Exceptional super lie algebras in twisted M - theory W/ Raghaventrous and Saberi There is a unique elever-dime thoy of supergravity. It's supposed to be the low energy lout of 11-they. • Exceptional lie algebras of En type one known to be "hidden symmetres" of dime reductions of 11d sucrA. • The good of the talk is to explain the opporeres of exceptional simple super Liz oly's present in the twist of 11d SUGRA (before don l'reduction).

• Twisted SUSY: Given a supersymmetric
thuory and a supersymmetric
$$Q_{\mu} = 0$$
 can consider the twist.
Observables in Q_{μ} -twisted thy is the
 Q_{μ} -cohomology of original observables.
At the surel of the twist, symmetries
can become enhanced.
 E_{μ} : The 4d N = 1, Q_{μ} , 4 superconformal
algebra is finite dim². After twisting,
the N=1 superconformal algebra enhances
to the alg. of belomorphic vector fields on
 $Q_{\mu}^{2} = R_{\mu}^{2}$. [W., Saber:] the supersymmetry
Similar enhancements for twisted SUGRA.

background where Q(r) takes a nonzero value $Q \in T(T,S) \xrightarrow{>} S|_{0}$.

Hust satisfy EOM for subla, live

Killing
$$\nabla_g Q = 0$$

 $R^n Q = constant spinar$

and Q2 = 0, like ou orlang twist. • Perturbatively, gravity described by

some dg hie (or L_{oo}) algebra $super \left(\frac{1}{2}grow, d, [-,-7] \right)$

Mc(ggnu) Mr EOM for supergravity thy.

Twist concredely defauns this algebra:

d ~~> d + [Q,-]

If l_{0} then: $l_{2} \sim l_{2} + l_{3}(Q_{1}, -, -)$ \vdots etc.

The IId SUST, there are assentially
true classes of twisting superchanges.
Supertranslations (cplxified)

$$f'' \oplus \Pi S \partial Q$$

 $f'' \oplus \Pi S \partial Q$
 $f \otimes Q$

• One approach to computing twists
based on the "pure spiner" formalism.
(complexified)
SISO d, N = Super Poincare algebra.

$$T d_1 N = \begin{cases} x \in s_{iso} \frac{dd}{d} & x^2 = 0 \end{cases}$$

Siso d, N
• The "nilpotene" varity. [Eager, Soberi, Wolder
 $\begin{cases} Sheaves on \\ T d_1 N \end{cases} [Berbourts, multiplets]
 $\begin{cases} Sheaves on \\ T d_1 N \end{cases} [Berbourts, multiplets]
 $\begin{cases} Sheaves on \\ T d_1 N \end{cases} (Berbourts, multiplets]
 $\begin{cases} Sheaves on \\ T d_1 N \end{cases} (Berbourts, multiplets]
 $\begin{cases} Sheaves on \\ T d_1 N \end{cases} (Berbourts, multiplets]
 $\begin{cases} Sheaves on \\ T d_1 N \end{cases} (Berbourts, multiplets]
 $\begin{cases} Sheaves on \\ T d_1 N \end{cases} (Berbourts, multiplets]
 $\begin{cases} Sheaves on \\ T d_1 N \end{cases} (Berbourts, multiplets] \end{cases}$$$$$$$$

PSF roughly F sheaf on
$$T_d$$

 $C^{ad}(\mathbb{R}^d) \otimes \Gamma(T_d, \mathcal{F})$
 $C \qquad \mathcal{F}$
Siso $J_1 \mathbb{N}$ Duriv
Grown $Q \in T_{d,N}$, simpler algebra:
 $Siso_d^{Q} = H'(Siso_{d,N}, \Gamma_{Q}, -1)$
 $\widetilde{T}_d^{Q} = \left\{ r \in Siso_{d,N} \mid r^2 = 0 \right\}$
 $\mathbb{E}_X : d = b$, $\mathbb{N} = (d, 0)$
 $Q = minimal superdrange.$

.

$$\begin{array}{l} \overrightarrow{J}_{6}^{Q} = \left\{ \begin{array}{l} ran \vee \ 1 \\ 2 \times 3 \end{array} \right\} \subset \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \subset \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} = \left\{ \begin{array}{l} 6 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\}$$
 \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l} 2 \times 3 \end{array} \right\} \\ \overrightarrow{J} = \left\{ \begin{array}{l}

.

•
$$\beta \in \Lambda^{0,3} \otimes \Lambda^{0}, \Lambda^{0,2} \otimes \Lambda^{1}$$

 $\gamma \in \Lambda^{1/2} \otimes \Lambda^{0}, \Lambda^{1,1} \otimes \Lambda^{1}$
one components of the supergrowty/
high CS field $C \in \Lambda^{3}(\mathbb{R}^{n})$.
Limitized gauge transformations $t = 0.01$.
envoded in the complex above.
Propose the following interacting
BV they. (Regumenters Saberi, W.)
Spree ($\beta, \gamma; \mu, \nu$) $+ T(\gamma; \mu, \nu)$
 $C = 1$

$$T = \frac{1}{2} \int \frac{1}{1-v} p^{2} \partial \gamma \quad Y \in \Lambda_{c}^{b} \otimes \eta_{R}.$$

$$E^{5} \times R + \frac{1}{6} \int \gamma \partial \gamma \partial \gamma .$$

$$E^{5} \times R + \frac{1}{6} \int \gamma \partial \gamma \partial \gamma .$$

$$E^{5} \times R + \frac{1}{6} \int \gamma \partial \gamma \partial \gamma .$$

$$E^{5} \times R + \frac{1}{1-v} p^{2} \partial \gamma = p^{2} \partial \gamma + v p^{2} \partial \gamma + ...$$

$$Thus: S = p^{2} \partial \gamma + v p^{2} \partial \gamma + ...$$

$$Thus: S = p^{2} \partial \gamma + v p^{2} \partial \gamma + ...$$

$$Thus: S = p^{2} \partial \gamma + v p^{2} \partial \gamma + ...$$

$$Thus: S = p^{2} \partial \gamma + v p^{2} \partial \gamma + ...$$

$$Thus: S = p^{2} \partial \gamma + v p^{2} \partial \gamma + ...$$

$$Thus: S = p^{2} \partial \gamma + v p^{2} \partial \gamma + ...$$

$$First line is public CNE = 0.$$

$$Note: host line is publicly the holomorphic analogue of the CS action of the CS action of C = coundrate or of the CS action of the$$

· Numerous chules:

.

Interesting brachts:

$$\left(\Lambda^{\frac{1}{2}} \otimes R\right)^{\otimes 2} \longrightarrow \Lambda^{\frac{1}{2}} \otimes \Lambda^{2} R \xrightarrow{-} T$$

 $\left(\Lambda^{\frac{1}{2}} \otimes R\right)^{\otimes 2} \longrightarrow \Lambda^{\frac{1}{2}} \otimes \Lambda^{\frac{1}{2}} \otimes \delta^{2} R$

 $\mathcal{N}^{-} = \left(\begin{array}{c} \mathcal{L} \\ \mathcal{L} \end{array} \right) \left(\begin{array}{c} \mathcal{L} \end{array} \right) \left($

where:

$$\sqrt{2} = \Gamma(C^3, K^{\frac{1}{2}} \otimes T^{\frac{3}{2}})$$

ouver
Vect
$$(\mathbb{C}^3) \oplus (\mathbb{C}^3) \otimes Sl(2)$$

 F
 $f_{,e,h}$

 $\sqrt{2}(\mathbb{C}^3) \otimes \mathbb{P}$

()
$$\otimes$$
 SI(2).
J completely encoded by
the actron gove.
Thum: The two algebra of twisted
IId SUGRA on $C^5 \times R$ is A_A equiv
to a L_{as} central extrusion
 $C \longrightarrow E(5,10) \longrightarrow E(5,10)$
J \tilde{I}
and hie d-algebra
Defind by cocycle
 $\varphi(\mu, \mu', \kappa) = \langle \mu \times \mu', \kappa \rangle|_{g=0}$
 $V_{f}'S N^{rel}$
Idea : Relationship of μ fields obviow.
The closed two-firm $\kappa = 2B$

• Other simple super Lite alg's appr
in M-thy.

$$D-dim2 enhancement
E(3,6) = of (ed superconformed)
Single MS brand [irreducible!]
single MS brand [irreducible!]
single MS brane have description of
the minimal twist$$

cose.

Claim: This embedding factors

$$OSP(6|1)$$
 \longrightarrow $E(5, 10)$
 $E(3,6)$
 $E(3,6)$
 $E(3,6)$
 $E(3,6)$
 $E(3,6)$
 $E(3,6)$
 $E(3,6)$
 $E(3,6)$
 $E(3,6)$ is an ∞ -stand
 $E(3,6)$
 $E(3,6)$ is an ∞ -stand
 $E(3,6)$ is $E(3,6)$.

 $w \in \Lambda'^{\circ}(I)$, $\Im w \neq 0$ then w-twist is ~ to Virasoro on I, (and is trivial away from I × 307).

In BV Bg is equipped w/
Some shifted symplectic structur.

$$g \simeq E(5, 10)$$

on $C^5 \times R$. $\mathcal{T}_g uuge$
 $\mathcal{Symptras}$ in
 $\mathcal{N}^{0}(C^{5}) \otimes \mathcal{N}(R)$ twisted Science.
 $\simeq \mathcal{N}^{0}(C^{5}) = (\mathcal{O}^{hol}(C^{5})).$

Poincer 15 brane worldvolome they ced supressional thy. Not a lograngion they. W Ingner we described the twist of a single M5 Gran = " or belien" 6d (2.0) they. X ylx 3-fold 2 Internedrate Jacobian of X + fermionic stuff

