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Motivation from Image Segmentation……..

An Example (from IPOL P. Getreuer 2012)
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DIFFUSE INTERFACE EQUATIONS AND THEIR 
SHARP INTERFACE LIMIT

ut = ��u� 1
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Allen-Cahn equation.  Famous in materials science.  Now useful for data 
science.

✏ ! 0 Motion by Mean Curvature

Gradient descent of GL function:



MBO SCHEME (1992)
Merriman, Bence, Osher

Heat equation

Threshold

C1
C2C3

iterate

Extended to Piecewise Constant Mumford-Shah Model by Esedoglu-Tsai 2006



FROM 
EUCLIDEAN SPACE     TO     SIMILARITY GRAPHS 

FOR LARGE DATA

Ò Minimal surface 
problem

Ò Laplace operator
Ò Pseudo-spectral 

methods
Ò Fast Fourier Transform
Ò Uses all the modes

Ò Graph mincut problem
Ò Graph Laplacian
Ò Projection to 

eigensubspace of graph 
Laplacian

Ò Nystrom 
extension/Rayleigh-
Chebyshev

Ò Often only needs a small 
percentage of spectral 
modes.



WEIGHTED GRAPHS FOR “BIG DATA”

In a typical application we have data supported on 
the graph, possibly high dimensional.  The above 
weights represent comparison of the data.

Examples include:

voting records of US Congress – each person has 
a vote vector associated with them.  

Nonlocal means image processing – each pixel has 
a pixel neighborhood that can be compared with 
nearby and far away pixels.



GRAPH CUTS AND TOTAL VARIATION

Minimum cut Maximum cut

X
!ij |fi � fj |

Total Variation of function f defined on nodes of a weighted graph:

Min cut problems can be reformulated as a total variation minimization problem
for binary/multivalued functions defined on the nodes of the graph.



DIFFUSE INTERFACE METHODS ON GRAPHS
Bertozzi and Flenner MMS 2012.

Arjuna Flenner
GE research

SIGEST 2016



CONVERGENCE OF GRAPH GL FUNCTIONAL
van Gennip and ALB Adv. Diff. Eq. 2012

Yves
Van Gennip
TU Delft



REMOVE THE DIFFUSE INTERFACE: 
MBO SCHEME ON GRAPHS

Ò 1) propagation by graph heat equation + 
forcing term

Ò 2) thresholding

Ò Simple!  And often converges in just a few 
iterations (e.g. 4 for MNIST dataset) 

Merkurjev, Kostic, and ALB, SIIMS 2013



ALGORITHM

• I) Create a graph from the data, choose a weight 
function and then create the symmetric graph 
Laplacian. 

• II) Calculate the eigenvectors and eigenvalues of the 
symmetric graph Laplacian. It is only necessary to 
calculate a portion of the eigenvectors*.

• III) Initialize u.
• IV) Iterate the two-step scheme described above until a 

stopping criterion is satisfied.
• *Fast linear algebra routines are necessary – either 

Raleigh-Chebyshev procedure or Nystrom extension.



GENERALIZATION MULTICLASS MACHINE 
LEARNING PROBLEMS (MBO)

Garcia, Merkurjev, 
Bertozzi, Percus, Flenner, 
IEEE TPAMI, 2014

Semi-supervised learning

Instead of double well we have N-class well with 
Minima on a simplex in N-dimensions



IMAGE LABELLING



MBO SCHEME ON GRAPHS - MULTICLASS



MNIST DATABASE

Comparisons
Semi-supervised learning
Vs Supervised learning

We do semi-supervised with
only 3.6% of the digits as the 
Known data.

Supervised uses 60000 digits for training and tests on 10000 digits.

We use local rescaled graph as
in Zelnik-Manor&Perona



NYSTROM EXTENSION
Fowlkes Belongie Chung and Malik, IEEE T. PAMI 2004.

Computing WXX , WXY = WT
Y X requires only (|X|·(|X|+|Y |) computations

versus (|X| + |Y |)2 for the whole similarity matrix. The method approximates
WY Y by WY XW�1

XXWXY and the error is determined by how much the rows of
WXY span the rows of WY Y .



HYPERSPECTRAL VIDEO SEGMENTATION
– SEMI SUPERVISED

Eigenfunctions computed using Nystrom

“ground truth obtained from thresholding eigenfunctions; random initialization otherwise

Four class hyperspectral pixel segmentation of gas plume, ground, mountain, and sky 

Merkurjev, Sunu, and Bertozzi, 2014, ICIP Paris 2014

eigenfunctions

Training data from thresholding eigenfunctions

Initialization (random)

clasification



THEORETICAL CONNECTION BETWEEN MBO AND 
GRAPH TV

Use cosine angle for graph weights



MUMFORD-SHAH GRAPH MBO SCHEME



RECALL COMPARISON TO KMEANS AND 
SPECTRAL CLUSTERING - UNSUPERVISED

EMMCVPR 2015 Hu, Sunu, and ALB

K-means
And 
Spectral
Clustering



C-V SEGMENTATION ON GRAPHS
USING MBO SCHEME FOR UNSUPERVISED 
CLUSTERING OF HYPERSPECTRAL PIXELS

Multiclass
MBO
with different
Initializations.

7 video frames
280K pixels

Each pixel is
128 dimensions

EMMCVPR 2015 Hu, Sunu, and ALB



FOUR CLASS “URBAN” CLASSIFICATION

(a) Ground Truth
(b) Training data (10% random)
(c) Semi-supervised graph cut
(d) Unsupervised graph cut
(e) Spectral clustering

Zhaoyi Meng, Ekaterina Merkurjev, Alice Koniges, Andrea L Bertozzi, 
Hyperspectral Video Analysis Using Graph Clustering Methods, IPOL 2017.

Ground truth from http://www.escience.cn/people/feiyunZHU/Dataset GT.html



PARALLELIZATION – EXASCALE READY PLATFORM CORI AT LBNL 
NERSC ~ 300 HYPERSPECTRAL VIDEO FRAMES ~  13M PIXELS

(A): The run time of different optimization steps. Step A: parallelizing the inner j-loop 
and BLAS3 optimization on Graph MBO. Step B: parallelizing the outer j-loop. Step C: 
normalizing and forming all Zis to Xmat. Step D: using uniform sampling and chunked 
Y matrices. (B): The scaling results of the OpenMP parallelization of the Nystr¨om
loop. The black line with squares, the red line with circles and the blue line with 
triangles show the scaling results of step B, C and D respectively. The pink line with 
upside down triangles shows the ideal scaling.

Meng et al, IWOMP 2016. 



MODIFIED CHEEGER CUT AND RATIO CUT 
METHODS. -- EKATERINA MERKURJEV, ANDREA BERTOZZI, XIAORAN YAN, AND KRISTINA LERMAN, INVERSE 

PROBLEMS 2017

Ratio Cut

Normalized Cut

Cheeger Cut

Variants of MBO and GL functional for these binary cut problems



COMMUNITY DETECTION –
MODULARITY OPTIMIZATION 
Joint work with Huiyi Hu,Thomas Laurent, and Mason Porter SIAP 2013.

[wij] is graph adjacency matrix
P is probability nullmodel (Newman-Girvan) Pij=kikj/2m
ki = sumj wij (strength of the node)
Gamma is the resolution parameter
gi is group assignment 
2m is total volume of the graph = sumi ki = sumij wij

This is an optimization (max) problem.  Combinatorially complex – optimize over 
all possible group assignments. Very expensive computationally.

Newman, Girvan, Phys. Rev. E 2004.

The modularity of a partition 
measures the fraction of total 
edge weight within each 
community minus the edge 
weight expected if edges were 
placed randomly using some 
null model.



BIPARTITION OF A GRAPH

Given a subset A of nodes on the graph define

Vol(A) = sum i in A ki Then maximizing Q is equivalent to minimizing 

Given a binary function on the graph f taking values +1, -1 define A 
to be the set where f=1, we can define:



EQUIVALENCE TO L1 COMPRESSIVE SENSING

Thus modularity optimization restricted to two
groups is equivalent to 

This generalizes to n class optimization quite naturally

Because the TV minimization problem involves functions with values on the 
simplex we can directly use the MBO scheme to solve this problem.



MODULARITY OPTIMIZATION MOONS AND 
CLOUDS



MNIST DIGIT CLASSIFICATION USING 
MODULARITY – UNSUPERVISED

Binary segmentation of 4 and 9:
13782 handwritten digits.  Graph created based on similarity score
between each digit.  Weighted graph with 194816 connections.

Full multiclass
Segmentation
of all 70K digits

11 digits because there are two classes for the digit 1 ; with a flag and without a flag.



SIMPLIFIED ENERGY LANDSCAPE FOR 
MODULARITY USING TOTAL VARIATION

Z. Boyd, E. Bae, X. C. Tai, and A. L. Bertozzi, SIAM J. Appl. Math.  2018



STOCHASTIC BLOCK MODELS ARE A DISCRETE 
SURFACE TENSION 

J. Nonlin. Sci. 2019 – Z. Boyd, M. A. Porter and A. L. Bertozzi

Assume adjacency matrix elements            

are Poisson-distributed with parameter

Aij

!gigj
kikj
2m

Where m is the number of edges in the network. 
This is called the PLANTED PARTITION MODEL.  Newman (2016) shows that 
Modularity optimization is equivalent to Maximum Likelihood Estimation for SBMs for 
this class of models.   The formula is:

We show that this is a discrete analogue of a surface tension problem and adapt 
and algorithm of Esedoglu and Otto to the discrete case.  Here we also have to
optimize for the values of the surface tensions between classes.



SURFACE ENERGIES IN THE CONTINUUM

Partition of plume data 
using mean curvature 
flow on discrete graph 
of KNN HSI pixels



RESULTS OF SBM MODEL USING CURVATURE 
BASED ALGORITHMS

KL = Kernighan and Lin Preprint available at arXiv:1806.02485v1



UNCERTAINTY QUANTIFICATION
With X. Luo, A. Stuart, and K. Zygalakis (SIAM UQ 2018)

Probit classifier; level set method for Bayesian inverse problems both 
extended to graphs from Euclidean space; generalize Ginzburg-Landau
to Bayesian setting.
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