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Abstract

We propose machine learning inspired methods for computing
numerical Ricci-flat Kähler metrics, and compare them with
previous work. arXiv:2012.04797 and arXiv:2105.03991
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Introduction

ST Yau famously proved in 1978 that a Kähler manifold with zero first
Chern class has a Ricci flat metric. We still have no closed form
expressions for these metrics, but there has been a fair amount of
work on computing numerical approximations and using them for
physics applications: Headrick and Wiseman hep-th/0506129,
Donaldson math.DG/0512625, Douglas Karp Lukic Reinbacher
(DKLR) hep-th/0606261 and hep-th/0612075, Braun, Ovrut et al
0712.3563, 0805.3689 , Anderson et al 0904.2186,
1004.4399, 1103.3041, Headrick and Nassar 0908.2635, Cui
and Gray 1912.11068, and others. Related work on other
Kähler-Einstein metrics appears in Doran et al hep-th/0703057.

The tremendous advances in machine learning (ML) have brought new
interest to this line of work. ML uses function approximation methods,
especially feed forward networks (FFNs), which mitigate the “curse of
dimensionality” in high dimensions. ML software is 1000s of times
faster than general purpose numerical code. Many recent works are
analyzing and using ML inspired methods for numerical PDE.
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Introduction

In this talk I describe my work with Lakshminarasimhan and Qi,
following a more mathematical presentation arXiv:2105.03991.
Related work on ML for numerical methods includes Ashmore, He and
Ovrut 1910.08605, Ashmore 2011.13929, and 2012.04656 by
Anderson, Gerdes, Gray, Krippendorf, Raghuram and Ruehle.
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Introduction

Calabi-Yau manifolds: Kähler with c1(M) = 0↔ ∃gij with Ricci = 0.
Standard constructions: complete intersections in projective space,
hypersurfaces in weighted projective space and in toric varieties.
Simplest examples: quintics in CP4 with 126− 25 complex moduli,

0 = f (Z 1,Z 2,Z 3,Z 4,Z 5) =
5∑

i=1

(Z i)5 +ψZ 1Z 2Z 3Z 4Z 5 +other degree 5.

Keeping the one modulus ψ, we have the Dwork family with generic
Z4 × S5 symmetry (and Z2 for ψ real).

A Calabi-Yau manifold has two preferred volume forms, the metric
volume and the “holomorphic volume”

volω ≡ 1
n!

detω where ω ≡ ∂∂̄K , n ≡ dimC M

volΩ ≡ (−i)nNΩΩ(n,0) ∧ Ω̄(0,n)

Their ratio η ≡ volω/volΩ is constant for the Ricci flat metric. By choice
of normalization NΩ one can set this constant to η = 1.
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Introduction

So far as anyone knows there is no analytic expression for these Ricci
flat metrics, though there may be one for K3 (Kachru Tripathy and
Zimet 1810.10540, 2006.02435, Gaiotto et al 0907.3987). But
numerics could suffice. Substituting ω = ω0 + ∂∂̄φ into the η = 1
equation, one must solve a nonlinear PDE for a single function φ (the
complex Monge-Ampere equation).
Numerical methods for PDE is a vast subject but there are two main
types of method. One is local methods such as finite elements. These
discretize space and represent functions in terms of their local values
(on points, links, etc.).
The other is spectral methods, such as Fourier space methods. Here
one expands the functions in an analytically simple basis: polynomials,
exponentials, special functions, etc..
All numerical methods are challenging for PDEs with gauge and
coordinate freedom – unless carefully designed, small effects build up
and lead to numerical instability. In CY metric work, besides the
simplification of solving for a single function, these problems are
mitigated by working with a fixed complex coordinate system.

MRD, SL and Yidi Qi ( Harvard CMSA / Stony Brook ) Holomorphic networks Geometria em Lisboa seminar, April 12, 2022 5 / 55



Introduction

So far as anyone knows there is no analytic expression for these Ricci
flat metrics, though there may be one for K3 (Kachru Tripathy and
Zimet 1810.10540, 2006.02435, Gaiotto et al 0907.3987). But
numerics could suffice. Substituting ω = ω0 + ∂∂̄φ into the η = 1
equation, one must solve a nonlinear PDE for a single function φ (the
complex Monge-Ampere equation).
Numerical methods for PDE is a vast subject but there are two main
types of method. One is local methods such as finite elements. These
discretize space and represent functions in terms of their local values
(on points, links, etc.).
The other is spectral methods, such as Fourier space methods. Here
one expands the functions in an analytically simple basis: polynomials,
exponentials, special functions, etc..
All numerical methods are challenging for PDEs with gauge and
coordinate freedom – unless carefully designed, small effects build up
and lead to numerical instability. In CY metric work, besides the
simplification of solving for a single function, these problems are
mitigated by working with a fixed complex coordinate system.

MRD, SL and Yidi Qi ( Harvard CMSA / Stony Brook ) Holomorphic networks Geometria em Lisboa seminar, April 12, 2022 5 / 55



Introduction

So far as anyone knows there is no analytic expression for these Ricci
flat metrics, though there may be one for K3 (Kachru Tripathy and
Zimet 1810.10540, 2006.02435, Gaiotto et al 0907.3987). But
numerics could suffice. Substituting ω = ω0 + ∂∂̄φ into the η = 1
equation, one must solve a nonlinear PDE for a single function φ (the
complex Monge-Ampere equation).
Numerical methods for PDE is a vast subject but there are two main
types of method. One is local methods such as finite elements. These
discretize space and represent functions in terms of their local values
(on points, links, etc.).
The other is spectral methods, such as Fourier space methods. Here
one expands the functions in an analytically simple basis: polynomials,
exponentials, special functions, etc..
All numerical methods are challenging for PDEs with gauge and
coordinate freedom – unless carefully designed, small effects build up
and lead to numerical instability. In CY metric work, besides the
simplification of solving for a single function, these problems are
mitigated by working with a fixed complex coordinate system.

MRD, SL and Yidi Qi ( Harvard CMSA / Stony Brook ) Holomorphic networks Geometria em Lisboa seminar, April 12, 2022 5 / 55



Introduction

So far as anyone knows there is no analytic expression for these Ricci
flat metrics, though there may be one for K3 (Kachru Tripathy and
Zimet 1810.10540, 2006.02435, Gaiotto et al 0907.3987). But
numerics could suffice. Substituting ω = ω0 + ∂∂̄φ into the η = 1
equation, one must solve a nonlinear PDE for a single function φ (the
complex Monge-Ampere equation).
Numerical methods for PDE is a vast subject but there are two main
types of method. One is local methods such as finite elements. These
discretize space and represent functions in terms of their local values
(on points, links, etc.).
The other is spectral methods, such as Fourier space methods. Here
one expands the functions in an analytically simple basis: polynomials,
exponentials, special functions, etc..
All numerical methods are challenging for PDEs with gauge and
coordinate freedom – unless carefully designed, small effects build up
and lead to numerical instability. In CY metric work, besides the
simplification of solving for a single function, these problems are
mitigated by working with a fixed complex coordinate system.

MRD, SL and Yidi Qi ( Harvard CMSA / Stony Brook ) Holomorphic networks Geometria em Lisboa seminar, April 12, 2022 5 / 55



Introduction

Headrick and Wiseman hep-th/0506129 found a metric on a
Kummer surface M as follows. Recall that the Kummer surface is the
blowup of T 4/Z2 at the 16 fixed points. For the maximally symmetric
case, one can cover M with two types of patch – T 4/Z2 minus the
neighborhood of the fixed points, and 16 copies of a deformed
Eguchi-Hanson space (asymptotically C2/Z2). One then represents K
using its values on a finite set of points p in each patch, and its
derivatives as finite differences. HW then used a relaxation method
(Gauss-Seidel) in which one iterates through points p and solves for
K (p) with the values of the neighbors fixed. This converges well.

Local methods suffer from the “curse of dimensionality” – to represent
a function on length scales 1/k in D dimensions requires O(kD) lattice
points. 108 points would be the practical limit. In most numerical work,
D = 3 is considered “high dimensional.” D = 4 is pushing it and at
D = 6 one cannot describe much local structure.
Also, one needs to find and program explicit coordinate patches and
overlaps. While straightforward in principle, this is a lot of work.
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Introduction

Donaldson was inspired by HW’s work to develop another method in
math/0512625, based on the math he was doing (Kähler-Einstein
metrics with c1 > 0). This is a spectral method which takes advantage
of many special features of the problem.

First, it is an embedding method, meaning that the manifold M is
embedded in a simple higher dimensional ambient space. This has the
advantage that one can get a large parameterized family of metrics, by
varying either the embedding or the metric on the ambient space. Say
we have X : M → RN , then we could pull back the Euclidean metrics
hij = const on RN to get a family of metrics on M,

ds2 = hijdX idX j .

In general, embeddings have the disadvantage that they require
arbitrary choices. Thus they can develop bad behavior and
singularities not related to the original problem.
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Introduction

But in this problem, there is a canonical family of embeddings into
CPN . We defined our quintic as a hypersurface in CP4, so this is one
embedding. In the terms above, the coordinates Z i are functions from
M to CP4, the quotient of C5 by Z i ∼ λZ i . The family of metrics is then
defined by pulling back the Fubini-Study metrics

Kh = log
∑
I,J̄

hI,J̄Z IZ̄ J̄ .

This only gives us 25 real parameters. But we can generalize to higher
N by replacing the Z ’s in this ansatz with homogeneous polynomials of
degree k , SIJ ≡ Z IZ J , and so on. After removing redundancies
following from f (Z ) = 0, this gives us O(k6) real parameters and can
approximate arbitrary Kähler metrics on M to arbitrary precision.

All this can be applied to general projective manifolds by reinterpreting
the polynomials as a basis of sections sI of a line bundle Lk . If M has
symmetries, one can impose these on hI,J̄ . And since this is a
canonical embedding, it is less likely to introduce bad behavior.
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Introduction

A second idea introduced by Donaldson was to approximate the Ricci
flat metric by a different metric, the balanced metric. This is defined by
the following, at first strange sounding prescription:

(h−1)I,J̄ =
1

vol M

∫
M

dvol
SI S̄J̄∑

K ,L̄ hK ,L̄SK S̄L̄
.

What does this mean? The integral defines a hermitian inner product
on the space of sections, in other words on CN+1, and we can use it to
define an orthonormal basis. The balanced metric is the one for which
h is the identity matrix in an orthonormal basis.

This has some physical resonance as it is also the statement that the
density of states ρ for a quantum Hall system on M in the magnetic
field F = ω is constant, ρ(z) =

∑
||S(z)||2h = N + 1. Klevtsov and I

0811.0367 and Eager, Gary and Roberts 1011.5231 tried to
connect this to supersymmetric black holes and giant gravitons in AdS.
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Introduction

A primary motivation for the balanced metric (as I understand it) is that
the problem of showing that it exists and is unique, is much simpler
than understanding the best approximation to a Ricci flat,
Kähler-Einstein or constant scalar curvature metric within a finite
dimensional space of metrics. One can then show, using the
Tian-Yau-Zelditch expansion

ρ(z) = N + 1 + R(z) +O(N−1),

that as k →∞, the balanced metrics converge to these other metrics.

A systematic way to formulate these problems is to postulate an
energy (or “loss”) functional L on the full space of metrics, whose
minima are the metrics of interest. If L is convex, ∂2L > 0, then it will
either have a unique minimum or run away to infinity. The latter can be
excluded by looking at one parameter restrictions (stability).
The balanced metrics are critical points of a convex functional of h,

Lb =
1

vol M

∫
M

dvol Kh − log det h,
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Introduction

Donaldson showed that the balanced definition we discussed earlier
could be used to define an iteration,

h(n)

I,J̄
→ h(n+1)

I,J̄
≡

(∫
SIS̄J̄

h(n)SS̄

)−1

,

which converges on the balanced metric when it exists. As a numerical
method, guaranteed convergence is a great advantage, although doing
(N + 1)2 integrals is expensive.

Donaldson implemented this procedure on a K3 defined as a
hypersurface in OCP2(3), again doing the integrals by choosing explicit
coordinate charts and a lattice discretization. He reports computations
up to k = 9 done on his PC which produced a balanced metric with
|η − 1| ∼ 1% ∼ 1/k2, as predicted by the TYZ argument.
There are many other ideas in this work, for example an approximation
to the scalar Laplacian using h and not the explicit metric on M.
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Introduction

Subsequent works:
DKLR hep-th/0612075 followed Donaldson but replaced the
integration over coordinate patches with Monte Carlo,∫

M
dDz f (z)→ 1

N

∑
i

f (zi).

This is easy to program and allowed treating the quintic threefold.
hep-th/0606261 treated hermitian Yang-MIlls, using a
generalization of the balanced condition due to X Wang (2005).
Mathematically, one embeds the vector bundle V twisted by L in a
Grassmannian manifold. More concretely, A = G−1∂G with
G = hSS̄. Donaldson’s algorithm converges if V is stable.
Braun, Ovrut et al 0712.3563 treated general complete
intersections and quotients. In 0805.3689 the scalar Laplacian
was studied.
Anderson et al 1004.4399, 1103.3041 studied HYM in detail
and reproduced variations of stability.
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Introduction

The rational curve (Z0 = z0, Z1 = −z0, Z2 = z1, Z3 = 0, Z4 = −z1) for
the balanced metric on the Fermat quintic, from DKLR.
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Introduction

Headrick and Nassar 0908.2635 returned to the Ricci flat metric
problem, but instead of using Donaldson’s algorithm to find the
balanced metric, they proposed to minimize an energy function which
measures the distance of the metric to Ricci flatness. Since a
Calabi-Yau metric satisfies η = 1, there are many candidates:

Lη,p ≡ ||η − 1||p p = 1 (MAPE),p = 2 (RMSE),p =∞ (MAX)
LR ≡ ||∂ log η||2 (related to the mean Ricci scalar)

where ||f ||p is the p-norm (
∫

M dµ |f |p )1/p for some measure dµ.
Another interesting choice is the KL divergence

∫
M volΩ log η.

These L’s are convex when considered as functionals on the space of
Kähler metrics and after restricting to the Fubini-Study metrics, as long
as we do the continuum integral over M. It is less clear if we do Monte
Carlo, but should hold if the number of sample points is much greater
than the number of parameters. HN carried this procedure out for the
Fermat K3 and Dwork quintics. Their large discrete symmetry groups
enable going to large k with relatively few parameters, about 100 for
Fermat K3 with k = 17, achieving very high accuracy (MSE ∼ 10−16).
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as we do the continuum integral over M. It is less clear if we do Monte
Carlo, but should hold if the number of sample points is much greater
than the number of parameters. HN carried this procedure out for the
Fermat K3 and Dwork quintics. Their large discrete symmetry groups
enable going to large k with relatively few parameters, about 100 for
Fermat K3 with k = 17, achieving very high accuracy (MSE ∼ 10−16).
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Introduction

If one does not know whether a solution exists, or wants to prove this
rigorously, then the mathematical properties of the balanced metric are
a great advantage. But if one knows the solution exists and wants the
most accurate approximation to it, then combining the embedding
method with optimization is the more straightforward approach.

One can show that the approximation error decreases exponentially in
the order k of the polynomials. The Ricci flat metric is known to be
analytic (C∞) and thus its coefficients in Fourier space fall off
exponentially. The same is true for this basis (it is a spectral basis for
the Laplacian on CPn+1).

Also like a Fourier basis, one expects that k ’th order polynomials can
represent structure on length scales down to 1/k , but not on shorter
scales. In the CY problem one can vary the length scales by varying
the complex structure – for a hypersurface, the defining function f . For
example by tuning ψ → −5 above, one approaches a conifold (ODP)
singularity. In this limit, a three-cycle becomes small and the accuracy
becomes low, as found by HN and by Cui and Gray 1912.11068.
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Introduction

Kh = log
∑
I,J̄

hI,J̄sI s̄ j̄ .

One might increase k to represent this smaller scale structure.
However, the number of coefficients in h grows as kdimR M = k6.
To deal with this, almost all previous works on this problem only
considered highly symmetric CY’s such as the Fermat/Dwork quintics.
In this case one can restrict to coefficients which respect the symmetry
and get up to k ∼ 15, as we discussed.

Braun et al 0805.3689 considered a random quintic with no
symmetry at all, and computed the balanced metric for k = 8. They got
about 5% MAPE. The method we will describe does 100 times better
on similar problems.

Ashmore, He and Ovrut 1910.08605 developed an ML improvement
on Donaldson’s algorithm, which extrapolates the results at degree k
to larger degrees k ′. They report results for the Fermat quintic – it
would be interesting to see this for cases with less symmetry.
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Introduction

The growth
Nparameters ∼ kdim M

is the “curse of dimensionality,” named by Bellman in the 50’s. It is a
fundamental problem with all computational work in high dimensions
and there is a vast literature on methods to mitigate it.

It is also a fundamental problem in machine learning. Standard tasks
are to classify images with millions of pixels, or documents with tens of
thousands of words. The success of deep learning and other modern
ML techniques at such tasks has forced a reexamination of the
accepted principles of statistics.

Researchers are now adapting ML techniques to solve PDE’s and
other classic problems of computational science, and finding that the
curse of dimensionality can be mitigated. Some well known works on
the subject include Carleo and Troyer 1606.02318 (published in
Science) on quantum many-body problems, and Han et al (PNAS
2017) on solving Black-Scholes and related equations.
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Holomorphic and bihomogeneous networks

Feedforward networks

A feed-forward network (FFN, also called MLP for multilayer
perceptron) is a nonlinear map F [ ~W ] from a vector space X to another
vector space Y with parameters ~W . It is built by composing a
sequence of maps which alternate between two types, general linear
maps W and fixed nonlinear transformations θ, as in

F [ ~W ] = W (d) ◦ θ|Vd−1 ◦W (d−1) ◦ . . . ◦ θ|V2 ◦W (2) ◦ θ|V1 ◦W (1).

Each linear map W (i) has as its range a new vector space Vi , so

W (1) ∈ Hom(X ,V1),

W(2) ∈ Hom(V1,V2),

...
W(d) ∈ Hom(Vd−1,Y)

The combination θ ◦W is called a layer, with the final layer W(d) being
an exception in not having θ. The number of layers d is the depth.
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Holomorphic and bihomogeneous networks

F[~W] = W(d) ◦ θ|Vd−1 ◦W(d−1) ◦ . . . ◦ θ|V2 ◦W(2) ◦ θ|V1 ◦W(1).

Generally one allows the W’s to be arbitrary linear transformations, so
the parameters consist of the list of W(i). To define the θ’s, we start with
the one dimensional case θ|K : K→ K, which is called the activation
function. This could be any function; two popular choices for K = R
are θ(x) = tanh x, and the “rectified linear unit” or ReLU function

θReLU(x) =

{
x, x ≥ 0
0, x < 0

.

To define θV for a general vector space V, we pick a basis ei for V and
apply θ|K componentwise,

θV

(∑
i

ci ei

)
=
∑

i

θK(ci) ei.

Since every θ is both prefixed and postfixed by a general linear
transformation, the space of maps is independent of the basis.
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Holomorphic and bihomogeneous networks

It has been shown that feed-forward networks can approximate
arbitrary real valued functions. This is the case even for d = 2
(Cybenko1989), but in this case one can need an exponentially large
number of units, as would be the case for simpler methods of
interpolation (the “curse of dimensionality”). By using more layers, one
can gain many advantages – complicated functions can be
represented with many fewer units, and local optimization techniques
are much more effective. How exactly this works is under intensive
study. A few references:

Some observations on partial differential equations in Barron and
multi-layer spaces, E and Wojtowytsch, arXiv:2012.01484
Error bounds for approximations with deep ReLU networks,
Yarotsky, arXiv:1610.01145
Approximation and Estimation for High-Dimensional Deep
Learning Networks, Barron and Klusowski, arXiv:1809.03090
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Holomorphic and bihomogeneous networks

Holomorphic and bihomogeneous networks

The CY metric computations represent the Kähler potential as the
pullback of a Fubini-Study Kähler potential by an embedding
s : M ↪→ CPN,

Kh = log
∑
I,̄J

hI,̄Js
Is̄j̄.

We can regard this as the log of a homogeneous polynomial on M, and
replace it with a feed forward network with the same homogeneity
property.

Since we want FW to be homogeneous under rescaling the inputs
ZI → λZI, the activation functions must be homogeneous. The natural
choice is

θ(z) = z2.
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Holomorphic and bihomogeneous networks

F[~W] = W(d) ◦ θ|Vd−1 ◦W(d−1) ◦ . . . ◦ θ|V2 ◦W(2) ◦ θ|V1 ◦W(1).

In holomorphic networks, we take the inputs to be the homogeneous
coordinates ZI and the W’s to be complex. Then the output ~FW is a
vector of sections of Lk with k = 2`−1, a nonlinearly parameterized
subspace of H0(Lk). We then take

KW = log |~FW(Z)|2.

In bihomogeneous networks, K ≡ R, and we take the inputs to be
the real and imaginary parts of the combinations ZIZ̄J̄. These are
bihomogeneous under the rescaling (ZI, Z̄J̄ → (λ1ZI, λ2Z̄J̄). The `’th
layer activations are bihomogeneous with degree (2`,2`). We use a
one dimensional output Y ≡ R, and

KW = log FW(ZZ̄).
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Holomorphic and bihomogeneous networks

Using computational techniques we discuss shortly, we can find good
approximate Ricci flat metrics using these networks. And to anticipate
a bit, the bihomogeneous networks work much better than the
holomorphic networks.

The problem with the holomorphic networks is that
dim H0(Lk) ∼ kdim M, and to obtain nondegenerate Fubini-Study
metrics one needs to span it. But in our computations ~F is a relatively
low dimension subspace.

By contrast, using the bihomogeneous networks, it is easy to embed
the degree (k, k) Kähler potentials as a subset of the (2k,2k) Kähler
potentials. Given an intermediate result Fk = (

∑
i |Zi|2)k, one can take

F2k = θ(Fk).

One can then add additional terms to F2k to improve the
approximation, for example F′ = |W · Z|4k, a function with a sharp peak
at Z ∝W of width 1/k.
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Holomorphic and bihomogeneous networks

Here are bihomogeneous networks with depth 2 and 3:

Kb
L;2;D1

= log
∑

1≤I≤D1

W(2)
I (
∑

i

W(1),I
i,̄j sis̄j̄)2

Kb
L;~2;D1,D2

= log
∑

1≤I≤D2

W(3)
I

 ∑
1≤J≤D1

W(2),I
J (

∑
i

W(1),J
i,̄j sis̄j̄)2

2

.

Let BiH[D,D1, . . . ,D`] be the set of Kähler potentials which can be
realized by a bihomogeneous network with layer widths D,D1, etc..
Such a network has

dimR BiH[D,D1, . . . ,D`] = DD1 + D1D2 + . . .+ D`−1D` + D`

parameters. Take all Di ∼ D = d2, then this is ∼ `d4 � 2d` parameters.
So we can represent length scales 1/k using many fewer parameters
than the Fubini-Study metrics.
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ML software implementation

The nice thing about this is that it can be easily implemented using
standard ML software such as TensorFlow/Keras. Let us briefly review
supervised learning and compare it with our problem.
In supervised learning, we are given a dataset of input-output pairs
(~xi, yi), a class of models y = fW(x), and an objective function which
evaluates their performance, for example least squares error

L =
∑

i

|yi − fW(~xi)|2.

One then optimizes L as a function of the weights, usually by gradient
descent or stochastic gradient descent (SGD):

~Wt+1 = ~Wt − η
∂

∂ ~W
L[~W]

In SGD one uses L with the sum restricted to “minibatches,” random
subsets of the dataset. This adds a noise term to the gradient, which
helps get out of local minima.
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ML software implementation

Comparing with our problem, the main difference is that our “dataset”
is the manifold M. By sampling points Zi ∈ M and following the
definitions above, we can minimize one of the energy functionals given
earlier, defined using Monte Carlo evaluation of the integral over M.∫

M
dµ f→ 1

N

∑
i

f(Zi)

The correspondence is

~xi = ZIZ̄J̄|Z=Zi ; yi = Ω ∧ Ω̄|Z=Zi ; fw = det ∂∂̄ log FW[xi].

We just need to add code to sample Zi and to compute Ω ∧ Ω̄, and a
layer to compute the volume form F→ det ∂∂̄F.
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ML software implementation

ML software makes it easy to define feed forward networks,

It also makes gradient descent easy, computing the derivatives
∂fW/∂W using backpropagation. Also provided are “housekeeping”
tasks such as initialization, saving coefficients, etc.
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ML software implementation

We implemented this, and we have begun to study geometry with it
(special Lagrangian torus fibrations, more general Einstein metrics) but
this is work in progress. Here I will describe some implementation
details, and the following points:

1 Implementation and numerical details.
2 Choice of hyperparameters (network width and depth, optimizers

and learning schedule) to get accurate results.
3 Questions which are a focus of current ML research: the

optimization landscape and the role of overparameterization.
4 The difference of expressivity of a network with a polynomial

number of parameters versus an exponential number of
parameters.

The last question, which we formulated in the course of our research,
is very general. It could be asked about numerical methods for many
PDEs and perhaps can be phrased as a question in computational
complexity theory. Let us return to it.
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ML software implementation

Implementation details

Our code is at http://github.com/yidiq7/MLGeometry.
Two points which might not be obvious:

One wants to avoid divisions by small numbers. This can happen
when one goes to inhomogeneous coordinates in which one
Za = 1, and it can also happen in the formula Ω =

∏
dZ/∂f/∂Zb.

To avoid this we provide two levels of coordinate patches, the first
Ua in which |Za| ≥ |Zb|∀b, and the second Ua,c in which
|∂f/∂Zc| ≥ |∂f/∂Zb||∀c. The code automatically assigns each point
Zi to the correct patch.
Gradient descent does not efficiently find the minimum of L. One
can do better by using the Adam adaptive optimization method,
but this is still a first order method and does not converge quickly.
We thus do the optimization in two stages – once Adam has
reached the neighborhood of an optimum, we continue with the
second order L-BFGS method.
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ML software implementation

Even so, the energy function L is not convex and it is not clear one is
finding a global minimum. While this is a general problem in ML, the
continuum Ricci flat Kähler problem is better behaved: if F(η) is
convex, then the energy function

∫
M F(η) is convex.

However this will generally not be the case for feedforward networks.
Even for the simplest network with a linear activation function,

FW = W1W2x

the energy function is not strictly convex. In general it is more
complicated.

It is also not generally true if the integrals are done by sampling.
Consider a finite number Np of samples (xi, yi). There will be some
number of parameters Pint which given xi, suffices to fit (interpolate)
any generic prescribed values of the yi. For P > Pint the model is
overparameterized, and again the energy function will not be strictly
convex. Metrics with no symmetry will often require large P.
Let us come back to these points after discussing some results.
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ML software implementation

We studied CY hypersurfaces with varying amounts of symmetry:
1 The Dwork quintics with maximal symmetry: f = f1 below with
φ = 0.

2 A two parameter family with less symmetry,

f1 = z5
0 +z5

1 +z5
2 +z5

3 +z5
4 +ψz0z1z2z3z4 +φ(z3z4
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ML software implementation

We began by comparing various options and their effects on accuracy,
speed and reliability (sometimes a run would work for some
initializations and not others), with the following results:

Holomorphic networks did not work reliably.
MSE and MAPE loss functions worked equally well in training.
While MAX did not work so well, for the 3 layer networks, it was
helpful to add 0.1∗MAX in the early stage of training, to prevent
getting stuck in a bad local minimum.
Testing and training errors are comparable for the smaller
networks, but larger networks sometimes overfit.
MSE error is roughly the square of the MAPE error.
MAX error is often larger than MAPE and had different
hyperparameter dependence.
`2 regularization did not help.
64 bit networks did not do better than 32 bit.
The speed of Adam convergence (measured by number of
epochs, not compute time) improved with both depth and width of
the networks. Still a second pass of L-BFGS was helpful.
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ML software implementation

Figure: The training curves for the Dwork quintic with ψ = 0.5, trained with
Adam optimizer and MAPE loss. The data for k2_500_500_500_1 was
recorded every 10 epochs.
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Experiments and observations

Experiments and observations

After narrowing down the hyperparameter choices and implementing
L-BFGS, we studied the accuracy of the method as a function of the
most significant parameters.
For the geometry of the CY, we want to distinguish dependence on

The shortest length scale ∼ distance in moduli space to a singular
CY, and
The “complexity” of the CY, both lack of symmetry (thus requiring
more parameters) and perhaps other factors.

For the model (network), we want to distinguish dependence on
The depth d = `+ 1 of the network: degree k = 2d , and
The total number of parameters.
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Experiments and observations

The relation between distance to a singular CY and shortest length
scale is a bit imprecise, and the actual distance in the Weil-Petersson
moduli space metric, though well defined, is not easy to compute.
Thus, we used a simpler proxy for the distance,

sin θ(f ) ∝ d(f ) ≡ min
Z∈M

|∂i f (Z )|H
|Z |n−1 ||f ||H

,

where ||f ||H = 〈|f |2〉 under the Gaussian measure exp−Z †HZ .

The idea (inspired by a similar question in Blum et al’s Complexity and
Real Computation) is that for a given Z ∈ M, the equations f (Z ) = 0
and {∂i f (Z ) = 0} define two linear subspaces of C126, the space of
coefficients of f . The ratio is the shortest distance in the Fubini-Study
metric on CP125 (derived from the metric H on CP4) between points in
these two subspaces.
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Experiments and observations
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Distance to the discriminant locus for the Dwork quintics. Besides the
conifold point at ψ = −5, there is a local minimum near ψ = 5, which
fits with the feature seen in the plot of curvature versus ψ in Cui and
Gray 1912.11068. This is the point on the positive real axis closest to
the conifold point, perhaps reached by following a path like ψ = 5eiθ.
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Experiments and observations
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Distances to the discriminant locus as a function of ψ, φ in f1(Z ), and
as a function of ψ, α in f2(Z ).
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Experiments and observations

Our examples cover a variety of distances. The “complexity” of the
CYs is harder to make precise, but f2 with no symmetry would seem
more complex than f1.
Another useful data point is to know the maximal attainable accuracy
for each CY within the space of Fubini-Study metrics. This would be a
lot of computation to get directly. Instead we followed an observation of
Headrick and Nassar 0908.2635. As explained by Donaldson in this
context, the error ε of the best polynomial approximation to a given
smooth function will decrease faster than any power of the degree.
This is analogous to the statement that the Fourier transform of a
smooth function will decrease faster than k−ν for any ν.
This does not immediately imply that ε ∝ C−k , but Headrick and
Nassar found this to be so in several examples over a wide range of k .
Granting this, we can compute the error for k = 2,3,4 and extrapolate.

On the next slides, we plot results for a variety of networks, and the
extrapolated k = 8 best possible accuracy, against distance to the
singularity.
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Experiments and observations
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Experiments and observations

What do we take from this?
The degree k is the hyperparameter with the largest effect.
There is also a dependence log ε ∼ d(f ).
To distinguish k from the number of parameters, we studied two
four layer networks, one with three layers of width 70 (or
70_70_70_1) and another 300_300_300_1. Both have k = 8, but
the first has 11620 real parameters and the second has 187800
parameters, while the FS metric has 245025 parameters.
Looking at f1, both achieve roughly the optimal accuracy.
But looking at f2, this is only so for larger values of distance d . For
more singular CYs, only the 300_300_300_1 network can match
the optimal accuracy.

So, we have evidence that the accuracy is not controlled just by k and
the distance to the singularity, but also by the total number of
parameters, and some sort of “complexity” measure. Since the
300_300_300_1 network has almost as many parameters as the k = 8
FS metric, its accuracy is not surprising. There is still a memory
savings, as the GPU works with arrays of size Nbatch × width.
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Experiments and observations

These four layer bihomogeneous networks give a pretty reliable 10−5

MSE, which is probably good enough for applications to geometry and
string theory. It would be interesting to know what accuracy is required
to guarantee the existence of a continuum solution.

One might be able to get similar results with FS k = 8. An example
was done in Braun et al 0805.3689 but for the balanced metric.

We tried five layer networks with k = 16, as well as feeding in a
complete basis of k = 2 or k = 4 sections as inputs, to get k = 16.
Some runs got a factor of 10 better accuracy, but this was not reliable.
Improving the accuracy may be an interesting challenge, and we are
thinking of setting up a leaderboard on our Github site.
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Experiments and observations

Our first geometry project (with Yidi Qi) is to study closed geodesics on
the quintic threefolds. For example, a geodesic in Σ ⊂ M defined as
the fixed points of a discrete symmetry will lift to a geodesic on M. On
the Fermat quintic we can take Z4 = Z5 = 0 to get a quintic curve in
CP2, and then use a minimal length noncontractable cycle.

There are physics arguments (Gao and Douglas 2011) that many such
geodesics exist, because strings embedded into such geodesics are
the “winding states” of the nonlinear sigma model with target space M.
Naively, the physics arguments suggest that these should be “stable”
in the sense that the second variation operator V should be
non-negative definite. However, Bourguignon (1976) showed that this
is never the case for a Ricci-flat Kähler manifold in d > 1, because the
sum of the eigenvalues of V is zero. From the physics point of view this
is a bit paradoxical.

A potential resolution is that the negative eigenvalue is associated to
an oscillatory “breather” trajectory along which the string shrinks from
the geodesic down to a point and then expands again.
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Experiments and observations

To see if this is the case we are numerically generating closed
geodesics and will then simulate the conjectured dynamics. An
approximate geodesic can be found by sampling points xi and finding
the shortest path through the metric graph with distances d(xi , xj).
This can be improved by gradient descent. So far we have closed
geodesics on T 2 and K3.
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Theoretical questions

Theoretical questions

As discussed earlier, the Ricci flat metric on M can be approximated
by a degree k FS metric to o(k−ν) for any ν, indeed this would be the
case for any smooth function. In other words, the log error goes as
log ε ∼ −kα for some α. This is nice but we need O(kdimR M), here
O(k6) coefficients to do it.
Can we do the same with a series of depth d fixed width D networks?
This has k = 2d−1 so if we could, we would need only O(log k)
coefficients to do it. Even if D grows as a power of d , we still have
O((log k)n) coefficients for some n. This difference between a power
and a log is a complexity theory question.

MRD, SL and Yidi Qi ( Harvard CMSA / Stony Brook ) Holomorphic networks Geometria em Lisboa seminar, April 12, 2022 45 / 55



Theoretical questions

Theoretical questions

As discussed earlier, the Ricci flat metric on M can be approximated
by a degree k FS metric to o(k−ν) for any ν, indeed this would be the
case for any smooth function. In other words, the log error goes as
log ε ∼ −kα for some α. This is nice but we need O(kdimR M), here
O(k6) coefficients to do it.
Can we do the same with a series of depth d fixed width D networks?
This has k = 2d−1 so if we could, we would need only O(log k)
coefficients to do it. Even if D grows as a power of d , we still have
O((log k)n) coefficients for some n. This difference between a power
and a log is a complexity theory question.

MRD, SL and Yidi Qi ( Harvard CMSA / Stony Brook ) Holomorphic networks Geometria em Lisboa seminar, April 12, 2022 45 / 55



Theoretical questions

It seems to me that there exist smooth functions which cannot be well
approximated with O((log k)n) coefficients. Perhaps one can prove this
with a covering argument (a lower bound on the number of balls
required to cover the space of functions).

A heuristic argument is to look at a simple class of networks which can
approximate general metrics and then ask whether there are ways to
reduce the number of parameters by sharing intermediate results.
Start with a two layer network ` = 1 with inputs of degree (k/2, k/2).
Since it has no intermediate results, one expects it to need as many
parameters as the FS metric. Comparing the parameters at degree
(k/2, k/2) with (k , k), the minimal width (in n complex dimensions) is(

k + n
k

)2

= D1

( k
2 + n

k
2

)2

; D1 ∼

{
22n for n� k ,(n

k

)k for n� k
.
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Theoretical questions

So, for n = 3� k , one only needs D1 = 26. On the other hand, one
needs each of these inputs to be an independently adjustable degree
(k/2, k/2) function. If we produce each of these with an independent
network, we do not save any parameters.

If we continue this all the way to the first layer, we would need an
exponentially large number of inputs. Of course this is highly
redundant as there are only (n + 2)2 independent functions of degree
(1,1). In fact by replacing all of the independent networks in layers up
to d/2 with the computation of the general function of degree
(2d/2,2d/2) one saves parameters. The final network would have
∼ 2

√
Np ∼ kn parameters, many fewer than k2n but still a power law.

The Ricci flat metric might be simpler, but I don’t see a good reason to
think so. If our computations had found a network which had fewer
parameters than the FS metrics but always achieved comparable
accuracy, that would be evidence. We did not find that so far.
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Theoretical questions

Another issue is that we are using fewer data points than parameters.
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Our 300_300_300_1 net-
work has 187800 param-
eters, while our Monte
Carlo integrals used fewer
points, between 20000 and
100000. Since each point
provides one constraint on
detω, this is the “overpa-
rameterized” regime which
can fit any function. This
shows up in overfitting,
E_train� E_test .
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Theoretical questions

In statistics and numerical analysis textbooks, one is warned not to use
models with so many parameters, as they will overfit the data. In
statistics, real world data has noise which should not be fit. Numerical
errors can also lead to problems.
However in deep learning one often successfully uses models with
more parameters than data points. A well known work of Zhang et al
1611.03530 made the contradiction even sharper, by showing that a
standard image classification model (CIFAR-10) could learn to
associate randomly chosen labels with images. According to the
dogma of statistics, such a model could not encode any prior
knowledge about images, so it could not generalize to correctly classify
images it had not seen.
A related observation is that a model that can fit every observation has
training error zero. Thus there can be no relation between the training
error and the testing error, so no reason to expect generalization.

MRD, SL and Yidi Qi ( Harvard CMSA / Stony Brook ) Holomorphic networks Geometria em Lisboa seminar, April 12, 2022 49 / 55



Theoretical questions

The resolution of this paradox is not completely clear, but many
researchers believe that the choice of initialization and optimization
procedure used in deep learning leads to a preferred subset of minima
of the error function, which have some sort of “implicit regularization.”
Regularization means the device of adding a term to the error function
which favors small weights, for example in `2 regularization one adds
the sum of the squares of the weights. The idea is that randomness in
the initialization leads to an effective regularization term — this has
been shown for random feature networks in Mei and Montanari
1908.05355.
The overparameterized regime has advantages. Optimization seems
to be easier in this regime. One sometimes finds better generalization
than the traditional few parameter regime. This is part of a
phenomenon called “double descent” in which generalization is worst
right at the boundary of the overparameterized regime P = Npoints, and
improves in both directions.
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Theoretical questions

We face similar issues and are looking for much more accurate
computations. In general Nparams ≥ Npoints works better than one would
think. Our models can also fit randomly shuffled volΩ values for
P = Nparams > 2Npoints (it looks like log ε ∼ 1/(1 + eNp/P). Optimization
is easier for larger P.
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domized k = 4 FS model.
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Further directions

Tensor networks

The activation function θ(z) = z2 can be generalized to zp and further
generalized to a multilinear product

θ⊗ : Lk1 × Lk2 × . . .× Lkn → Lk1 ⊗ Lk2 ⊗ . . .⊗ Lkn ≡ Lk1+k2+...+kn .

This operation can be represented graphically as a vertex with n
incoming edges from the subnetworks generating the inputs and a
single outgoing edge. These FFN’s are tree graphs.

One can also generalize the weights W from linear transformations to
multilinear tensors. One version of this, used in quantum many-body
physics, is the matrix product state (MPS). This is the vector
TrL (T d ) ∈ ⊗dV parameterized by a tensor T ∈ Hom(Hom(L,L),V ).

An analogous construction of a Kähler potential:

K T ≡ log Tr (T1 · Z )(T1 · Z )†(T2 · Z )(T2 · Z )† . . . (Td · Z )(Td · Z )†.
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Further directions

Tensor networks

The activation function θ(z) = z2 can be generalized to zp and further
generalized to a multilinear product

θ⊗ : Lk1 × Lk2 × . . .× Lkn → Lk1 ⊗ Lk2 ⊗ . . .⊗ Lkn ≡ Lk1+k2+...+kn .

This operation can be represented graphically as a vertex with n
incoming edges from the subnetworks generating the inputs and a
single outgoing edge. These FFN’s are tree graphs.

One can also generalize the weights W from linear transformations to
multilinear tensors. One version of this, used in quantum many-body
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Further directions

Hermitian Yang-Mills

In DKLR hep-th/0606261, Anderson et al 1004.4399 and
subsequent works, a numerical approach to hermitian Yang-Mills was
developed. Given a rank r vector bundle E over M, we consider
E(k) ≡ E ⊗ Lk such that M is embedded into Gr(r ,N) by its
holomorphic sections sa

i . We can then define a family of metrics on
E(k) parameterized by a hermitian matrix hi j̄ as

(G−1)ab̄ =
∑
I,J̄

hIJ̄ sa
I s̄b̄

J̄ .

The HYM equations are then

c · 1 = ωi j̄Fi j̄ = ωi j̄ ∂̄̄j

(
G−1∂iG

)
.

X. Wang (2005) proposed a corresponding balanced embedding
1
N

∫
g·M

s
(

s†s
)−1

s† =
r
N

1.
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Further directions

To define a FFN for this problem we need a nonlinear map from
sections of E(k) to those of E(k ′). I don’t see any direct analog of θK.
Rather, we probably need to define a combined network which also
describes a subset of sections of Ln for various n. We can then use
the bilinear tensor product E(k)⊗ Ln → E(k + n).

The bihomogeneous version of this would take as its basic variables
r × r hermitian matrices which represent sections of E(k)⊗ Ē(k). The
inputs would be sa

I s̄b̄
J̄ , and the operation θ⊗ for each layer would be

separately linear in the outputs of the previous layer and the Ln

network.
One could call this a ‘ network module” – the KDi ’s are replaced by
K-modules, and the nonlinear operations are replaced by K actions.

(G−1)ab̄ =
∑

K

∑
I,J̄

W (1),IJ̄
K sa

I s̄b̄
J̄

 (∑
i

W (2)

K ,i j̄
Z i Z̄ j̄

)
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Conclusions

Summary and conclusions

We have written a Tensorflow/Keras package that can find
numerical approximations to Ricci flat Kähler metrics to around
0.1% accuracy on the quintic hypersurface in CP4.
Generalization to hypersurfaces in toric varieties, and to other
scalar computations such as the spectrum of the Laplacian, is
straightforward. We briefly discussed the HYM equations and
network modules.
Some results of broader interest for ML inspired numerical
methods: dependence of accuracy on depth versus on total
number of parameters; methods can work in the
overparameterized regime.
Tangentially related: very interesting work of Wigderson and
collaborators applying geometric invariant theory and stability to
problems in computational complexity theory, see
arXiv:1910.12375 and Wigderson’s review Operator scaling:
theory, applications and connections.
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