Generative models for discrete random variables

Rianne van den Berg, principal researcher @Microsoft Research Amsterdam
Previously at Google Brain & University of Amsterdam

‘ ii".w lj

Outline

Motivation for generative modeling for discrete random variables:
lossless compression

* Basics of lossless compression
* Connecting likelihood-based generative models and lossless compression

Normalizing flows
Denoising diffusion models
Autoregressive models

Compression

Message: object we’d like to compress. Files, messages, ...

Encoding : message = compressed representation —@V@

Decoding: compressed representation = message 4&@

Lossless compression vs lossy compression.

For lossless compression:
* Message must be perfectly reconstructed by decoding algorithm.
 Compressed representation must be uniquely decodable.
* on average the compressed representation will be shorter than the message.

Compressing messages

Shorter code length for some messages will necessarily lead to longer
code lengths for others!

. /
X p(x)) 5O/ ok
O

a Y, 00

b 1/, 01 | | O
N 10 \ L\ O

d 1, 11 [O (|

(
a a a b b b C C C d d d
o (AT e e 2 bpe
-SSR o
) [HEEENENENTTTTT T D s o4 bpc

Compressing messages

However.... Trading off shorter and longer code lengths for different messages can
be beneficial if not all messages occur with the same probability!

X p(x) Co(X) c2(x)

a 1/, 00 O

b 1/, 01 10
/g 10 11O

d /g 11 (L |

a a a a b b C d
aYeoM | | | | |] Rk
) [HNEENEN T 175bpc

Self-information of a message

How much information is contained in a message?

Shannon’s definition: h(x) = €og, %()

1. Info of two independent messages adds up:

1 1 1
h(xy) =lo = lo lo + lo
g “p00y) tpp» tp() | Cp»)
2. Messages with a large probability contain less information!

Example: Guess a particular day on which an event occurred in NL.
Not so informative message: It rained on that day.

Compressing messages: codelengths

However.... Trading off shorter and longer code lengths for different messages can
be beneficial if not all messages occur with the same probability!

X p(x) co(x) c2(x) logl/p(x) l(c(x))

a 1/, 00 0 1.0 1

b Y, 01 10 20O 2
A 10 110 3.0 3

d /e 11 111 3.0 32

a a a a b b C d
ayeoMd | | [| | [y
() [N N

Shannon’s source coding theorem

For data generated according to x~p(x), what is the best average code
length per symbol x?

)
[(C,X) = X2, p()l(c(x)) > 2 P(x) %} = [HPLXJ

MQ_w%rm oo

Source coding theorem: there exists a uniquely decodable code C for
X~p(X) such that
]HIp[X] <!, (C) < IHIp[X] +1

Resources/further reading

* Information theory, inference and learning algorithms. David MacKay

* Introduction to data compression, Guy Blelloch, Carnegie Mellon
University.
http://www.cs.cmu.edu/~guyb/realworld/compression.pdf

e CS294-158 course on deep unsupervised learning. L10 compression.
Berkeley. Peter Abeel.
https://www.youtube.com/watch?v=pPyOIGvWoXA

http://www.cs.cmu.edu/~guyb/realworld/compression.pdf
https://www.youtube.com/watch?v=pPyOlGvWoXA

Outline

* Motivation for generative modeling for discrete random variables:
lossless compression

* Basics of lossless compression
* Connecting likelihood-based generative models and lossless compression

* Normalizing flows
* Denoising diffusion models
e Autoregressive models

Generative likelihood-based models

Given: Data {x,, }_,generated by sampling x ~pg4¢4(X)
L> unknown

Task: take a deep density estimator pg(x) and optimize it such that
pe(x) = p(x)

Q: what happens when we try to use pg(x) to encode data generated
by p(x)?

Encoding with an approximate distribution

Assume we have access to a prefix code such that it produces close to
optimal codes for pg(x).

Code length:

If data was generated x~p ¢4 (X) :

(x) b @ Bt
Yx Paata(x) 1082 1/pg(x) = Z Pdlmtx) oc& p@@ + ZPQW“ e"(ﬁ dabes

“ZPW&\@O%@.J{Q@ = HPM&LYB KLCPdo&aHP@]

>O
KL|P4atallpg] should be made small to achieve optimal compression

Likelihood-based generative models

Given: Data {x, }_,generated by sampling x ~p(x)

Task: optimize pg(x) = p(x) N

Objective: arg mein %Zi —log, pg(x;) = @Jgrgtm/ ﬁ %@03 Dg (<)
A ,

A CU@"VE(L'VL 2 Pocte i) eDC& o) = O\fggm, Hpul) + KL L P2}

_ n kL Po
= g C Pagte 1P

Optimizing a likelihood-based generative model <> getting an
optimal compressor

Likelihood-based models as lossless compressors

Loss function: E,, . . [—1og, pg(x)] = Exp, .. [—1082 Daata(x)]

Minimum expected code length

1. Entropy coders are designed for discrete data
* Somewhere in your model you need to truncate / discretize your random variables
* Truncating/discretizing leads to a loss of information!
» High-precision discretization leads to larger entropy = longer codes!

2. Entropy coders either need to tractably enumerate p(x) for all x, or
they need to be able to evaluate cdf (x) for all x.
* Especially in high-D, we often don’t have access to a closed form for cdf (x)

* One solution: break down of high-D coding problem into coding problems for 1D
data

Entropy coding for high-dim data

Datax € {0,1, 2,, K}, distributed according to p ¢4 (%)

Entropy coders:
* Either need to tractably enumerate p(x) for all x (undoable for high dims)

* or they need to be able to evaluate cdf (x) for all x (in general not
available for arbitrary p(x))

Break down into D x 1dim problems with a factorization assumption:

Independent dimensions: pg(x) = iy o () 7 possuhe L |)
L Pal KX—(¢
Autoregressive dependencies: pg(x) = P@(Kz) P@O%’ﬁ) . Pe D! O~ K

— ;equ{ﬂ’bkw

lgnoring dependencies = longer optimal codes

Example: p(x,,x1) = p(x2]x1)p(x1)

Optimal average code length: ({ _J_j

H[X,, X:1= 2 D (el) pOca) Qﬁfg @(><l>q) &g PR
A VY Vo Hbu]

Approximate as independent: p(x1,x,) = p(xy)p(xq)
]H[[Xz,Xl — ()(2/} + MLY;J

Use HI[X,|X;] < H[X,] 2 making an independence assumption can
make your optimal average code length larger!

Outline

* Motivation for generative modeling for discrete random variables:
lossless compression

* Basics of lossless compression
* Connecting likelihood-based generative models and lossless compression

* Integer discrete normalizing flows for lossless compression
* Denoising diffusion models
e Autoregressive models

Density estimation with normalizing flows

Rezende & Mohamed, 2016. Dinh et al., 2016.

ldea: Find an invertible function that maps data from a complicated
distribution with dependencies, to a distribution that is “easy” to
sample from and evaluate.

z=(f®)" () 7= (f®)" ()
— 9
— —
= fD (20)

— £(2)
p(z;) = po(x) s p(z1) zo~p(2o)

9z, 024
pe(x) = pz,(2) = Pz,(Z0) |deta—1| Ideta—2| D2 l

logpe (x) = 609 P2.o) + QQOU&Q% \ kQDOL \det 3z,

A =(F)" @) 2= () @)
—> —
4(..... e

21 = O (2)

— £(2)
22 =7 (#) p(z1) Zo~p(2p)

074
det— D

0z, - '
PCZO)=“ ‘PLEW)

=

* If the base distribution p(z,) is independent across dims: potentially easy
compression! (turning D-dim coding problem into D 1-dim coding problems)

p(z;) = pe(x)

dtaZO +1
e oz, 0g

logpe(x) = logpz,(z2) + log

* However: normalizing flows were designed for continuous random variables...

Normalizing flows for integer valued data

Integer discrete flows for lossless compression, E Hoogeboom, J Peters, Rianne vd Berg, M Welling, NeurlPS 2019

Goal: define invertible f: ZP — ZP
Simple solution: Take RealNVP [Dinh et al. ICLR 2017] and adjust to integers

=
I

l??l] ~ ’s@é@ @3;12 Hto (xl)]] - 2] — 7

roundu
[’2] B [(Zz—{fe(zj}; /5%)] < [Z] =2Z

Srragght - Hwveughn eoturnctor
Gradients through rounding: — B
Data likelihood: logpg(x) = logpzé;f/

=
I

Lossless compression with integer discrete flows
p(z)

encode

A T decode

C

Data likelihood: logpg(x) = logp,(2) High-probability z = short code
Low-probability z 2 long code

e Likelihood model for discrete random variables: can directly be used by
entropy coders.

* The base distribution p(zg) is independent across dims: turned D-dim coding
problem into D 1-dim coding problems!

Integer discrete flows and lossless compression. Emiel Hoogeboom?*, Jorn Peters*, Rianne van den Berg, Max Welling, NeurIPS 2019

IDF++: Analyzing and improving Integer Discrete Flows for lossless compression. Rianne van den Berg, Alexey Gritsenko, Mostafa Dehghani, Casper Kaae Sgnderby, Tim Salimans, ICLR 2021

Resolution: 2000 x 2000 pixels

Results: IDF & IDF ++

Dataset IDF JP2-WSI FLIF [34] JPEG2000

Histology 2.42(3.19x) 3.04(2.63x) 4.00(2.00x) 4.26 (1.88x)
Compression models CIFAR-10 IMAGENET-32 IMAGENET-64
PNG (Boutell & Lane (1997)) 5.87* 6.39* 5.71*
JPEG-2000 (Rabbani (2002)) 5.207 6.48" 5.107
FLIF (Sneyers & Wuille (2016)) 4.19* 4.52* 4.19*
BI1T-SWAP (Kingma et al. (2019)) 3.82 (3.78) 4.50 (4.48) -
HILLOC (Townsend et al. (2019a)) 3.56 (3.55) 4.20 (4.18) 3.90 (3.89)
LBB (Ho et al. (2019b)) 3.12 (3.12) 3.88 (3.87) 3.70 (3.70)
SREC (Cao et al. (2020)) - - 4.29
IDF (Hoogeboom et al. (2019a)) 3.32 (3.30)** 4.18 (4.15) 3.90 (3.90)
IDF++, SMALL: 4 FLOWS PER LEVEL 3.31 (3.29) 4.16 (4.14) 3.85 (3.85)
IDF++ 3.26 (3.24) 4.12(4.10) 3.81(3.81)

Integer discrete flows for lossless compression, E Hoogeboom, J Peters, Rianne vd Berg, M Welling, NeurlPS 2019

IDF++: Analyzing and improving Integer Discrete Flows for lossless compression.
Rianne vd Berg, Alexey Gritsenko, Mostafa Dehghani, Casper Kaae Sgnderby, Tim Salimans, ICLR 2021

Outline

* Motivation for generative modeling for discrete random variables:
lossless compression

* Basics of lossless compression
* Connecting likelihood-based generative models and lossless compression

* Integer discrete normalizing flows for lossless compression
* Denoising diffusion models
e Autoregressive models

Denoising diffusion probabilistic models

Sohl-Dickstein et al., ICML 2015, Ho et al., NeurlIPS 2020, Song et al., ICLR 2021

Forward process: corrupt data with noise

q(xelxe—q)

Po(xe—1lx¢)

Reverse process: learning to denoise data

wud
pud

Training diffusion models

q(xy.7lxg) = T —1q(xe|xe—1)
0 - 00— —0
a Pe(xo T) = (xT)Ht 1p6(xt 1lx¢)

Lyp = Eq(xo)[Dir[qCer|xo)|lpCer)] + Zzzqu(xdxo)[DKL [qCce—1 [, xo) [Ipg Cep—q[x)]] —
Eq(x|xo) 108 Po (X0 |x1)]]

Practical requirements for q(x;|x;_) to allow for efficient training of pg:
1. Efficient sampling of x; from q(x;|x,) for arbitrary time t

2. Tractable expression for q(x;_1|x¢, xg).

If x, € RP, Gaussian q(x¢|x;_1) (and pg (xp_1]x.)):

Diffusion models with discrete state spaces

Discrete random variables: x; € {0,, K — 1}
Forward transition probabilities q(x; = jlx,—; = j) = [Q¢];;

In one-hot (row-based) representation: q(x;|x;_1) = Cat(xs; p = x:_10Q¢)

Practical requirements to allow for efficient training of pg:

> q(x¢|xp) = Cat(x; p = x0Q¢) With @z = Q1Q; ... Q¢
2. Tractable expression for q(x;_1|x;, xg).
x:Qf Ox0Q¢—1

2> q(xe—1lxe, x9) = Cat(xp—1;p =

Sohl-Dickstein et al., ICML 2015
Hoogeboom et al., NeurlPS 2021
Jacob Austin*, Daniel Johnson*, Jonathan Ho, Daniel Tarlow, Rianne van den Berg, NeurlPS 2021

Choice of Markov transition matrix

q(xelxe—1) = Cat(xy;p = x¢-1Q¢) =

p Xt—1
Structureless corruption:
Uniform transition probabilities:
Multinomial diffusion, Hoogeboom et al., NeurIPS 2021
Q¢
Locality-sensitive transitions: Ordinal data: images

* Similarity based on nearest-neighbour graph of

Transition with larger probability to nearby classes .
token embeddings

Stay or transition to absorbing state:

Example: [MASK] token in mask-based language models

Jacob Austin*, Daniel Johnson*, Jonathan Ho, Daniel Tarlow, Rianne van den Berg, NeurlPS 2021

D3PMs for text generation: text8

Table 1: Quantitative results on text8. NLL is reported on the entire test set. Sample times are for
generating a single example of length 256. Results are reported on two seeds. All models are standard
12-layer transformers unless otherwise noted. 'Transformer XL is a 24-layer transformer, using a
784 context window. ‘Results reported by [20] by running code from official repository.

Model Model steps MNLL (bits/char) (L) Sample time (s) ()
Mmscrete Flow [49] (8 = 3 layers) - 1.23 0.16

Argmax Coupling Flow [20] - 1.80 0.40 + 0.03
IAF / SCE IE']’]'T - 1.5% 0.04 + 0.0004
Multinormial Diffusion (D3PM uniform) [20] L) = 1.72 26.6 + 2.2
D3PM uniform |20] {owrs) 1000 = 1.61 £ 0.02 3.6 +0.4

D3PM NN (L) (ours) 1Oy = 1.59 = (.03 3.1474 £+ 00002
D3PM mask (Ly —p g1) (ownrs) 1000 = 1.45 £ 0.02 3.44+0.3

D3PM uniform |20] {ours) 256 < 1.68 £ 0.01 0.5801 + 0.0001
D3PM NN (L.y,) (ours) 256 = 1.64 = 0.02 0.813 £+ 0.002
D3PM absorbing (L 3 —g.n1) (ours) 256 =< 1.47 = 0.03 0,598 4+ 0.002
Transformer decoder (ours) 256 1.23 0.3570 &+ 0.0002
Transformer decoder [1] 256 1.18 -

Transformer XL |]l}|T 256 1.08 -

D3PM umiform [20] (ours) 20) = 1.79 = 0.03 0.0771 4+ 0.0005
D3PM NN (L,1,) (ours) 20 < 1.75 4 0.02 0.1110 + 0.0001
D3PM absorbing (L —q o1) (ours) 200 < 1.56 = 0.04 0.0785 £+ 0.0003

D3PMs for text generation: LM 1B

Table 2: Quantitative results on LM 1B. Perplexity reported on the test set. Results are reported
on two seeds. All models have context window length 128 and 12 layers unless otherwise noted.
ITransformer XL is a 24 layer transformer. ‘rounded for readability, see Appendix B.2.2.

Metric: Perplexaty () Sample time* isy(l)

inference steps: 1000 128 64 1000 128 4
D3APM uniform 137.9 4+ 2.1 1392 4+ 1.2 145.0+£ 1.2 1.82 (.21 (.08
D3PM NN 1495 4+ 1.3 158.6 + 2.2 160.4 4+ 1.2 21.29 f.64 5.88
D3PM absorbing 769 4+ 23 80.1 +1.2 83.6 + 6.1 1.90 0.1y .10
Transformer (ours) - 43.6 - - 0.26 -

Transformer XL | l{ll_i - 218 - - - -

D3PMs for image generation

Table 3: Inception scores (IS), Frechet Inception Distance (FID) and negative log-likehood (NLL) on
the image dataset CIFAR-10. The NLL is reported on the test set in bits per dimension. We report our
results as averages with standard deviations, obtained by training five models with different seeds.

Model IS (1) FID (]} NLLl])

Sparse Transformer [9) 280

NCSN [45] 8874 0.12 25.32

NCSNv2 [46] 8.40 £ 0.07 10.87

StyleGAN2 + ADA [22] 9.74 4+ 0.05 326

Diffusion (original), L, [43] <X 5.40

DDPM L, [19] T.67 £ 0.13 13.51 << 3.70

DDPM Lajwpte [19] 9.46 +£0.11 3.17 = 3.75

Improved DDPM L4, |30] 11.47 <1 2.94

Improved DDPM Lz pie [30] 2.90 < 3.7

DDPM++ cont [47] 2.92 2.99

NCSN++ cont. [47] 9.89 2.20

D3PM uniform L.y, 5.99 £ 0.14 51.27 £ 2.15 < 5.08 &+ 0.02
D3PM absorbing L4, 6.26 £+ 0.10 41.28 £+ 0.65 << 4.83 £+ 0.02
D3PM absorbing Ly —g_oo1 6.78 £+ 0.08 30.97 + 0.64 << 4.40 £ 0.02
D3PM Gauss Ly, T.75 +£0.13 15.30 £ 0.55 < 3.966 £+ 0.005
D3PM Gauss Ly —p oo 8544 0.12 8.4 £ 0.10 <1 3.975 £+ 0.006
D3PM Gauss + logistic Ly —g oot 2.56 £+ 0.10 7.34 +£0.19 < 3.435 £ 0.007

D3PMs for image generation

.g@mmallll-llm
D H™ & . 2 Ta
St (Wa B QSRS

Figure 3: Left: progressive sampling at ¢ = 1000, 900, 800, ..., 0 for D3PM absorbing (top) and
D3PM Gauss + logistic (bottom), trained with L) loss on CIFAR-10. These samples were cherry
picked. Right: (non cherry picked) samples from the D3PM Gauss + logistic model.

Outline

* Motivation for generative modeling for discrete random variables:
lossless compression

* Basics of lossless compression
* Connecting likelihood-based generative models and lossless compression

* Integer discrete normalizing flows for lossless compression
* Denoising diffusion models
e Autoregressive models

Autoregressive models

Factorized density: pg (x4, ..., xp) = [1i1 Po (X;|Xi—1, -\ X1)

Pros:

* No problem handling discrete data.

* among SOTA models for density estimation. L1 p1p1 1l
cons: 1111711
. . . . 1{1(0]0(0
* Requires D sequential steps encoding and decoding = very slow
. .. . : . 010070710
 Fixed factorization = Not ideal for inpainting.
0(0]0]01]0

* Implementing autoregressive architecture is tricky: causal masking in conv filters.
Figure source: van den Oord., NeurlPS 2016

Work that tries to speed up autoregressive compression by combining it with super-resolution: Cao et al.,
2020, arXiv:2004.02872

Order agnostic autoregressive models

Uria et al., a deep and tractable density estimator, ICML 2014

AR with fixed ordering o:
Po (X1, ..., xp; 0) = [17=1 Do (Ko ()Xo (i=1)r - » Xo(1))

Order-agnostic model:

logp(x1, ..., Xp) = Egey(sp) 2¢ 1080 (Xoe) | Xo(<t))

D
= Et[5— 7 Eo~u(sp) Lkeo(ze) 108 P (Xk|Xo(<t))]

Figure 2: ARDM training step. This

step optuimizes for step { = 2 for all
possible permutations o simultancously
which satisly a(1) = 3.

Emiel Hoogeboom, Alexey Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, Tim Salimans. arXiv:2110.02037

Autoregressive diffusion models

Emiel Hoogeboom, Alexey Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, Tim Salimans. arXiv:2110.02037

Same loss as in [Uria et al. 2014]:

D
logp(xy, ..., xp) = [Et[D—t+1 Esv(sp) ZkEO‘(Zt) logp(xk[x5(<t))]

Makes connection to
1. absorbing state discrete diffusion models [Austin et al. 2021]

2. %/Si\]mics programming to reduce the number of diffusion steps [Watson et al.

—Parallel sampling of multiple variables.

ﬁwﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂnnnnﬂnnnn """"" F‘Hﬂnﬂ?ﬁn’jine=snh==

Figure 3: Loss components for Parallelized ARDMSs using a budget of 5 steps for a problem of 20
steps. Left: individual loss component for every step. Right: parallelized policy extracted from the
dynamic programming algorithm. Components of the same height are modelled simultaneously, so
they are inferred and generated in parallel.

Other benefit: No need for causal masking of conv filters, just input and
output masking.

Results: text8 and CIFAR-10

Table I: Order Agnostic model performance (in Table 2: Order Agnostic modelling perfor-
bpc) on the texts dataset. The OA-Transformer mance (in bpd) on the CIFAR-10 dataset. The
learns arbitrary orders by permuting imputs and upscaling model generates groups ol four most
outputs as described in XLNet. A Transformer signilicant categories, equivalent to 2 bits at a

learning only a single order achieves 1.35 bpce. tme.

Muodel Sleps MNLL Muonde] Sleps MLL
OA-Translormer 250 1.64 ARDM-0A 3072 2,69 + s
D3PM-unilorm 1000 161 4o Parallel ARDM-0A 50 274
DPM-absorbing 100 145 t0m0 A RDM-Upscale 4 43072 264 +oon
DIPM-ahaoebing 6 147 Parallel ARDM-Upscale 4 4 % 50 2.68
OA-ARDM (ours) 250 1L.43 +o.om - .
D3PM-absorbing 20 1.56 +o.040 D3PM Absorbing 1K) 440

Parallelized OA-ARDM (ours) 20 LS 4o DM Gaugson 1000 344+ om

Figure 5: Visualization of & through the generative process for an ARDM Upscale 4 model.

Lossless compression CIFAR-10

Table 3: CIFAR-10 lossless compression performance (in bpd).

Muodel Steps Compression per image Datasel compression
VDM (Kingma et al., 2021) 1000 =8 2.72
VDM (Kingma et al., 2021) 00 =8 2.72
OA-ARDM (ours) 500 273 273
ARDM-Upscale 4 (ours) 500 27 2.7
VDM (Kingma et al., 2021) 100 = 8 2.91
OA-ARDM (ours) 100 275 2.75
ARDM-Upscale 4 (ours) 100 276 2.76
LBB (Ho et al., 2019) = 8 312
IDF (Hoogeboom et al., 2019) 3.34 3.34
IDF++ (van den Berg et al., 2021) 3.26 3.26
HilLLoC {Townsend et al., 2020) 4.19 3.56

FLIF (Sneyers & Wuille, 2016) 4.19 4.19

Collaborators for this work

Integer discrete flows and lossless compression

Emiel Hoogeboom?*, Jorn Peters*, Rianne van den Berg, Max Welling, NeurIPS 2019

IDF++: Analyzing and improving Integer Discrete Flows for lossless compression
Rianne van den Berg, Alexey Gritsenko, Mostafa Dehghani, Casper Kaae Sgnderby, Tim Salimans, ICLR 201

Structured denoising diffusion models in discrete state-spaces
Jacob Austin*, Daniel Johnson*, Jonathan Ho, Daniel Tarlow, Rianne van den Berg, NeurlPS 2021

Autoregressive diffusion models
Emiel Hoogeboom, Alexey Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, Tim Salimans, arXiv:2110.02037

* Equal contributions

