Y β G δ R

B f Y G R H G J R

B α R H G J R

B f R H G J R

B f R H G γ G J R

B f R H G J R

Type checking

Definition. Given an untyped n-diagram D, its volume |D| is defined
to be 1 if n = 0, or else we define |D| =

∑
i |Si|, the sum of the

volumes of the singular levels.

This 2-diagram has |D| = 10, meaning it has 10 “pieces”:

B f Y H G J R

B f Y β G δ R

B f Y G R H G J R

B α R H G J R

B f R H G J R

B f R H G γ G J R

B f R H G J R

Essentially, type checking verifies that these “pieces” are either
identities, or elements of the signature.

Type checking
But there’s a complication: these pieces will in general need
“normalizing” before type checking can occur.

Type checking
But there’s a complication: these pieces will in general need
“normalizing” before type checking can occur.

Consider this 3-diagram, an interchanger with volume 2:

σ

τ

σ τ

σ

τ

Type checking
But there’s a complication: these pieces will in general need
“normalizing” before type checking can occur.

Consider this 3-diagram, an interchanger with volume 2:

σ

τ

σ τ

σ

τ

Here is the first piece. Note it has volume 1 as required.

It contains “unnecessary” identities on the left and right. As a
result, it is not itself an identity.

Type checking
But there’s a complication: these pieces will in general need
“normalizing” before type checking can occur.

Consider this 3-diagram, an interchanger with volume 2:

σ

τ

σ τ

σ

τ

Here is the first piece. Note it has volume 1 as required.

It contains “unnecessary” identities on the left and right. As a
result, it is not itself an identity.

We must normalize this before it can be checked against the signature.

Type checking
But there’s a complication: these pieces will in general need
“normalizing” before type checking can occur.

Consider this 3-diagram, an interchanger with volume 2:

σ

τ

σ τ

σ

τ

Here is the first piece. Note it has volume 1 as required.

It contains “unnecessary” identities on the left and right. As a
result, it is not itself an identity.

We must normalize this before it can be checked against the signature.

In this way, homotopies come “built in”.

High-level methods

Zigzags are too unwieldy for direct construction by hand.

High-level methods

Zigzags are too unwieldy for direct construction by hand.

High-level methods are needed to build nontrivial homotopies.

High-level methods

Zigzags are too unwieldy for direct construction by hand.

High-level methods are needed to build nontrivial homotopies.

Consider the problem of constructing the homotopy that contracts
this composite:

High-level methods

Zigzags are too unwieldy for direct construction by hand.

High-level methods are needed to build nontrivial homotopies.

Consider the problem of constructing the homotopy that contracts
this composite:

σ

τ

High-level methods

Zigzags are too unwieldy for direct construction by hand.

High-level methods are needed to build nontrivial homotopies.

Consider the problem of constructing the homotopy that contracts
this composite:

A

B

C

D

E

u v w x
σ

τ

A

B

C

D

E

u

v

w

x

High-level methods

Zigzags are too unwieldy for direct construction by hand.

High-level methods are needed to build nontrivial homotopies.

Consider the problem of constructing the homotopy that contracts
this composite:

A

B

C

D

E

F

u v w x

y z

σ

τ

A

B

C

D

E

u

v

w

x

We build the contraction as a pushout of cospans in Zn
1, and the

homotopy itself as an associated zigzag map.

High-level methods

Zigzags are too unwieldy for direct construction by hand.

High-level methods are needed to build nontrivial homotopies.

Consider the problem of constructing the homotopy that contracts
this composite:

A

B

C

D

E

F

u v w x

y z

A

F

E

y ◦ u

z ◦ x
σ τ

We build the contraction as a pushout of cospans in Zn
1, and the

homotopy itself as an associated zigzag map.

Colimit algorithm

(With David Reutter.)

Theorem. For a category C, the
following correctly constructs
colimits in ZC, or correctly fails:

Z Z′

Z′′

f

g

Colimit algorithm

(With David Reutter.)

Theorem. For a category C, the
following correctly constructs
colimits in ZC, or correctly fails:

(1) Project to Δ. •

•

•

•

•

Colimit algorithm

(With David Reutter.)

Theorem. For a category C, the
following correctly constructs
colimits in ZC, or correctly fails:

(1) Project to Δ.

(2) Take colimit there, or fail.

•

•

•

•

•

••

Colimit algorithm

(With David Reutter.)

Theorem. For a category C, the
following correctly constructs
colimits in ZC, or correctly fails:

(1) Project to Δ.

(2) Take colimit there, or fail.

(3) Label with colimits of
underlying C-morphisms,
or fail.

S0

S1

S′
0

S′
1

S̃0

S̃1S′′

Colimit algorithm

(With David Reutter.)

Theorem. For a category C, the
following correctly constructs
colimits in ZC, or correctly fails:

(1) Project to Δ.

(2) Take colimit there, or fail.

(3) Label with colimits of
underlying C-morphisms,
or fail.

(4) Commutativity conditions
automatically satisfied.

S0

S1

R0

R1

R2

S′
0

S′
1

R′
0

R′
1

R′
2

S̃0

S̃1

R̃0

R̃1

R̃2

S′′

R′′
0

R′′
1

Colimit algorithm

(With David Reutter.)

Theorem. For a category C, the
following correctly constructs
colimits in ZC, or correctly fails:

(1) Project to Δ.

(2) Take colimit there, or fail.

(3) Label with colimits of
underlying C-morphisms,
or fail.

(4) Commutativity conditions
automatically satisfied.

(5) Type check the result.

S0

S1

R0

R1

R2

S′
0

S′
1

R′
0

R′
1

R′
2

S̃0

S̃1

R̃0

R̃1

R̃2

S′′

R′′
0

R′′
1

