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Manifolds and gluing

Motivation: study closed smooth n-manifolds.

Up to diffeomorphism?

If we mod out we loose a lot of information, and we get just an unstructured set.

⇒ consider the classifying space of closed smooth n-manifolds.

Observation

Complicated n-manifolds can often be better understood by presenting them as the
result of gluing together simpler manifolds along boundaries.

⇒ Extend the scope to compact n-manifolds with boundary.

Invariants of manifolds which behave well with respect to gluing are also called local.

How to encode the operation of gluing manifolds along boundary components?

Idea

Consider compact n-manifolds as cobordisms between closed (n − 1)-manifolds, with
gluing given by composition.
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The cobordism ∞-category

The cobordism ∞-category

For n ≥ 1 we may organize the information of closed smooth (n − 1)-manifolds and
(n-dimensional) cobordisms between them into an ∞-category Bordn−1

n whose

Objects are closed smooth (n − 1)-manifolds.

The mapping space from M to N is the classifying space of cobordisms from M to
N, that is, smooth compact n-manifolds W equipped with a diffeomorphism

∂W ≅M∐N.

Composition is given by gluing cobordisms together.

Obtain local manifolds invariants from functors Z ∶Bordn−1
n → C, where C is a

convenient target ∞-category.

Closed n-manifolds are sent to endomorphisms of Z(∅).

What about locality on the level of (n − 1)-manifolds?

⇒ Include also (n − 2)-manifolds and all (n − 1)-manifolds with boundary as
cobordisms.

Need to pass to an (∞,2)-categorical object.
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Cobordism higher categories

The cobordism (∞,2)-category

For n ≥ 1 consider an (∞,2)-category Bordn−2
n whose

Objects are closed (n − 2)-manifolds.

1-Morphisms are cobordisms ((n − 1)-manifolds with boundary).

2-Morphisms are cobordisms between cobordisms (n-manifolds w. corners).

All compositions are given by gluing cobordisms together.
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Cobordism higher categories

The cobordism (∞, k)-category

For n, k ≥ 1 consider an (∞, k)-category Bordn−k
n whose

Objects are closed (n − k)-manifolds.

1-Morphisms are cobordisms ((n − k + 1)-manifolds with boundary).

2-Morphisms are cobordisms between cobordisms ((n−k + 2)-manifolds w. corners).

For i ≥ 2 the i-morphisms are cobordisms between cobordisms between cobordisms
... ((n − k + i)-manifolds with corners).

All compositions are given by gluing cobordisms together.

For k = n we get an (∞,n)-category Bord0
n whose objects are 0-manifolds,

1-morphisms are 1-dimensional cobordisms, 2-morphisms are 2-dimensional
cobordisms, and so on.

What about locality on the level of 0-manifolds?
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Symmetric monoidal structure

A 0-manifold decomposes as a disjoint union of points.

Idea

Refine Bord0
n to a symmetric monoidal (∞,n)-category Bordn, with the monoidal

structure given by disjoint union.

Completely local invariants (respect gluing in all dimensions) are given by symmetric
monoidal functors

Z ∶Bordn → C,

where C is a target symmetric monoidal (∞,n)-category.

= unoriented topological field theories

Variant

Instead of just smooth manifolds we can consider manifolds endowed with a framing
with respect to some fixed n-dimensional orthogonal vector bundle E → B: the
i-morphisms will now be i-dimensional cobordisms W equipped with a continuous
map f ∶W → B and an isomorphism τ ∶TW ⊕Rn−i ≅ f ∗E .

⇒ Obtain a symmetric monoidal (∞,n)-category BordB
n .
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Examples

Example

When E → B is the universal orthogonal vector bundle En → BO(n) the associated
tangential structure is trivial, and we get again the unoriented cobordism
(∞,n)-category Bordn.

Example

When B = ∗ we obtain for each i-dimensional cobordism W a framing on TW ⊕Rn−i .
This yields the framed cobordism (∞,n)-category Bordfr

n .

Example (of a topological field theory)

Let Algn be the symmetric monoidal (∞,n)-category whose

Objects are En-ring spectra.

1-Morphisms from A to B are En−1-algebras in (A,B)-bimodules.

Given M,N two En−1-algebras in (A,B)-bimodules, 2-morphisms from M to N are
En−2-algebras in (M,N)-bimodules in (A,B)-bimodules.

And so on: i-morphisms are En−i -algebras in some iterated bimodule ∞-category.

Given an En-algebra A we may construct a topological field theory Bordfr
n → Algn via

factorization homology; it sends an i-dimensional cobordism W to the En−i -algebra

∫W×Rn−i A.
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Duals and adjoints

Idea: the symmetric monoidal (∞,n)-category BordB
n has a universal property, which

permits to classify B-framed topological field theories.

For this, one needs the categorical notion of adjoints.

Definition

Let C be an (∞,n)-category. For 1 ≤ i ≤ n − 1 let f ∶ x → y an i-morphism between two
parallel (i − 1)-morphisms x , y . An i-morphism g ∶ y → x is said to be right adjoint to f
if there exist (i + 1)-morphisms u∶ idx → g ○ f (unit) and v ∶ f ○ g → idy (counit) such
that the composite (i + 1)-morphisms

f
id○uÐÐ→ f ○ g ○ f v○idÐÐ→ f and g

u○idÐÐ→ g ○ f ○ g id○vÐÐ→ g

are homotopic to the respective identities. In that case we also say that f is left
adjoint to g .

If C carries a monoidal structure then we can also extend the above definition to
0-morphisms, or objects, by using the monoidal product ⊗ in place of composition. In
this case one often talks of duals instead of adjoints. If C is furthermore symmetric
monoidal then the notions of left and right duals coincide.

We will say that a symmetric monoidal (∞,n)-category has duals if every i-morphism
has both a left and a right adjoint for every 0 ≤ i ≤ n − 1.

Yonatan Harpaz



The cobordism hypothesis

BordB
n has duals

For 0 ≤ i ≤ n − 1, both the left and right adjoint of a B-framed i-cobordism
(W , f ∶W → B, η∶TW ⊕Rn−i → f ∗E) is (W , f , η), considered as going in the opposite
direction, and where η is obtained from η by reversing the first coordinate of the Rn−i

component; the difference between the left and the right adjoint lie in the
identification of the framing on the incoming and outgoing boundaries.

In 95’ Baez and Dolan suggested the following:

Conjecture (The cobordism hypothesis, framed version)

Bordfr
n is the free symmetric monoidal (∞,n)-category with duals generated by the

canonically framed point ∗ ∈ Bordfr
n . In particular, for every symmetric monoidal

(∞,n)-category with duals C, evaluation at ∗ induces an equivalence

ιFun⊗(Bordfr
n ,C) ≃ ιC,

where ι means taking core ∞-groupoids.

In fact, one can show that the (∞,n)-category of symmetric monoidal functors
between any two symmetric monoidal (∞,n)-categories with duals is already an
∞-groupoid, and so in the above formulation of the cobordism hypothesis one can
also remove the ι symbol on the left hand side.
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Orthogonal group action

The group O(n) acts on Bordfr
n by modifying the framing.

⇒
Any (∞,n)-category with duals C admits a canonical action of O(n) on its core
∞-groupoid ιC ≃ Fun⊗(Bordfr

n ,C).

This observation allows one to formulate the cobordism hypothesis for a general
n-dimensional orthogonal vector bundle E → B.

Let Fr(E)→ B be the associated frame bundle. Note that every x ∈ Fr(E) determines
a B-framing on the 0-dimensional manifold ∗. In particular, we have a natural map

Fr(E)→ ιBordB
n ,

which is furthermore O(n)-equivariant.

Conjecture (The cobordism hypothesis, B-framed version)

For every symmetric monoidal (∞,n)-category with duals C restriction along the
above map induces an equivalence

ιFun⊗(BordB
n ,C) ≃ MapO(n)(Fr(E), ιC).
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In dimension 0

When n = 0 the group O(n) = O(0) is trivial and E → B is a 0-dimensional vector
space, so we can forget about it.

The cobordism hypothesis in dimension 0

Let B be a space. Then the symmetric monoidal ∞-groupoid BordB
0 is freely

generated from the space B.

This statement is not difficult to show: BordB
0 can be identified with the symmetric

monoidal ∞-groupoid ιFin
/B whose objects are finite sets I equipped with a map

I → B and whose morphisms are isomorphisms over B. It corresponds to the space

∐n B
n
hΣn

, which is indeed the free E∞-monoid generated from B.
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Inductive formulation

Given an orthogonal vector bundle E → B, let us denote by S(E)→ B the
corresponding sphere bundle, and by E⊥ → S(E) the sub-vector bundle of E ∣S(E)
whose fiber over (x , v) ∈ S(E) is the orthogonal complement of v in Ex . Then for
0 ≤ i ≤ n − 1, the data of a B-framing of the form

f ∶W → B, η∶TW ⊕Rn−i ≅ f ∗E

is equivalent to the data of an S(E)-framing of the form

f ′∶W → S(E), η′∶TW ⊕Rn−i−1 ≅ (f ′)∗E⊥.

We thus obtain a canonical functor

ι∶Bord
S(E)
n−1 → BordB

n .

Definition

For k ≥ 0 we say that a functor of (∞,n)-categories F∶C→ D is k-connective if it is
essentially surjective, and if for every i = 0, ..., k − 1 and every two parallel i-morphisms
f ,g of C then induced functor of (∞,n − i − 1)-categories
Map(f ,g)→Map(F(f ),F(g)) is essentially surjective.

By construction, the functor ι above is (n − 1)-connective. It might fail however to be
an equivalence on underlying (∞,n − 1)-categories due to the existence of non-trivial
h-cobordisms.
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Lurie’s strategy to prove the cobordism hypothesis (2009)

Inductive formulation: reduce to showing that dotted extensions

Bord
S(E)
n−1

Z //

ι

��

C

BordB
n

<<z
z

z
z

z

are classified by B-indexed families of unit n-cells 1C → Z(S(E)b) for b ∈ B,
exhibiting the images under Z of the two hemispheres as adjoint to each other.

Reduction to the unoriented case: for a fixed n, the inductive formulation for the
universal orthogonal vector bundle En → BO(n) implies the inductive statement in
general. We can hence forget about framing and just consider unoriented manifolds.

Remove unnecessary information: one may assume without loss of generality that
Z is (n − 1)-connective (since ι is so).

Reduction of the categorical level: for n ≥ 2, pairs (C,Z) with Z an
(n − 2)-connective functor are classified by lax symmetric monoidal functors
Bordn−2

n−1 → Cat∞ via the association Z ↦MZ , where MZ (X) = MapC(1C,Z(X)).

Unstraightening: lax symmetric monoidal functors Bordn−2
n−1 → Cat∞ can

equivalently be encoded via symmetric monoidal cocartesian fibrations X→ Bordn−2
n−1

via the Grothendieck construction.
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Lurie’s strategy

Reduction to the inductive step.

Reduction of the inductive step to its unoriented instance.

Removing unnecessary information.

Reduction of the categorical level (n ≥ 2).

Unstraightening.

These parts can all be set up rigorously with modern technology.

Final step (generators and relations)

Let X→ Bordn−2
n−1 and Y→ Bordn−2

n−1 be the symmetric monoidal cocartesian fibrations
corresponding to the (n − 2)-connective symmetric monoidal functors
id∶Bordn−1 → Bordn−1 and Bordn−1 → Bordn. Then Y is generated from X by
generators and relations corresponding to handles of various indices and the
cancellation of handles of successive indices.

This part is done using Morse theory and Igusa’s theory of framed functions. In
particular, it uses the contractibility of the space of framed functions, which, though
was not yet proven in 2009, has been proven since by Eliashberg and Mishachev.

But...

Even when using framed functions to break the passage from X to Y into steps using
an index filtration, the bottom line generators and relations statement required at
each step lacks a proof, which has not been completed since.

Also, the second half of Lurie’s strategy does not cover the case n = 1.
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Current status of the proof

In the aftermath of Lurie’s 2009 paper, Schommer-Pries announced knowing how to
complete the last part using a paper of Ayala–Francis–Rozenblyum. Unfortunately,
a mistake was discovered in that paper, and a proof by Schommer-Pries never
appeared.

A new proof by Schommer-Pries could be coming soon, in a forthcoming paper
called ”the relative tangle hypothesis”.

Ayala and Francis themselves describe a conditional proof of the cobordism
hypothesis based on a certain conjecture, though the validity of that conjecture is
unclear due to the previously mentioned mistake.

Grady and Pavlov have recently put online a manuscript claiming to prove not just
the cobordism hypothesis, but a vast generalization thereof. Their paper has not
yet been refereed and for the moment its status is not known.
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The cobordism hypothesis in dimension 1

Let E → B be a 1-dimensional orthogonal vector bundle, so that π∶S(E)→ B is a
degree 2 covering space. In particular, for each b ∈ B the fiber S(E)b is a set of size 2.

Inductive formulation 0→ 1

For a symmetric monoidal ∞-category with duals C, extensions

Bord
S(E)
0

Z //

��

C

BordB
1

<<z
z

z
z

z

are classified by B-indexed families of unit morphisms

1C → Z(S(E)b) = ⊗
x∈S(E)b

Z(x)

exhibiting the two objects of {Z(x)}x∈S(E)b as dual to each other.

The first step in Lurie’s strategy applies here:

Proposition

The [0→ 1]-cobordism hypothesis implies the cobordism hypothesis for n = 1.
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The [0→ 1]-inductive formulation

Proposition

The [0→ 1]-cobordism hypothesis implies the cobordism hypothesis for n = 1.

Proof.

By the cobordism hypothesis in dimension 0, the data of a symmetric monoidal

functor Z ∶Bord
S(E)
0 → C corresponds to an ∞-groupoid map f ∶S(E)→ ιC. There is a

C2-action on both sides, on S(E) by its structure as a frame bundle and on ιC since it
is a symmetric monoidal ∞-category with duals. We then have an induced C2-action
on the ∞-groupoid X ∶= Map(S(E), ιC), such that XhC2 = MapC2

(S(E), ιC). Given

f ∈ X, we also have a C2-action on the space of natural equivalences Equiv(f , f ),
whose C2-homotopy fixed points correspond to C2-homotopy fixed point structures on
f . We then compute

XhC2 ×X {f } = Equiv(f , f )hC2 = [ lim
x∈S(E)

MapιC(f (x), f (x)]
hC2

= [ lim
x∈S(E)

Mapunit
C (1C, f (x)⊗ f (x))]

hC2

= lim
b∈B

Mapunit
C (1C,Z(S(E)b)).

Assuming the inductive formulation we have that extensions of Z to BordB
1 are

classified by the data on the right hand side, and hence by that on the left.
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Proof of the [0→ 1]-cobordism hypothesis

We now discuss how to prove the [0→ 1]-inductive step of the cobordism hypothesis.

II

The second step in Lurie’s strategy is the reduction to unoriented case. Lurie’s
argument works in the [0→ 1]-case, but we will skip it as our argument will not be
very sensitive to the tangential structure.

III

The third step in Lurie’s strategy is a reduction to the case where Z ∶Bord
S(E)
0 → C is

essentially surjective. Indeed, we can always replace C with the essential image of Z .

IV

The fourth step, if we try to adapt it creatively to n = 1, is not very useful: it would

essentially say that the data of a symmetric monoidal ∞-category under Bord
S(E)
0

corresponds to a symmetric monoidal ∞-category with an action of Bord
S(E)
0 , but this

doesn’t seem to peel away any of the complexity.

This is roughly because we are already on categorical level 1, and so if we want to
simplify we would need to peel further to categorical level 0, that is, to ∞-groupoids.
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Proof of the [0→ 1]-cobordism hypothesis

We proceed to enlarge Bord
S(E)
0 by freely adding to it a B-indexed family of morphisms

evb ∶S(E)b → ∅. This results in a familiar object: it is simply the subcategory

BordB,⊃
1 ⊆ BordB

1

containing all objects and just the morphisms whose underlying cobordism is a disjoint
union of identity segments and ⊃-shaped cobordisms (from two points to the empty
set). We note that

ιBordB,⊃
1 = ιBordB

1 = Bord
S(E)
0 =

∞

∐
n=0

S(E)nΣn

and in particular carries a C2-action compatible with the C2-action on S(E). Since

Bord
S(E)
0 is freely generated from S(E) the S(E)-family of arrows

evπ(x)∶S(E)π(x) = x∐ x → ∅

extends to symmetric monoidal functor

ev∶Bord
S(E)
0 → (BordB,⊃

1 )
/∅

sending an object X ∈ Bord
S(E)
0 to a morphism of the form evX ∶X ∐X → ∅.
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Non-degenerate functors

Definition

Let us say that a symmetric monoidal functor Z ∶BordB,⊃
1 → C is non-degenerate if for

every b ∈ B the morphism Z(evb)∶Z(S(E)b)→ 1C is a counit exhibiting the two
objects {Z(x)}x∈S(E)b as dual to each other. We then write

Funnd(BordB,⊃
1 ,C) ⊆ Fun⊗(BordB,⊃

1 ,C)

the full subcategory spanned by the non-degenerate functors.

By the dual argument used in the previous proposition we have the following:

Proposition

We have a natural equivalence

ιFunnd(BordB,⊃
1 ,C) ≃Ð→MapC2

(S(E), ιC).
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Lurie step IV
To a non-degenerate functor Z ∶BordB,⊃

1 → C we could associate the lax symmetric

monoidal functor MZ ∶BordB,⊃
1 → Grp

∞
given by

MZ (x) = MapC(1C,Z(x)).

Lurie step IV - [0→ 1]-version

Suppose given a lax symmetric monoidal functor M ∶BordB,⊃
1 → Grp

∞
. We may try to

define an ∞-category B(M) as follows:

The objects of B(M) are the objects of BordB,⊃
1 (or Bord

S(E)
0 ).

For X ,Y ∈ BordB,⊃
1 the mapping space MapB(M)(X ,Y ) is given by M(X ⊗Y ).

For X ,Y ,Z ∈ BordB,⊃
1 the composition law

MapB(M)(X ,Y ) ×MapB(M)(Y ,Z)→MapB(M)(X ,Z)

is given by the composite

M(X ⊗Y ) ×M(Y ⊗ Z)→M(X ⊗Y ⊗Y ⊗ Z)→M(X ⊗ Z),

where the first map is induced by the lax monoidal structure of M and the second
by post-composition with Z(evY ).

But we have no units!
⇒
The object B(M) is a non-unital ∞-category. In fact, it’s a symmetric monoidal one.
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Quasi-unital ∞-categories

Definition

In a non-unital ∞-category E, a quasi-unit is a morphism f ∶ x → x which has the
property that the operations of pre-composition and post-composition with f are
equivalences. We say that E is quasi-unital if every object admits a quasi-unit.

The collection of quasi-unital ∞-categories can be organized into an ∞-category
Catqu

∞, where the morphisms are functors which send quasi-units to quasi-units.

Definition

We will say that a lax symmetric monoidal functor M ∶BordB,⊃
1 → Grp is

non-degenerate if B(M) is quasi-unital, and will say that a natural transformation
M ⇒M′ between non-degenerate functors is non-degenerate if the associated functor
B(M)→ B(M′) preserves quasi-units.

The operation M ↦ B(M) can then be organized into a functor

Funnd(BordB,⊃
1 ,Grp)→ (Catqu,SM

∞
)

Bord
S(E)
0

/

from the ∞-category of non-degenerate lax symmetric monoidal functors

BordB,⊃
1 → Grp and non-degenerate natural transformations between them to the

∞-category of symmetric monoidal quasi-unital ∞-categories equipped with a

symmetric monoidal functor from Bord
S(E)
0 .
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From quasi-unital to unital

If Z ∶BordB,⊃
1 → C is an essentially surjective symmetric monoidal functor and C has

duals then B(MZ ) is naturally equivalent to the underlying (symmetric monoidal)
non-unital ∞-category of C, which is quasi-unital.

Proposition (H.)

The forgetful functor
Cat∞ → Catqu

∞

is an equivalence.

Corollary

If Z ∶BordB,⊃
1 → C is an essentially surjective symmetric monoidal functor and C has

duals then the lax symmetric monoidal functor MZ ∶BordB,⊃
1 → Grp captures enough

information to reconstruct C (as a symmetric monoidal ∞-category under Bord
S(E)
0 ).

Arguing along these lines one reduces the [0→ 1]-cobordism hypothesis to the
following statement:

Proposition (The cobordism hypothesis in dimension 1, bottom line)

The lax symmetric monoidal functor Mι∶BordB,⊃
1 → Grp associated to the inclusion

ι∶BordB,⊃
1 → BordB

1 is initial in Funnd(BordB,⊃
1 ,Grp).
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Proof of bottom line

Proposition (The cobordism hypothesis in dimension 1, bottom line)

The lax symmetric monoidal functor Mι is initial in Funnd(BordB,⊃
1 ,Grp).

Using a suitable Grothendieck construction we can pass from lax symmetric monoidal

functors M ∶BordB,⊃
1 → Grp to symmetric monoidal left fibrations T → BordB,⊃

1 .

Unwinding the definitions, in the case of ι∶BordB,⊃
1 → BordB

1 the symmetric monoidal

∞-category M̃ has

Objects B-framed 1-manifolds with boundary.

Morphisms are given by framed open embeddings which are surjective on
components (and which are not required to respect the boundary).

We then let T0 ⊆ T be the full symmetric monoidal subcategory spanned by those
X ∈ T whose underlying 1-manifold is a disjoint union of segments.
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Proof of bottom line

Proposition

Let M̃ → BordB,⊃
1 be a symmetric monoidal left fibration. Restriction along T0 ⊆ T

induces an equivalence

Fun⊗
/BordB,⊃

1

(T, M̃) ≃Ð→ Fun⊗
/BordB,⊃

1

(T0, M̃).

Proof.

An inverse to this map is given by relative left Kan extension over BordB,⊃
1 . The fact

that this left Kan extension exists, is symmetric moonidal and covers every symmetric
monoidal T → M̃ results from combining the following two crucial points:

M̃ → BordB,⊃
1 is a left fibration (in particular, its fibers are ∞-groupoids).

For every X ∈ T the comma category (T0)/X ∶= T0 ×T T
/X is weakly contractible.

For the second statement it is enough to check for X whose underlying 1-manifold is
the circle. The ∞-category (T0)/X then has objects are non-empty disjoint unions of
segments embedded in the circle, with morphisms being component surjective
embeddings over the circle. This ∞-category is a familiar one which arises naturally in
the context of factorization homology, and its contractibility is not hard to verify.
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End of proof

We recognize the symmetric monoidal ∞-category T0 as being the monoidal envelope
of the ∞-operad EB

nu whose colors are B-framed 1-discs and whose spaces of
multi-operations (X1, ...,Xn)→ Y are empty if n = 0 and are given by spaces of
B-framed embeddings X1∐ ...∐Xn → Y if n ≥ 1.

By the universal property of symmetric monoidal envelopes, symmetric monoidal

functors T0 → M̃ over BordB,⊃
1 correspond to EB

nu-algebra objects in the EB
nu-monoidal

∞-groupoid encoded by the restricted left fibration

M̃′ ∶= M̃ ×
BordB,⊃

1

(EB
nu)⊗ → (EB

nu)⊗.

The data of an EB
nu-monoidal ∞-groupoid is the same as that of a B-indexed family

{Xb}b∈B of non-unital monoidal ∞-groupoids, with EB
nu-algebra objects corresponding

to B-families {Ab ∈ AlgE1
nu
(Xb)} of non-unital algebra objects.
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End of proof

In the case above, the B-family corresponding to M̃′ has Xb = M̃S(E)b
, that is the

fiber of M̃ → BordB,⊃
1 over the object S(E)b ∈ BordB,⊃

1 (corresponding to a disjoint
union of two B-framed points with inverse framing).

In particular, each symmetric monoidal functor F∶T → M̃ over BordB,⊃
1 gives, when

transported along the equivalences

Fun⊗
/BordB,⊃

1

(T, M̃) ≃ Fun⊗
/BordB,⊃

1

(T0, M̃)→ AlgEB
nu
(M̃′),

a family {Ab}b∈B of non-unital algebra objects in the family of non-unital monoidal
∞-groupoids {M̃S(E)b

}.

If M̃ → BordB,⊃
1 comes from a non-degenerate lax monoidal functor M ∶BordB,⊃

1 → Grp,

then M̃S(E)b
is quasi-unital, in which case F corresponds to a non-degenerate natural

transformation Mι ⇒M if and only if the underlying object of each Ab is a quasi-unit
in M̃S(E)b

(that is, the operations Ab ⊗ (−) and (−)⊗Ab are equivalences).

In any quasi-unital monoidal ∞-groupoid, the space of non-unital algebra objects
whose underlying object is a quasi-unit is contractible.
⇒
Mι is initial in Funnd(BordB,⊃

1 ,Grp) (bottom line statement).
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Thank You!
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