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What is associative memory”?
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Standard Associative Memory
Classical Hopfield Network
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Dense Associative Memory
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Why should this work®
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What is a Modern Hopfield Network
with one hidden layer in its most
general form?
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ABSTRACT

Dense Associative Memories or modern Hopfield networks permit storage and re-
liable retrieval of an exponentially large (in the dimension of feature space) num-
ber of memories. At the same time, their naive implementation is non-biological,
since it seemingly requires the existence of many-body synaptic junctions be-
tween the neurons. We show that these models are effective descriptions of a
more microscopic (written in terms of biological degrees of freedom) theory that
has additional (hidden) neurons and only requires two-body interactions between
them. For this reason our proposed microscopic theory is a valid model of large
associative memory with a degree of biological plausibility. The dynamics of our
network and its reduced dimensional equivalent both minimize energy (Lyapunov)
functions. When certain dynamical variables (hidden neurons) are integrated out
from our microscopic theory, one can recover many of the models that were previ-
ously discussed in the literature, e.g. the model presented in “Hopfield Networks
is All You Need” paper. We also provide an alternative derivation of the energy
function and the update rule proposed in the aforementioned paper and clarify the
relationships between various models of this class.



Microscopic theory of modern
Hopfield networks
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Effective theory for feature neurons
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Abstract

Dense Associative Memories or Modern Hopfield Networks have many appealing
properties of associative memory. They can do pattern completion, store a large
number of memories, and can be described using a recurrent neural network with
a degree of biological plausibility and rich feedback between the neurons. At the

same time, up until now all the models of this class have had only one hidden layer,

and have only been formulated with densely connected network architectures, two
aspects that hinder their machine learning applications. This paper tackles this
gap and describes a fully recurrent model of associative memory with an arbitrary

large number of layers, some of which can be locally connected (convolutional),

and a corresponding energy function that decreases on the dynamical trajectory
of the neurons’ activations. The memories of the full network are dynamically

“assembled” using primitives encoded in the synaptic weights of the lower layers,
with the “assembling rules” encoded in the synaptic weights of the higher layers.

In addition to the bottom-up propagation of information, typical of commonly used
feedforward neural networks, the model described has rich top-down feedback
from higher layers that help the lower-layer neurons to decide on their response to
the input stimuli.
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How can we train such hierarchical networks?

unfolding in time
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Can we make Hopfield Networks convolutional?
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Abstract

A central mechanism in machine learning is to identify, store, and recognize
patterns. How to learn, access, and retrieve such patterns is crucial in Hopfield
networks and the more recent transformer architectures. We show that the attention
mechanism of transformer architectures is actually the update rule of modern Hop-
field networks that can store exponentially many patterns. We exploit this high stor-
age capacity of modern Hopfield networks to solve a challenging multiple instance
learning (MIL) problem in computational biology: immune repertoire classification.
Accurate and interpretable machine learning methods solving this problem could
pave the way towards new vaccines and therapies, which is currently a very relevant
research topic intensified by the COVID-19 crisis. Immune repertoire classification
based on the vast number of immunosequences of an individual is a MIL problem
with an unprecedentedly massive number of instances, two orders of magnitude
larger than currently considered problems, and with an extremely low witness rate.
In this work, we present our novel method DeepRC that integrates transformer-like
attention, or equivalently modern Hopfield networks, into deep learning architec-
tures for massive MIL such as immune repertoire classification. We demonstrate
that DeepRC outperforms all other methods with respect to predictive performance
on large-scale experiments, including simulated and real-world virus infection data,
and enables the extraction of sequence motifs that are connected to a given disease
class. Source code and datasets: https://github.com/ml-jku/DeepRC

ABSTRACT

We introduce a modern Hopfield network with continuous states and a correspond-
ing update rule. The new Hopfield network can store exponentially (with the
dimension of the associative space) many patterns, retrieves the pattern with one
update, and has exponentially small retrieval errors. It has three types of energy
minima (fixed points of the update): (1) global fixed point averaging over all pat-
terns, (2) metastable states averaging over a subset of patterns, and (3) fixed points
which store a single pattern. The new update rule is equivalent to the attention
mechanism used in transformers. This equivalence enables a characterization of
the heads of transformer models. These heads perform in the first layers preferably
global averaging and in higher layers partial averaging via metastable states. The
new modern Hopfield network can be integrated into deep learning architectures
as layers to allow the storage of and access to raw input data, intermediate results,
or learned prototypes. These Hopfield layers enable new ways of deep learning,
beyond fully-connected, convolutional, or recurrent networks, and provide pooling,
memory, association, and attention mechanisms. We demonstrate the broad appli-
cability of the Hopfield layers across various domains. Hopfield layers improved
state-of-the-art on three out of four considered multiple instance learning problems
as well as on immune repertoire classification with several hundreds of thousands
of instances. On the UCI benchmark collections of small classification tasks, where
deep learning methods typically struggle, Hopfield layers yielded a new state-of-
the-art when compared to different machine learning methods. Finally, Hopfield
layers achieved state-of-the-art on two drug design datasets. The implementation is
available at: https://github.com/ml-jku/hopfield-layers
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ABSTRACT

Dense Associative Memories or modern Hopfield networks permit storage and re-
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ABSTRACT | | |

Many deep neural network architectures loosely based on brain networks have re-
cently been shown to replicate neural firing patterns observed in the brain. One A B A D
of the most exciting and promising novel architectures, the Transformer neural l l

?

network, was developed without the brain in mind. In this work, we show that
transformers, when equipped with recurrent position encodings, replicate the pre-
cisely tuned spatial representations of the hippocampal formation; most notably
place and grid cells. Furthermore, we show that this result is no surprise since
it is closely related to current hippocampal models from neuroscience. We addi-
tionally show the transformer version offers dramatic performance gains over the
neuroscience version. This work continues to bind computations of artificial and
brain networks, offers a novel understanding of the hippocampal-cortical interac-
tion, and suggests how wider cortical areas may perform complex tasks beyond
current neuroscience models such as language comprehension.
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Figure 5: TEM-Transformer neural architecture. (a) Krotov & Hopfield (2020) describe a neu-
rally plausible architectural instantiation the ‘Hopfield networks is all you need’ with a separation
between ‘feature’ neurons (i.e. h) and memory neurons (i.e. softmax(q;K7T). (b-c) This can be
extended for TEM-t, but now the feature neurons are not all updated simultaneously, but only those
across brain regions. (d) Memory neurons resemble hippocampal place cells and (e) remap ran-
domly across environments. (f) A possible architecture where cortical neurons project to feature
neurons in hippocampus which in turn project to memory neurons in hippocampus. (g) Additional
brain regions can be included easily in this architecture with minimal increase in hippocampal neu-
ron number.
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Abstract

In neuroscience, classical Hopfield networks are the standard biologically plausible
model of long-term memory, relying on Hebbian plasticity for storage and attractor
dynamics for recall. In contrast, memory-augmented neural networks in machine
learning commonly use a key-value mechanism to store and read out memories
in a single step. Such augmented networks achieve impressive feats of memory
compared to traditional variants, yet their biological relevance is unclear. We
propose an implementation of basic key-value memory that stores inputs using a
combination of biologically plausible three-factor plasticity rules. The same rules
are recovered when network parameters are meta-learned. Our network performs
on par with classical Hopfield networks on autoassociative memory tasks and can
be naturally extended to continual recall, heteroassociative memory, and sequence
learning. Our results suggest a compelling alternative to the classical Hopfield
network as a model of biological long-term memory.



Conclusions

Modern Hopfield Networks have a large memory storage
capacity, which scales significantly faster than linearly as
a function of the number of feature neurons.

MHN can be both continuous and binary.

The easiest way to mathematically describe these
networks is through the Lagrangian function.

MHN can have many hidden layers with hierarchical
representations.

MHN can have structural architecture, with convolutions,
attention, average pooling, etc.



