Topological Quantum Field Theories for Character Stacks

Angel González Prieto Universidad Complutense de Madrid

TQFT Club Seminar - Lisboa

Representation varieties

Representation variety

G a complex algebraic group and *M* a compact manifold.

 $\mathfrak{X}_{G}(M) =$ Hom $(\pi_1(M), G)$

Algebraic structure:

 $\pi_1(\pmb{M}) = \langle \gamma_1, \ldots, \gamma_\ell \, | \, R_\alpha(\gamma_1, \ldots, \gamma_\ell) = 1 \rangle.$ We have an identification

$$
\psi: \ \ \mathsf{Hom}\left(\pi_1(M), G\right) \quad \longrightarrow \quad \mathsf{G}^{\ell} \qquad \rho(\gamma_1), \ldots, \rho(\gamma_{\ell})
$$

with the algebraic set

$$
\text{Im }\psi = \left\{ (g_1,\ldots,g_\ell) \in G^\ell \,|\, R_\alpha(g_1,\ldots,g_\ell) = 1 \right\}.
$$

Across the non-abelian Hodge theory

Character variety

With respect to the action of *G* by conjugation

$$
\mathcal{R}_G(M)=\mathfrak{X}_G(M)\mathbin{/\!\!/} G,
$$

where $X \text{ // } G$ denotes the **GIT quotient**.

Non-abelian Hodge theory.

Extracting algebro-geometric data

$$
[X_1 \cup X_2] = [X_1] + [X_2], \qquad [X_1 \times X_2] = [X_1] \cdot [X_2].
$$

Problem

$$
[X] = [X - \star] + [\star] = [\mathbb{C} - \star] + [\star] = [\mathbb{C}]
$$

Notation:
$$
[\mathbb{C}] = \mathbb{L} = q.
$$

beamer-tu-logo

Compute $[\mathfrak{X}_G(\Sigma)] \in \mathbf{KVar}_{\mathbb{C}}$ (or even better $\in \mathbb{Z}[q]$).

Known results

• Arithmetic method *(Hausel, Rodríquez-Villegas, Letellier, Mereb, Florentino, Mellit, Schiffmann, Bozec...)*. $G = GL_n(\mathbb{C}), SL_n(\mathbb{C}).$

Key idea: Katz's theorem on point counting

Let *X* be a \mathbb{Z} -scheme. Suppose that there exists a polynomial $P(x) \in \mathbb{Z}[x]$ such that

$$
|X(\mathbb{F}_{p^n})| = \mathcal{P}(p^n).
$$

Then $[X] = \mathcal{P}(q) \in KVar_{\mathbb{C}}$, where $q = \mathbb{L}$.

'Con': The solution is not explicit

beamer-tu-logo It is written in terms of the character tables of $GL_n(\mathbb{F}_q)$, $SL_n(\mathbb{F}_q)$ (equivalently, on combinatorial data of partitions of *n*).

Known results

• Geometric method *(Logares, Muñoz, Newstead, Martínez, Baraglia, Hekmati...)*: Explicitly study the variety. $G = SL_2(\mathbb{C}), PGL_2(\mathbb{C}), SL_3(\mathbb{C}).$

Key idea: Stratifications

Decompose a complex variety *X* into simpler subvarieties

$$
X=X_1\sqcup X_2\sqcup\ldots\sqcup X_n.
$$

Compute the virtual classes $[X_i] \in K\textsf{Var}_{\mathbb C}$. Using the additivity in KVar_c obtain $[X] = [X_1] + [X_2] + ... + [X_n]$.

'Con': The method is case-specific

Only valid for small rank (and sometimes genus).

beamer-tu-logo

Topological Quantum Field Theories

• Quantum method *(GP, Logares, Muñoz)*.

Theorem (GP, GP-Logares-Muñoz)

For any complex algebraic group *G* and any *n* ≥ 1, there exists a TQFT

 $Z :$ **Bordp**_{*n*} \rightarrow KVar_{\cap}-Mod,

computing virtual classes of *G*-representation varieties.

"Computing virtual classes"

$$
W: \emptyset \longrightarrow \emptyset \quad \leadsto \quad \begin{array}{ccc} Z(W): & \text{KVar}_{\mathbb{C}} & \longrightarrow & \text{KVar}_{\mathbb{C}} \\ & 1 & \mapsto & [\mathfrak{X}_{G}(W)] \end{array}
$$

Pros

Arbitrary group *G*, dimension. 2-category structure for deformation theory.

Cons?

Bordisms with basepoints: **Bordp***ⁿ* .

 \Rightarrow No classification in terms of Frobenius algebras.

beamer-tu-logo Not addressing the GIT quotient: Computes [X*G*(Σ)] but not

Pros

Arbitrary group *G*, dimension. 2-category structure for deformation theory.

Cons?

Bordisms with basepoints: **Bordp***ⁿ* .

 \Rightarrow No classification in terms of Frobenius algebras.

Lax monoidality: No longer an isomorphism

 $\Delta_{M_1,M_2}: Z(M_1)\otimes_R Z(M_2)\longrightarrow Z(M_1\sqcup M_2).$

- \Rightarrow *Z*(*M*) may not be dualizable (i.e. infinitely generated).
- **beamer-tu-logo Not addressing the GIT quotient**: Computes [X*G*(Σ)] but not

Pros

Arbitrary group *G*, dimension. 2-category structure for deformation theory.

Cons?

Bordisms with basepoints: **Bordp***ⁿ* .

 \Rightarrow No classification in terms of Frobenius algebras.

Lax monoidality: No longer an isomorphism

 $\Delta_{M_1,M_2}: Z(M_1)\otimes_R Z(M_2)\longrightarrow Z(M_1\sqcup M_2).$

 \Rightarrow *Z*(*M*) may not be dualizable (i.e. infinitely generated).

beamer-tu-logo Not addressing the GIT quotient: Computes [X*G*(Σ)] but not $[\mathfrak{X}_G(\Sigma)]/G$.

Sketch of construction

Honouring the physics

Functoriality

Seifert-van Kampen theorem (fundamental groupoids)

beamer-tu-logo

Sketch of construction

beamer-tu-logo

Functoriality

Base change (a.k.a. Beck-Chevalley property)

Explicit maps for surfaces

beamer-tu-logo

Key point

It is enough to understand three linear maps (and two of them are trivial).

Case $G = SL_2(\mathbb{C})$

Conjugacy classes in $SL_2(\mathbb{C})$

$$
\pm \text{Id} \quad J_+ = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad J_- = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix} \quad D_\lambda = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}
$$

with $\lambda \in \mathbb{C} - \{0, \pm 1\}.$

Case $G = SL_2(\mathbb{C})$

Finiteness miracle

$$
\langle \mathbb{1}_{\star} \rangle \stackrel{Z(D)}{\rightsquigarrow} \langle \mathbb{1}_{1} \rangle \stackrel{Z(L)}{\rightsquigarrow} \langle \mathbb{1}_{1}, \mathbb{1}_{-1}, 2_{1}, 2_{-1} \rangle \stackrel{Z(L)}{\rightsquigarrow} \langle \mathbb{1}_{1}, \mathbb{1}_{-1}, 2_{1}, 2_{-1} \rangle
$$

$$
\Rightarrow \langle \mathbb{1}_{1}, \mathbb{1}_{-1}, 2_{1}, 2_{-1} \rangle \subseteq KVar/SL_{2}(\mathbb{C}) \text{ is enough}
$$

Theorem (Martínez-Muñoz) & (GP)

$$
\begin{array}{ll} \displaystyle \left[\mathfrak{X}_{\mathsf{SL}_2(\mathbb{C})}(\Sigma_g)\right]=\;\left(q^2-1\right)^{2g-1}q^{2g-1}+\frac{1}{2}\,(q-1)^{2g-1}q^{2g-1}(q+1)\Big(2^{2g}+q-3\Big)\\ \displaystyle +\frac{1}{2}\,(q+1)^{2g+r-1}q^{2g-1}(q-1)\Big(2^{2g}+q-1\Big)+q(q^2-1)^{2g-1}.\end{array}
$$

Recall: $q = [C]$.

Problem 1: TQFT doesn't work for quotients

The GIT quotient is old fashioned

Informal idea

 $\mathfrak{M}_G(M) = [\mathfrak{X}_G(M)/G]$ (stacky quotient)

Recall: A stack is a pseudo-functor (of 2-categories)

 $\mathfrak{M}:$ **Sch**/ $S \rightarrow$ **Grpd**

which is a sheaf for the fppf topology. **Example**: Sheaf of points for an *S*-scheme *X*

 $X =$ Hom $_{\mathbf{Sch}/S}(-, X)$.

beamer-tu-logo

 $\mathfrak{M}(U)$ captures the U-families of a moduli problem.

The quotient stack [*X*/*G*]

$$
[X/G] (U) = \left\{\begin{array}{c} P \xrightarrow{\text{Equivalent}} X \\ \text{Principal } G\text{-bdl} \\ U \end{array}\right\}
$$

Particular case: $BG := [*/G] = {Principal G-bundles}.$

Stack/*BG* \cong {Algebraic spaces equipped with *G*-action} \Rightarrow ($\mathfrak{M}_G(M) \rightarrow BG$) = $\mathfrak{X}_G(M)$ + Adj. *G*-action

beamer-tu-logo

Goal

Compute the motive $[\mathfrak{M}_G(M)] \in K$ (**Stack**/*BG*).

Winter sales!

Theorem (GP-Hablicsek-Vogel)

There exists a lax monoidal TQFT

 $Z:$ **Bordp**_{*n*} \rightarrow K (**Stack**/*BG*)-**Mod**,

computing virtual classes of *G*-character stacks

 $Z(W)(1) = [\mathfrak{M}_{G}(M) \rightarrow BG] \in K(\text{Stack}/BG)$.

Sketch of sketch of proof: Repeat the construction of the non-stacky case.

- Field theory: Works because 'taking stacky quotients' preserves pullbacks.
- Quantization: Same argument + technical work.

AGL1(**C**)**-character stack**

TQFT: The "core submodule" is generated by $\langle \mathbb{1}_1, \mathbb{1}_2 \rangle$ but it is no longer a **Z**[*q*]-module.

$$
Z\left(\overline{(\mathbf{y}\rightarrow\mathbf{y})}\right)=\left(\begin{smallmatrix}1+q(q-2)[\mathbb{G}_a/G]+(q+1)[\mathbb{G}_m/G] & q(q-2)[\mathsf{AGL}_1(k)/G] \\ q(q-2)[\mathbb{G}_a/G] & q^2+q(q-1)(q-2)[\mathbb{G}_a/G]\end{smallmatrix}\right).
$$

Theorem (GP-Hablicsek-Vogel)

The virtual class of the $AGL_1(\mathbb{C})$ -character stack is

$$
\mathfrak{M}_{AGL_1(\mathbb{C})}(\Sigma_g) = BG + ((q-1)^{2g} - 1)[\mathbb{G}_a/G] + \frac{q^{2g} - 1}{q-1}[\mathbb{G}_m/G] + \frac{(q^{2g-2} - 1)(q-1)^{2g} - 1}{q-1}[AGL_1(k)/G].
$$

Problem 2: Monoidality

The monoidality problem

Does there exist a **monoidal** TQFT $\mathcal{Z}:$ **Bordp**_n \rightarrow K (**Stack**/*BG*)-**Mod**

computing the virtual classes of *G*-representation stacks?

Remark: This is a monoidal Kan extension problem

Bord_n
$$
\xrightarrow{Z} K
$$
 (**Stack**/*BG*) -Mod
\n $\int_{Z} Tub_n$

Theorem (GP)

 $Fun^{\otimes}(\textbf{Tub}_n, R\textbf{-Mod}) = \text{law monoidal TOFTs}$

beamer-tu-logo

The monoidality problem

Theorem No-Go (GP)

Let *G* be an algebraic group.

- If dim *G* ≥ 1, then there does **not exist** a **monoidal** TQFT computing virtual classes of character stacks.
- \bullet If dim $G = 0$, then there **exists** a **monoidal** TQFT computing the point count of character stacks.

Indeed: For dim $G = 0$, the monoidal TQFT is a modification of the previous construction (other quantization).

Moral

Lax monoidal TQFTs are mandatory for applications to algebraic topology.

beamer-tu-logo

Classification of lax monoidal TQFTs.

• Quiver representation varieties.

- Derived geometry *D b* (*X*) + Fourier-Mukai.
- TQFT across the non-abelian Hodge correspondence.
-

$$
D^b(X) \stackrel{?}{\cong} \mathrm{Fuk}(\widehat{X}), \qquad Z_G \stackrel{?}{\longleftrightarrow} Z_{G^{\vee}}
$$

- Classification of lax monoidal TQFTs.
- Quiver representation varieties.

- Derived geometry *D b* (*X*) + Fourier-Mukai.
- TQFT across the non-abelian Hodge correspondence.
- Mirror symmetry conjectures for character varieties.

$$
D^{b}(X) \stackrel{?}{\cong} \mathrm{Fuk}(\widehat{X}), \qquad Z_{G} \stackrel{?}{\longleftrightarrow} Z_{G^{\vee}}
$$

- Classification of lax monoidal TQFTs.
- Quiver representation varieties.

- Derived geometry *D b* (*X*) + Fourier-Mukai.
- TQFT across the non-abelian Hodge correspondence.
- Mirror symmetry conjectures for character varieties.

$$
D^{b}(X) \stackrel{?}{\cong} \mathrm{Fuk}(\widehat{X}), \qquad Z_{G} \stackrel{?}{\longleftrightarrow} Z_{G^{\vee}}
$$

- Classification of lax monoidal TQFTs.
- Quiver representation varieties.

- Derived geometry *D b* (*X*) + Fourier-Mukai.
- **TQFT across the non-abelian Hodge correspondence.**
- Mirror symmetry conjectures for character varieties.

$$
D^b(X) \stackrel{?}{\cong} \mathrm{Fuk}(\widehat{X}), \qquad Z_G \stackrel{?}{\longleftrightarrow} Z_{G^{\vee}}
$$

Thank you very much for your attention!

