Topological Quantum Field Theories
for Character Stacks

Angel Gonzalez Prieto
Universidad Complutense de Madrid

COMPLUTENSE

MADRID

TQFT Club Seminar - Lisboa



Representation varieties

Representation variety
G a complex algebraic group and M a compact manifold.

Xg(M) = Hom (m1(M), G)

Algebraic structure:
771(M) = <’717"' ) Ve | Ra(’717'-' 775) = 1> We have an
identification

¥ : Hom(mi(M),G) — G
p = (p(11), -+ p(e))

with the algebraic set

Imw:{(g1,...,gg)eGelRa(g1,---7gz):1}-



Across the non-abelian Hodge theory

Character variety
With respect to the action of G by conjugation

Ra(M) = Xa(M) / G,
where X // G denotes the GIT quotient.

Non-abelian Hodge theory.

Character variety
(parabolic)

Riemann-Hi lbe/ \

Moduli space of Hitchin-Kobayashi Moduli space of

flat connections emmm———— Higgs bundles
(parabolic) (parabolic)



Extracting algebro-geometric data

(Varc, U, x) semi-ring ~» KVarc Grothendieck ring
X € Varc ~ [X] € KVarc
[XiuXe] = [Xa] +[Xo],  [X5 x Xo] = [Xi] - [Xal.

[X] = [X—A]+[x] = [C—+]+[+] = [C]

Notation: [C] =L = q.

Problem
Compute [Xg(X)] € KVarc (or even better € Z[q]).




@ Arithmetic method (Hausel, Rodriguez-Villegas, Letellier,
Mereb, Florentino, Mellit, Schiffmann, Bozec...).

Key idea: Katz’s theorem on point counting

Let X be a Z-scheme. Suppose that there exists a polynomial
P(x) € Z[x] such that

[ X(Fpr)l = P(0").

Then [X] = P(q) € KVarc, where g = L.

.

‘Con’: The solution is not explicit

It is written in terms of the character tables of GL,(Fg), SLn(Fq)
(equivalently, on combinatorial data of partitions of n).




@ Geometric method (Logares, Murnioz, Newstead,
Martinez, Baraglia, Hekmati...): Explicitly study the variety.
G = SL(C), PGL,(C), SL3(C).

Key idea: Stratifications
Decompose a complex variety X into simpler subvarieties

X=XiuXoU...UXh.

Compute the virtual classes [Xj] € KVarc. Using the additivity
in KVarc obtain [X] = [Xi] + [Xo] + ... + [Xp].

‘Con’: The method is case-specific

Only valid for small rank (and sometimes genus).




Topological Quantum Field Theories

@ Quantum method (GPF, Logares, Munoz).

Theorem (GP, GP-Logares-Munoz)

For any complex algebraic group G and any n > 1, there exists
aTQFT
Z : Bordp, — KVarc-Mod,

computing virtual classes of G-representation varieties.

v

“Computing virtual classes”

Z(W): KVarc — KVarc
T = [Xe(W)

W:0—0 -~




Arbitrary group G, dimension. 2-category structure for deformation
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Arbitrary group G, dimension. 2-category structure for deformation
theory.

Cons?

@ Bordisms with basepoints: Bordp,,.

=3

= No classification in terms of Frobenius algebras.

@ Lax monoidality: No longer an isomorphism
AMth : Z(M1) R Z(MZ) — Z(M1 (] Mg)

= Z(M) may not be dualizable (i.e. infinitely generated).

@ Not addressing the GIT quotient: Computes [Xs(X)] but not
[Xe(X) / Gl

A\,




Sketch of construction

Honouring the physics

Field th izati
Bordpn _ ield theory {Fields} Quantlzatlon? R-Mod
— oo
Bordp, 4™,  Span(Varc)
(MA) = Xa(N(M,A)) WM s M me
(%) =  xe(S)=G oM e /N

Xg(My) Xg(M2)

0 = Xa(0) =x

Seifert-van Kampen theorem (fundamental groupoids)




Sketch of construction

Honouring the physics

Field theory . Quantization
Bordp, ———— {Fields} R Mod
bl _
Span(Varg) =~ untization, KVarc-Mod ;G(W\ . 1;\/;/336{2/)
fG(”i(MvA)) : KVar/I;V:(réi(M A) Xg(My) Xg(Mp) KVar/X (M) KVar/Xg(Mp)
Xg(0) = * — KVar/+ = KVarc

‘Motivic Fourier-Mukai transf.’

Base change (a.k.a. Beck-Chevalley property)




Explicit maps for surfaces

) ——————— (S',%) (St%) ————

Z(D) : KVarc — KVar/G Z(D") : KVar/G — KVarc

Y p—

Z(L):KVar/G — KVar/G

It is enough to understand three linear maps
(and two of them are trivial).




Case G = SL,(C)

Conjugacy classes in SL,(C)

11 11 A0
=ld J+:(o 1) J:(o —1> DA:(O )\1>

with X € C — {0, +1}.

ltr
e J e Ji

® —Id ® Id




Case G = SL,(C)

Finiteness miracle

Z(D Z(L Z(L
(1,) 4 (11) A (11,1.4,21,2_4) ) (11,1.4,21,2_4)

= <11 ,1 4,24, 2_1> C KVar/SLz(C) is enough

Theorem (Martinez-Munoz) & (GP)

2g—1 29—1

Fsipe)(Ta)] = (1) "+ 2 (= 1776297 (q+1)(2% + 9 - 3)

1 - — -
+5 @+ 1PN (g - 1) (2% 4 g - 1) + (P - )P

Recall: g = [C].



Problem 1: TQFT doesn’t work for quotients

The GIT quotient is old fashioned
Ma(M) = [Xg(M)/G] (stacky quotient)

Recall: A stack is a pseudo-functor (of 2-categories)
9 : Sch/S — Grpd

which is a sheaf for the fppf topology.
Example: Sheaf of points for an S-scheme X

X = Homgen/s(—, X).

Informal idea
M(U) captures the U-families of a moduli problem.




The quotient stack [X/G]

Equivariant

P

[X / G] (U) = § Principal G—bdll

U

Particular case: BG := [x/G] = {Principal G-bundles}.

X

Stack/BG = {Algebraic spaces equipped with G-action}
= (Mg(M) — BG) = Xg(M) + Adj. G-action

Compute the motive [Mg(M)] € K (Stack/BG).




Winter sales!

Theorem (GP-Hablicsek-Vogel)
There exists a lax monoidal TQFT

Z : Bordp,, — K (Stack/BG) -Mod,

computing virtual classes of G-character stacks

Z(W)(1) = [Mg(M) — BG] € K (Stack/BG).

.

Sketch of sketch of proof: Repeat the construction of the
non-stacky case.

@ Field theory: Works because ‘taking stacky quotients’
preserves pullbacks.

@ Quantization: Same argument + technical work.



AGL,(C)-character stack

TQFT: The “core submodule” is generated by (11,1,) but it is
no longer a Z[g]-module.

Z(=D) = <1 +4(q—2)(6a/Gl+(q+ ) [Gm/Gl  q(q—2)[AGL; (K)/C] ) .

q(q—2)[Ga/G @ +a(@—1)(g—-2)[Ga/Gl

Theorem (GP-Hablicsek-Vogel)

The virtual class of the AGL+(C)-character stack is

9?9 — 1
qg-—1

MacL,(c)(Zg) =BG+ ((q —1)%9 —1)[Ga/G] +

(6?92 -1) (g 1) - 1)
qg-—1

[Gm/C]

+ [AGL; (k)/G].




Problem 2: Monoidality

The monoidality problem
Does there exist a monoidal TQFT

Z : Bordp,, — K (Stack/BG) -Mod
computing the virtual classes of G-representation stacks?

Remark: This is a monoidal Kan extension problem

Theorem (GP)

Fun®(Tub,, R-Mod) = lax monoidal TQFTs




The monoidality problem

Theorem No-Go (GP)

Let G be an algebraic group.
@ If dim G > 1, then there does not exist a monoidal TQFT
computing virtual classes of character stacks.
@ If dim G = 0, then there exists a monoidal TQFT
computing the point count of character stacks.

v

Indeed: For dim G = 0, the monoidal TQFT is a modification of
the previous construction (other quantization).

Lax monoidal TQFTs are mandatory for applications to
algebraic topology.




@ Classification of lax monoidal TQFTs.
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@ Classification of lax monoidal TQFTs.

@ Quiver representation varieties.

O<=——0 —>0

N

@ Derived geometry DP(X) + Fourier-Mukai.
@ TQFT across the non-abelian Hodge correspondence.
@ Mirror symmetry conjectures for character varieties.

? ~
DP(X) = Fuk(X),  Zg <+ Zgv



Thank you very much
for your attention!
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