
Generative models for discrete random variables
Rianne van den Berg, principal researcher @Microsoft Research Amsterdam

Previously at Google Brain & University of Amsterdam

Outline

Motivation for generative modeling for discrete random variables:
lossless compression

• Basics of lossless compression

• Connecting likelihood-based generative models and lossless compression

Normalizing flows

Denoising diffusion models

Autoregressive models

Compression

Message: object we’d like to compress. Files, messages, …

Encoding : message → compressed representation

Decoding: compressed representation →message

Lossless compression vs lossy compression.

For lossless compression:
• Message must be perfectly reconstructed by decoding algorithm.
• Compressed representation must be uniquely decodable.
• on average the compressed representation will be shorter than the message.

Compressing messages
Shorter code length for some messages will necessarily lead to longer
code lengths for others!

𝑥 𝑝(𝑥) 𝑐0(𝑥) 𝑐1 𝑥 𝑐2 𝑥

a Τ1 4 00

b Τ1 4 01

c Τ1 4 10

d Τ1 4 11

a a a b b b c c c d d d
𝑐0(𝑥) 2 bpc

𝑐1(𝑥) 1.5 bpc

𝑐2(𝑥) 9/4 bpc

Compressing messages
However…. Trading off shorter and longer code lengths for different messages can
be beneficial if not all messages occur with the same probability!

𝑥 𝑝(𝑥) 𝑐0(𝑥) 𝑐2 𝑥

a Τ1 2 00

b Τ1 4 01

c Τ1 8 10

d Τ1 8 11

a a a a b b c d
𝑐0(𝑥) 2 bpc

𝑐2(𝑥) 1.75 bpc

Self-information of a message

How much information is contained in a message?

Shannon’s definition: ℎ 𝑥 =

1. Info of two independent messages adds up:

ℎ 𝑥𝑦 = log
1

𝑝 𝑥, 𝑦
= log

1

𝑝 𝑥 𝑝 𝑦
= log

1

𝑝 𝑥
+ log

1

𝑝 𝑦
2. Messages with a large probability contain less information!

Example: Guess a particular day on which an event occurred in NL.
Not so informative message: It rained on that day.

Compressing messages: codelengths
However…. Trading off shorter and longer code lengths for different messages can
be beneficial if not all messages occur with the same probability!

𝑥 𝑝(𝑥) 𝑐0(𝑥) 𝑐2 𝑥 log 1/𝑝(𝑥) 𝑙2(𝑐(𝑥))

a Τ1 2 00 0

b Τ1 4 01 10

c Τ1 8 10 110

d Τ1 8 11 111

a a a a b b c d
𝑐0(𝑥)

𝑐2(𝑥)

Shannon’s source coding theorem

For data generated according to 𝑥~𝑝 𝑥 , what is the best average code
length per symbol 𝑥?

𝑙 𝐶, 𝑋 = σ𝑥 𝑝 𝑥 𝑙(𝑐 𝑥)

Source coding theorem: there exists a uniquely decodable code 𝐶 for
𝑋~𝑝(𝑋) such that

ℍ𝑝 𝑋 ≤ 𝑙𝑎 𝐶 ≤ ℍ𝑝 𝑋 + 1

Resources/further reading

• Information theory, inference and learning algorithms. David MacKay

• Introduction to data compression, Guy Blelloch, Carnegie Mellon
University.
http://www.cs.cmu.edu/~guyb/realworld/compression.pdf

• CS294-158 course on deep unsupervised learning. L10 compression.
Berkeley. Peter Abeel.
https://www.youtube.com/watch?v=pPyOlGvWoXA

http://www.cs.cmu.edu/~guyb/realworld/compression.pdf
https://www.youtube.com/watch?v=pPyOlGvWoXA

Outline

• Motivation for generative modeling for discrete random variables:
lossless compression
• Basics of lossless compression

• Connecting likelihood-based generative models and lossless compression

• Normalizing flows

• Denoising diffusion models

• Autoregressive models

Generative likelihood-based models

Given: Data 𝑥𝑛 𝑛=1
𝑁 generated by sampling 𝑥 ~𝑝𝑑𝑎𝑡𝑎(𝑥)

Task: take a deep density estimator 𝑝𝜃(𝑥) and optimize it such that

𝑝𝜃 𝑥 ≈ 𝑝(𝑥)

Q: what happens when we try to use 𝑝𝜃(𝑥) to encode data generated
by 𝑝(𝑥)?

Encoding with an approximate distribution

Assume we have access to a prefix code such that it produces close to
optimal codes for 𝑝𝜃 𝑥 .

Code length:

If data was generated 𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 :

σ𝑥 𝑝𝑑𝑎𝑡𝑎 𝑥 log2 1/𝑝𝜃(𝑥) =

𝐾𝐿[𝑝𝑑𝑎𝑡𝑎||𝑝𝜃] should be made small to achieve optimal compression

Likelihood-based generative models

Given: Data 𝑥𝑛 𝑛=1
𝑁 generated by sampling 𝑥 ~𝑝(𝑥)

Task: optimize 𝑝𝜃 𝑥 ≈ 𝑝(𝑥)

Objective: argmin
𝜃

1

𝑁
σ𝑖− log2 𝑝𝜃(𝑥𝑖) =

Optimizing a likelihood-based generative model → getting an
optimal compressor

Likelihood-based models as lossless compressors

Loss function: 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎 − log2 𝑝𝜃 𝑥 ≥ 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎[− log2 𝑝𝑑𝑎𝑡𝑎 𝑥]

Minimum expected code length
1. Entropy coders are designed for discrete data

• Somewhere in your model you need to truncate / discretize your random variables
• Truncating/discretizing leads to a loss of information!
• High-precision discretization leads to larger entropy → longer codes!

2. Entropy coders either need to tractably enumerate 𝑝(𝑥) for all 𝑥, or
they need to be able to evaluate 𝑐𝑑𝑓(𝑥) for all 𝑥.
• Especially in high-D, we often don’t have access to a closed form for 𝑐𝑑𝑓(𝑥)
• One solution: break down of high-D coding problem into coding problems for 1D

data

Entropy coding for high-dim data

Data 𝑥 ∈ {0, 1, 2, … . , 𝐾}𝐷, distributed according to 𝑝𝑑𝑎𝑡𝑎(𝑥)

Entropy coders:

• Either need to tractably enumerate 𝑝(𝑥) for all 𝑥 (undoable for high dims)

• or they need to be able to evaluate 𝑐𝑑𝑓(𝑥) for all 𝑥 (in general not
available for arbitrary 𝑝(𝑥))

Break down into D x 1dim problems with a factorization assumption:

Independent dimensions: 𝑝𝜃 𝑥 =

Autoregressive dependencies: 𝑝𝜃 𝑥 =

Ignoring dependencies → longer optimal codes
Example: 𝑝 𝑥2 , 𝑥1 = 𝑝 𝑥2 𝑥1 𝑝(𝑥1)

Optimal average code length:
ℍ 𝑋2, 𝑋1 =

Approximate as independent: 𝑝 𝑥1, 𝑥2 ≈ 𝑝 𝑥2 𝑝(𝑥1)
ℍ 𝑋2, 𝑋1 =

Use ℍ 𝑋2 𝑋1 ≤ ℍ[𝑋2]→making an independence assumption can
make your optimal average code length larger!

Outline

• Motivation for generative modeling for discrete random variables:
lossless compression
• Basics of lossless compression

• Connecting likelihood-based generative models and lossless compression

• Integer discrete normalizing flows for lossless compression

• Denoising diffusion models

• Autoregressive models

Density estimation with normalizing flows

Idea: Find an invertible function that maps data from a complicated
distribution with dependencies, to a distribution that is “easy” to
sample from and evaluate.

𝑝 𝑧1𝑝 𝑧2

𝑧2 = 𝑓(2) (𝑧1)

𝑧0 = 𝑓(1)
−1

(𝑧1)𝑧1 = 𝑓(2)
−1

(𝑧2)

𝑧1 = 𝑓(1) (𝑧0)

𝑧0~𝑝 𝑧0

𝑝𝜃 𝑥 = 𝑝𝑍2 𝑧2 =

= 𝑝𝜃(𝑥)

𝑝𝑍0 𝑧0 | det
𝜕𝑧0
𝜕𝑧1

| | det
𝜕𝑧1
𝜕𝑧2

|

log 𝑝𝜃(𝑥) =

Rezende & Mohamed, 2016. Dinh et al., 2016.

Normalizing flows as source compressors

• If the base distribution 𝑝(𝑧0) is independent across dims: potentially easy
compression! (turning D-dim coding problem into D 1-dim coding problems)

• However: normalizing flows were designed for continuous random variables…

𝑝 𝑧1
𝑝 𝑧2

𝑧2 = 𝑓(2) (𝑧1)

𝑧0 = 𝑓(1)
−1

(𝑧1)𝑧1 = 𝑓(2)
−1

(𝑧2)

𝑧1 = 𝑓(1) (𝑧0)

𝑧0~𝑝 𝑧0= 𝑝𝜃(𝑥)

log 𝑝𝜃(𝑥) = log 𝑝𝑍2(𝑧2) + log det
𝜕𝑧0
𝜕𝑧1

+ log det
𝜕𝑧1
𝜕𝑧2

Normalizing flows for integer valued data

Goal: define invertible 𝑓: ℤ𝐷 ↦ ℤ𝐷

Simple solution: Take RealNVP [Dinh et al. ICLR 2017] and adjust to integers

Integer discrete flows for lossless compression, E Hoogeboom, J Peters, Rianne vd Berg, M Welling, NeurIPS 2019

𝑥 =
𝑥1
𝑥2

→
𝑥1

𝑠𝜃 𝑥1 ⊙𝑥2 + 𝑡𝜃(𝑥1)
=

𝑧1
𝑧2

= 𝑧

𝑥 =
𝑥1
𝑥2

=
𝑧1

(𝑧2−𝑡𝜃(𝑧1)) / 𝑠𝜃(𝑧1)
←

𝑧1
𝑧2

= 𝑧

Gradients through rounding:

Data likelihood: log 𝑝𝜃(𝑥) = log 𝑝𝑍(𝑧)

Lossless compression with integer discrete flows

Integer discrete flows and lossless compression. Emiel Hoogeboom*, Jorn Peters*, Rianne van den Berg, Max Welling, NeurIPS 2019

𝑥
𝑓: ℤ𝑑 ↦ ℤ𝑑

𝑧 𝑝(𝑧)
encode

High-probability z → short code
Low-probability z → long code

𝑐

𝑓−1: ℤ𝑑 ↦ ℤ𝑑 decode

IDF++: Analyzing and improving Integer Discrete Flows for lossless compression. Rianne van den Berg, Alexey Gritsenko, Mostafa Dehghani, Casper Kaae Sønderby, Tim Salimans, ICLR 2021

• Likelihood model for discrete random variables: can directly be used by
entropy coders.

• The base distribution 𝑝(𝑧0) is independent across dims: turned D-dim coding
problem into D 1-dim coding problems!

Data likelihood: log 𝑝𝜃(𝑥) = log 𝑝𝑍(𝑧)

Results: IDF & IDF ++
Resolution: 2000 x 2000 pixels

Samples patched: 80 x 80 pixels

Integer discrete flows for lossless compression, E Hoogeboom, J Peters, Rianne vd Berg, M Welling, NeurIPS 2019

IDF++: Analyzing and improving Integer Discrete Flows for lossless compression.
Rianne vd Berg, Alexey Gritsenko, Mostafa Dehghani, Casper Kaae Sønderby, Tim Salimans, ICLR 2021

Outline

• Motivation for generative modeling for discrete random variables:
lossless compression
• Basics of lossless compression

• Connecting likelihood-based generative models and lossless compression

• Integer discrete normalizing flows for lossless compression

• Denoising diffusion models

• Autoregressive models

Denoising diffusion probabilistic models

𝑥0
𝑥𝑡−1 𝑥𝑡 𝑥𝑇… …

Forward process: corrupt data with noise

𝑞 𝑥𝑡 𝑥𝑡−1)

Sohl-Dickstein et al., ICML 2015, Ho et al., NeurIPS 2020, Song et al., ICLR 2021

𝑝𝜃 𝑥𝑡−1 𝑥𝑡)

Reverse process: learning to denoise data

Training diffusion models

𝐿𝑣𝑏 = 𝔼𝑞 𝑥0 [𝐷𝐾𝐿[𝑞(𝑥𝑇|𝑥0)| 𝑝 𝑥𝑇 + σ𝑡=2
𝑇 𝔼𝑞 𝑥𝑡 𝑥0 [𝐷𝐾𝐿 𝑞 𝑥𝑡−1 𝑥𝑡, 𝑥0 𝑝𝜃 𝑥𝑡−1 𝑥𝑡 −

𝔼𝑞 𝑥1 𝑥0 [log 𝑝𝜃(𝑥0|𝑥1)]]

Practical requirements for 𝑞 𝑥𝑡 𝑥𝑡−1 to allow for efficient training of 𝑝𝜃:

1. Efficient sampling of 𝑥𝑡 from 𝑞 𝑥𝑡 𝑥0) for arbitrary time 𝑡

2. Tractable expression for 𝑞 𝑥𝑡−1 𝑥𝑡 , 𝑥0 .

If 𝑥𝑡 ∈ ℝ𝐷 , Gaussian 𝑞 𝑥𝑡 𝑥𝑡−1 (and 𝑝𝜃(𝑥𝑡−1|𝑥𝑡)):

𝑥𝑡−1 𝑥𝑡 𝑥𝑇… …

𝑞 𝑥1:𝑇 𝑥0) = ∏𝑡=1
𝑇 𝑞 𝑥𝑡 𝑥𝑡−1)

𝑝𝜃(𝑥0:𝑇) = 𝑝(𝑥𝑇)∏𝑡=1
𝑇 𝑝𝜃 𝑥𝑡−1 𝑥𝑡)

𝑥0

Diffusion models with discrete state spaces

Discrete random variables: 𝑥𝑡 ∈ {0,… . , 𝐾 − 1}

Forward transition probabilities 𝑞 𝑥𝑡 = 𝑗 𝑥𝑡−1 = 𝑗 = 𝑄𝑡 𝑖𝑗

In one-hot (row-based) representation: 𝑞 𝑥𝑡 𝑥𝑡−1 = Cat(𝑥𝑡; 𝑝 = 𝑥𝑡−1𝑄𝑡)

Practical requirements to allow for efficient training of 𝑝𝜃:

1. Efficient sampling of 𝑥𝑡 from 𝑞 𝑥𝑡 𝑥0) for arbitrary time 𝑡.
→ 𝑞 𝑥𝑡 𝑥0) = Cat(𝑥𝑡; 𝑝 = 𝑥0 ത𝑄𝑡) with ത𝑄𝑡 = 𝑄1𝑄2…𝑄𝑡

2. Tractable expression for 𝑞 𝑥𝑡−1 𝑥𝑡 , 𝑥0 .

→ 𝑞 𝑥𝑡−1 𝑥𝑡 , 𝑥0 = Cat(𝑥𝑡−1; 𝑝 =
𝑥𝑡𝑄𝑡

𝑇⊙𝑥0 ത𝑄𝑡−1

𝑥0 ത𝑄𝑡𝑥𝑡
𝑇)

Sohl-Dickstein et al., ICML 2015
Hoogeboom et al., NeurIPS 2021

Jacob Austin*, Daniel Johnson*, Jonathan Ho, Daniel Tarlow, Rianne van den Berg, NeurIPS 2021

𝑞 𝑥𝑡 𝑥𝑡−1 = Cat(𝑥𝑡; 𝑝 = 𝑥𝑡−1𝑄𝑡)

Choice of Markov transition matrix
=

𝑝 𝑥𝑡−1

𝑄𝑡

Structureless corruption:
Uniform transition probabilities:

Multinomial diffusion, Hoogeboom et al., NeurIPS 2021

Stay or transition to absorbing state:

Example: [MASK] token in mask-based language models

Locality-sensitive transitions:
Transition with larger probability to nearby classes

• Ordinal data: images
• Similarity based on nearest-neighbour graph of

token embeddings

Jacob Austin*, Daniel Johnson*, Jonathan Ho, Daniel Tarlow, Rianne van den Berg, NeurIPS 2021

D3PMs for text generation: text8

D3PMs for text generation: LM1B

D3PMs for image generation

D3PMs for image generation

Outline

• Motivation for generative modeling for discrete random variables:
lossless compression
• Basics of lossless compression

• Connecting likelihood-based generative models and lossless compression

• Integer discrete normalizing flows for lossless compression

• Denoising diffusion models

• Autoregressive models

Autoregressive models

Factorized density: 𝑝𝜃 𝑥1, … , 𝑥𝐷 = ∏𝑖=1
𝐷 𝑝𝜃(𝑥𝑖|𝑥𝑖−1, … , 𝑥1)

Pros:

• No problem handling discrete data.

• among SOTA models for density estimation.

Cons:

• Requires D sequential steps encoding and decoding → very slow

• Fixed factorization → Not ideal for inpainting.

• Implementing autoregressive architecture is tricky: causal masking in conv filters.

Work that tries to speed up autoregressive compression by combining it with super-resolution: Cao et al.,
2020, arXiv:2004.02872

Figure source: van den Oord., NeurIPS 2016

Order agnostic autoregressive models

AR with fixed ordering σ:
𝑝𝜃 𝑥1, … , 𝑥𝐷; 𝜎 = ∏𝑖=1

𝐷 𝑝𝜃(𝑥𝜎(𝑖)|𝑥𝜎(𝑖−1), … , 𝑥𝜎(1))

Order-agnostic model:
log 𝑝 𝑥1, … , 𝑥𝐷 ≥ 𝔼𝜎~𝑈 𝑆𝐷

σ𝑡
𝐷 log 𝑝(𝑥𝜎 𝑡 |𝑥𝜎 <𝑡)

= 𝔼𝑡[
𝐷

𝐷−𝑡+1
𝔼𝜎~𝑈 𝑆𝐷

σ𝑘∈𝜎(≥𝑡) log 𝑝(𝑥𝑘|𝑥𝜎 <𝑡)]

Uria et al., a deep and tractable density estimator, ICML 2014

Emiel Hoogeboom, Alexey Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, Tim Salimans. arXiv:2110.02037

Autoregressive diffusion models

Same loss as in [Uria et al. 2014]:
log 𝑝 𝑥1, … , 𝑥𝐷 ≥ 𝔼𝑡[

𝐷

𝐷−𝑡+1
𝔼𝜎~𝑈 𝑆𝐷

σ𝑘∈𝜎(≥𝑡) log 𝑝(𝑥𝑘|𝑥𝜎 <𝑡)]

Makes connection to
1. absorbing state discrete diffusion models [Austin et al. 2021]
2. Dynamics programming to reduce the number of diffusion steps [Watson et al.

2021]

→Parallel sampling of multiple variables.

Other benefit: No need for causal masking of conv filters, just input and
output masking.

Emiel Hoogeboom, Alexey Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, Tim Salimans. arXiv:2110.02037

Results: text8 and CIFAR-10

Lossless compression CIFAR-10

Integer discrete flows and lossless compression
Emiel Hoogeboom*, Jorn Peters*, Rianne van den Berg, Max Welling, NeurIPS 2019

IDF++: Analyzing and improving Integer Discrete Flows for lossless compression
Rianne van den Berg, Alexey Gritsenko, Mostafa Dehghani, Casper Kaae Sønderby, Tim Salimans, ICLR 201

Structured denoising diffusion models in discrete state-spaces
Jacob Austin*, Daniel Johnson*, Jonathan Ho, Daniel Tarlow, Rianne van den Berg, NeurIPS 2021

Autoregressive diffusion models
Emiel Hoogeboom, Alexey Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, Tim Salimans, arXiv:2110.02037

* Equal contributions

Collaborators for this work

