Symplectomorphism groups of irrational ruled 4-manifolds

(Based on joint work with Olguta Buse)

Jun Li

University of Michigan/ Univiersity of Dayton

Geometria em Lisboa, 03/29/2022

For (X^{2n}, ω) symplectic manifold, $Symp(X, \omega)$ is the subgroup of Diff(X) preserving ω ; it is an infinite-dimensional Fréchet Lie group.

Two fundamental questions:

 How does a change in [ω] affect the topology (homotopy type) of Symp(X, ω):

For (X^{2n}, ω) symplectic manifold, $Symp(X, \omega)$ is the subgroup of Diff(X) preserving ω ; it is an infinite-dimensional Fréchet Lie group.

Two fundamental questions:

 How does a change in [ω] affect the topology (homotopy type) of Symp(X,ω):

Gromov, McDuff, Abreu, Anjos, Buse, Lalonde-Pinsonnault, etc

For (X^{2n}, ω) symplectic manifold, $Symp(X, \omega)$ is the subgroup of Diff(X) preserving ω ; it is an infinite-dimensional Fréchet Lie group.

Two fundamental questions:

How does a change in [ω] affect the topology (homotopy type) of Symp(X,ω):
 Gromov, McDuff, Abreu, Anjos, Buse, Lalonde-Pinsonnault, etc drastic change/ fragile elements in Symp(X,ω).

For (X^{2n}, ω) symplectic manifold, $Symp(X, \omega)$ is the subgroup of Diff(X) preserving ω ; it is an infinite-dimensional Fréchet Lie group.

Two fundamental questions:

- How does a change in [ω] affect the topology (homotopy type) of Symp(X,ω):
 Gromov, McDuff, Abreu, Anjos, Buse, Lalonde-Pinsonnault, etc drastic change/ fragile elements in Symp(X,ω).
- Symplectic isotopy problem, or "exotic symplectomorphisms"

For (X^{2n}, ω) symplectic manifold, $Symp(X, \omega)$ is the subgroup of Diff(X) preserving ω ; it is an infinite-dimensional Fréchet Lie group.

Two fundamental questions:

- How does a change in [ω] affect the topology (homotopy type) of Symp(X,ω):
 Gromov, McDuff, Abreu, Anjos, Buse, Lalonde-Pinsonnault, etc drastic change/ fragile elements in Symp(X,ω).
- Symplectic isotopy problem, or "exotic symplectomorphisms"

Seidel: (square) Dehn twist along Lagrangian spheres, Biran-Giroux: fibered Dehn twists, Shevchishin-Smirnov: elliptic diffeomorphisms on ruled surfaces.

How does the two questions interacts with each other?

For (X^{2n}, ω) symplectic manifold, $Symp(X, \omega)$ is the subgroup of Diff(X) preserving ω ; it is an infinite-dimensional Fréchet Lie group.

Two fundamental questions:

- How does a change in [ω] affect the topology (homotopy type) of Symp(X,ω):
 Gromov, McDuff, Abreu, Anjos, Buse, Lalonde-Pinsonnault, etc drastic change/ fragile elements in Symp(X,ω).
- Symplectic isotopy problem, or "exotic symplectomorphisms"

Seidel: (square) Dehn twist along Lagrangian spheres, Biran-Giroux: fibered Dehn twists, Shevchishin-Smirnov: elliptic diffeomorphisms on ruled surfaces.

How does the two questions interacts with each other?

• Dim =2, symplectic world \sim smooth world \sim topological world. Moser, Smale, Eelles ets.

Jun Li (University of Michigan/ Univiersity of Symplectomorphism groups of irrational rules

3 24

• Dim =2, symplectic world \sim smooth world \sim topological world. Moser, Smale, Eelles ets.

• Dim \geq 6, not much is known, even for $(\mathbb{R}^{2n}, \omega_{std} = \sum dx_i \wedge dy_i)$.

- Dim =2, symplectic world \sim smooth world \sim topological world. Moser, Smale, Eelles ets.
- Dim \geq 6, not much is known, even for $(\mathbb{R}^{2n}, \omega_{std} = \sum dx_i \wedge dy_i)$.

• Dim =4, most interesting

- Dim =2, symplectic world \sim smooth world \sim topological world. Moser, Smale, Eelles ets.
- Dim \geq 6, not much is known, even for $(\mathbb{R}^{2n}, \omega_{std} = \sum dx_i \wedge dy_i)$.
- Dim =4, most interesting

Symplectic Kodaira dimension (Kod) of (X^4, ω) (cf. Taubes, TJ Li): $K_{\omega} := -c_1(X^4, \omega) \in H^2(X, \mathbb{Z})$ is the symplectic canonical class, and • $Kod(X^4, \omega) = -\infty$ if $K_{\omega} \cdot [\omega] < 0$ or $K_{\omega} \cdot K_{\omega} < 0$; • $Kod(X^4, \omega) = 0$ if $K_{\omega} \cdot [\omega] = 0$ and $K_{\omega} \cdot K_{\omega} = 0$; • $Kod(X^4, \omega) = 1$ if $K_{\omega} \cdot [\omega] > 0$ and $K_{\omega} \cdot K_{\omega} = 0$; • $Kod(X^4, \omega) = 2$ if $K_{\omega} \cdot [\omega] > 0$ and $K_{\omega} \cdot K_{\omega} > 0$.

• Kod = 1 or 2, very little is known.

Symplectic Kodaira dimension (Kod) of (X^4, ω) (cf. Taubes, TJ Li): $K_{\omega} := -c_1(X^4, \omega) \in H^2(X, \mathbb{Z})$ is the symplectic canonical class, and • $Kod(X^4, \omega) = -\infty$ if $K_{\omega} \cdot [\omega] < 0$ or $K_{\omega} \cdot K_{\omega} < 0$; • $Kod(X^4, \omega) = 0$ if $K_{\omega} \cdot [\omega] = 0$ and $K_{\omega} \cdot K_{\omega} = 0$; • $Kod(X^4, \omega) = 1$ if $K_{\omega} \cdot [\omega] > 0$ and $K_{\omega} \cdot K_{\omega} = 0$; • $Kod(X^4, \omega) = 2$ if $K_{\omega} \cdot [\omega] > 0$ and $K_{\omega} \cdot K_{\omega} > 0$.

• Kod = 1 or 2, very little is known.

 Kod(X⁴, ω) = −∞ iff X is rational or ruled, i.e. minimal model CP² or Σ_g × S².

Symplectic Kodaira dimension (Kod) of (X^4, ω) (cf. Taubes, TJ Li): $K_{\omega} := -c_1(X^4, \omega) \in H^2(X, \mathbb{Z})$ is the symplectic canonical class, and • $Kod(X^4, \omega) = -\infty$ if $K_{\omega} \cdot [\omega] < 0$ or $K_{\omega} \cdot K_{\omega} < 0$; • $Kod(X^4, \omega) = 0$ if $K_{\omega} \cdot [\omega] = 0$ and $K_{\omega} \cdot K_{\omega} = 0$; • $Kod(X^4, \omega) = 1$ if $K_{\omega} \cdot [\omega] > 0$ and $K_{\omega} \cdot K_{\omega} = 0$; • $Kod(X^4, \omega) = 2$ if $K_{\omega} \cdot [\omega] > 0$ and $K_{\omega} \cdot K_{\omega} > 0$.

- Kod = 1 or 2, very little is known.
- Kod(X⁴, ω) = -∞ iff X is rational or ruled, i.e. minimal model CP² or Σ_g × S².
- $Kod(X^4, \omega) = 0$ has important examples T^4 and K3.

24

Symplectic Kodaira dimension (Kod) of (X^4, ω) (cf. Taubes, TJ Li): $K_{\omega} := -c_1(X^4, \omega) \in H^2(X, \mathbb{Z})$ is the symplectic canonical class, and • $Kod(X^4, \omega) = -\infty$ if $K_{\omega} \cdot [\omega] < 0$ or $K_{\omega} \cdot K_{\omega} < 0$; • $Kod(X^4, \omega) = 0$ if $K_{\omega} \cdot [\omega] = 0$ and $K_{\omega} \cdot K_{\omega} = 0$; • $Kod(X^4, \omega) = 1$ if $K_{\omega} \cdot [\omega] > 0$ and $K_{\omega} \cdot K_{\omega} = 0$; • $Kod(X^4, \omega) = 2$ if $K_{\omega} \cdot [\omega] > 0$ and $K_{\omega} \cdot K_{\omega} > 0$.

- Kod = 1 or 2, very little is known.
- Kod(X⁴, ω) = -∞ iff X is rational or ruled, i.e. minimal model CP² or Σ_g × S².
- $Kod(X^4, \omega) = 0$ has important examples T^4 and K3.

24

$$\Sigma_g \times S^2, \Sigma_g \widetilde{\times} S^2, (\Sigma_g \times S^2) \# n \overline{\mathbb{C}P^2}.$$

 McDuff 2000: For some symplectic forms on Σ_g × S², a symplectomorphism is smoothly isotopic to identity iff it is symplectically isotopic to identity.

The proof uses stability result of $Symp \cap Diff_0$ for large enough $\mu := \omega(\Sigma)/\omega(S^2)$.

$$\Sigma_g \times S^2, \, \Sigma_g \tilde{\times} S^2, (\Sigma_g \times S^2) \# n \overline{\mathbb{C}P^2}.$$

• McDuff 2000: For some symplectic forms on $\Sigma_g \times S^2$, a symplectomorphism is smoothly isotopic to identity iff it is symplectically isotopic to identity.

The proof uses stability result of $Symp \cap Diff_0$ for large enough $\mu := \omega(\Sigma)/\omega(S^2)$.

• Q1: Does this hold for all symplectic forms?

$$\Sigma_g \times S^2, \, \Sigma_g \tilde{\times} S^2, (\Sigma_g \times S^2) \# n \overline{\mathbb{C}P^2}.$$

• McDuff 2000: For some symplectic forms on $\Sigma_g \times S^2$, a symplectomorphism is smoothly isotopic to identity iff it is symplectically isotopic to identity.

The proof uses stability result of $Symp \cap Diff_0$ for large enough $\mu := \omega(\Sigma)/\omega(S^2)$.

• Q1: Does this hold for all symplectic forms?

• Q2: What about non-minimal ones $(\Sigma_g \times S^2) \# n \overline{\mathbb{C}P^2}$?

$$\Sigma_g \times S^2, \, \Sigma_g \tilde{\times} S^2, (\Sigma_g \times S^2) \# n \overline{\mathbb{C}P^2}.$$

• McDuff 2000: For some symplectic forms on $\Sigma_g \times S^2$, a symplectomorphism is smoothly isotopic to identity iff it is symplectically isotopic to identity.

The proof uses stability result of $Symp \cap Diff_0$ for large enough $\mu := \omega(\Sigma)/\omega(S^2)$.

- Q1: Does this hold for all symplectic forms?
- Q2: What about non-minimal ones $(\Sigma_g \times S^2) \# n \overline{\mathbb{C}P^2}$?

Notation. $M_g^n := \Sigma_g \times S^2 \# n \overline{\mathbb{C}P^2}$. Choose Base, Fiber, and Exceptional classes $B = [\Sigma_g] \times *, F = * \times [S^2], E_1, \dots, E_n \in H_2(M_g^n, \mathbb{Z})$. Cohomologous symplectic forms are diffeomorphic.

Notation. $M_g^n := \Sigma_g \times S^2 \# n \overline{\mathbb{C}P^2}$. Choose Base, Fiber, and Exceptional classes $B = [\Sigma_g] \times *, F = * \times [S^2], E_1, \dots, E_n \in H_2(M_g^n, \mathbb{Z})$. Cohomologous symplectic forms are diffeomorphic.

Cohomological classes, up to scaling and diff (Lalonde-McDuff, Li-Liu) • Any $\omega \sim \mu \sigma_{\Sigma_g} \oplus \sigma_{S^2}$ for some $\mu \in \mathbb{R}^+$, on $\Sigma_g \times S^2$.

Notation. $M_g^n := \Sigma_g \times S^2 \# n \overline{\mathbb{C}P^2}$. Choose Base, Fiber, and Exceptional classes $B = [\Sigma_g] \times *, F = * \times [S^2], E_1, \dots, E_n \in H_2(M_g^n, \mathbb{Z})$. Cohomologous symplectic forms are diffeomorphic.

Cohomological classes, up to scaling and diff (Lalonde-McDuff, Li-Liu)

- Any $\omega \sim \mu \sigma_{\Sigma_g} \oplus \sigma_{S^2}$ for some $\mu \in \mathbb{R}^+$, on $\Sigma_g \times S^2$.
- For $M_g^n = \Sigma_g \times S^2 \# n \mathbb{C}P^2$, $\omega \sim (\mu, 1, e_1, \cdots, e_n)$, where $\mu > 0, e_1 + e_2 < 1, 0 < e_i < 1, e_1 \ge e_2 \ge \cdots \ge e_n, e_1 < \mu$, and ω is represented by a vector $u = (\mu, 1, e_1, \cdots, e_n) \in \mathbb{R}^{n+1}$.
- Li-Liu resuls imply that a reduced cohomology class is symplectic iff it pairs positively with exceptional classes, thus giving a description of the exterior walls of the chambers.

Notation. $M_g^n := \Sigma_g \times S^2 \# n \overline{\mathbb{C}P^2}$. Choose Base, Fiber, and Exceptional classes $B = [\Sigma_g] \times *, F = * \times [S^2], E_1, \dots, E_n \in H_2(M_g^n, \mathbb{Z})$. Cohomologous symplectic forms are diffeomorphic.

Cohomological classes, up to scaling and diff (Lalonde-McDuff, Li-Liu)

- Any $\omega \sim \mu \sigma_{\Sigma_g} \oplus \sigma_{S^2}$ for some $\mu \in \mathbb{R}^+$, on $\Sigma_g \times S^2$.
- For $M_g^n = \Sigma_g \times S^2 \# n \overline{\mathbb{C}P^2}$, $\omega \sim (\mu, 1, e_1, \cdots, e_n)$, where $\mu > 0, e_1 + e_2 < 1, 0 < e_i < 1, e_1 \ge e_2 \ge \cdots \ge e_n, e_1 < \mu$, and ω is represented by a vector $u = (\mu, 1, e_1, \cdots, e_n) \in \mathbb{R}^{n+1}$.
- Li-Liu resuls imply that a reduced cohomology class is symplectic iff it pairs positively with exceptional classes, thus giving a description of the exterior walls of the chambers.

Interior walls. For each $A \in H_2(M_g^n, \mathbb{Z})$ take $\operatorname{cod}_A = 2(-A \cdot A - 1 + g)$. For each *section type class*, $A = B - kF - \sum k_i E_i$ with $k_i \in \{0, 1\}$, and $\operatorname{cod}_A > 0$, we partition the cone with hyperplanes $u \cdot A = 0$.

Geometria em Lisboa, 03/29/2022

24

Interior walls. For each $A \in H_2(M_g^n, \mathbb{Z})$ take $\operatorname{cod}_A = 2(-A \cdot A - 1 + g)$. For each *section type class*, $A = B - kF - \sum k_i E_i$ with $k_i \in \{0, 1\}$, and $\operatorname{cod}_A \ge 0$, we partition the cone with hyperplanes $u \cdot A = 0$.

$$\mu=0 \qquad \qquad B-F \qquad B-2F \qquad B-3F \qquad \cdots \qquad \cdots \qquad \mu \to \infty$$

Figure: (Normalized) Symplectic cone of product ruled surface

Interior walls. For each $A \in H_2(M_g^n, \mathbb{Z})$ take $\operatorname{cod}_A = 2(-A \cdot A - 1 + g)$. For each *section type class*, $A = B - kF - \Sigma k_i E_i$ with $k_i \in \{0, 1\}$, and $\operatorname{cod}_A \ge 0$, we partition the cone with hyperplanes $u \cdot A = 0$.

$$\mu = 0$$
 $B - F$ $B - 2F$ $B - 3F$... $\mu \to \infty$

Figure: (Normalized) Symplectic cone of product ruled surface

Figure: (Normalized) Symplectic cone of one-point blowup

Interior walls. For each $A \in H_2(M_g^n, \mathbb{Z})$ take $\operatorname{cod}_A = 2(-A \cdot A - 1 + g)$. For each *section type class*, $A = B - kF - \sum k_i E_i$ with $k_i \in \{0, 1\}$, and $\operatorname{cod}_A \ge 0$, we partition the cone with hyperplanes $u \cdot A = 0$.

$$\mu = 0$$
 $B - F$ $B - 2F$ $B - 3F$... $\mu \to \infty$

Figure: (Normalized) Symplectic cone of product ruled surface

Figure: (Normalized) Symplectic cone of one-point blowup

Figure: (Normalized) Symplectic cone of the two point blow up

8/ 24

Let $G_{u,n}^g = Symp(M_g^n, \omega) \cap \text{Diff}_0 M_g^n$, with $[\omega] = u$.

Conjecture (Homotopic stability in Chambers)

If the norm of u is sufficiently large, then $G_{u,n}^g$ has constant homotopy type throughout the chambers of the symplectic cone.

Let $G_{u,n}^g = Symp(M_g^n, \omega) \cap \text{Diff}_0 M_g^n$, with $[\omega] = u$.

Conjecture (Homotopic stability in Chambers)

If the norm of u is sufficiently large, then $G_{u,n}^g$ has constant homotopy type throughout the chambers of the symplectic cone.

Theorem (Stability Results)

• Minimal case (Abreu and McDuff 2000, g = 0; Buse 2011, g > 0) The homotopy type of G_{μ}^{g} is constant on all intervals $\mu \in (k, k + 1]$ with $k \ge g$. Moreover, as μ passes the integer k + 1, the groups $\pi_i(G_{\mu}^g), i \le 4k + 2g - 3$, do not change.

Let $G_{u,n}^g = Symp(M_g^n, \omega) \cap \text{Diff}_0 M_g^n$, with $[\omega] = u$.

Conjecture (Homotopic stability in Chambers)

If the norm of u is sufficiently large, then $G_{u,n}^g$ has constant homotopy type throughout the chambers of the symplectic cone.

Theorem (Stability Results)

- Minimal case (Abreu and McDuff 2000, g = 0; Buse 2011, g > 0) The homotopy type of G_{μ}^{g} is constant on all intervals $\mu \in (k, k + 1]$ with $k \ge g$. Moreover, as μ passes the integer k + 1, the groups $\pi_i(G_{\mu}^g)$, $i \le 4k + 2g - 3$, do not change.
- **Rational surfaces** (Anjos-Li-L-Pinsonnault 2019); inflation tool for stability results.

Let $G_{u,n}^g = Symp(M_g^n, \omega) \cap \text{Diff}_0 M_g^n$, with $[\omega] = u$.

Conjecture (Homotopic stability in Chambers)

If the norm of u is sufficiently large, then $G_{u,n}^g$ has constant homotopy type throughout the chambers of the symplectic cone.

Theorem (Stability Results)

- Minimal case (Abreu and McDuff 2000, g = 0; Buse 2011, g > 0) The homotopy type of G_{μ}^{g} is constant on all intervals $\mu \in (k, k + 1]$ with $k \ge g$. Moreover, as μ passes the integer k + 1, the groups $\pi_i(G_{\mu}^g)$, $i \le 4k + 2g - 3$, do not change.
- **Rational surfaces** (Anjos-Li-L-Pinsonnault 2019); inflation tool for stability results.

New Stability results I

Theorem (Main Theorem 1)

- irrational ruled, one blow-up (Buse-L, 2020) The homotopy type of $G_{u,1}^{g}$ does not change in the chambers for $\mu > g$.
- irrational ruled, many blow-ups (Buse-L, 2022) π₀ and π₁ of G^g_{u,n} do not change along any horizontal ray for μ > max(n,g).

New Stability results I

Theorem (Main Theorem 1)

- irrational ruled, one blow-up (Buse-L, 2020) The homotopy type of $G_{u,1}^{g}$ does not change in the chambers for $\mu > g$.
- irrational ruled, many blow-ups (Buse-L, 2022) π₀ and π₁ of G^g_{u,n} do not change along any horizontal ray for μ > max(n,g).
- irrational ruled, many blow-ups (equal size ¹/₂) Stability of all π_i within chambers when μ > max(n,g), restricted to the line u = (μ, 1, ¹/₂,..., ¹/₂). The restrictions are ^k/₂ < μ ≤ ^{k+1}/₂.

Theorem (Main Theorem 1)

- irrational ruled, one blow-up (Buse-L, 2020) The homotopy type of $G_{u,1}^{g}$ does not change in the chambers for $\mu > g$.
- irrational ruled, many blow-ups (Buse-L, 2022) π₀ and π₁ of G^g_{u,n} do not change along any horizontal ray for μ > max(n,g).
- irrational ruled, many blow-ups (equal size $\frac{1}{2}$) Stability of all π_i within chambers when $\mu > max(n,g)$, restricted to the line $u = (\mu, 1, \frac{1}{2}, \dots, \frac{1}{2})$. The restrictions are $\frac{k}{2} < \mu \leq \frac{k+1}{2}$.

Conjecturally, all the homotopy groups are the same within the chambers of the symplectic cone, and the changes may/do occur in π_{cod_A-1} as we cross an interior wall $u \cdot A = 0$.

Theorem (Main Theorem 1)

- irrational ruled, one blow-up (Buse-L, 2020) The homotopy type of $G_{u,1}^{g}$ does not change in the chambers for $\mu > g$.
- irrational ruled, many blow-ups (Buse-L, 2022) π₀ and π₁ of G^g_{u,n} do not change along any horizontal ray for μ > max(n,g).
- irrational ruled, many blow-ups (equal size $\frac{1}{2}$) Stability of all π_i within chambers when $\mu > max(n,g)$, restricted to the line $u = (\mu, 1, \frac{1}{2}, \dots, \frac{1}{2})$. The restrictions are $\frac{k}{2} < \mu \leq \frac{k+1}{2}$.

Conjecturally, all the homotopy groups are the same within the chambers of the symplectic cone, and the changes may/do occur in π_{cod_A-1} as we cross an interior wall $u \cdot A = 0$.
McDuff's expansion

• Let \mathcal{A}_{ω} be the space of ω' -tamed almost complex structures, with $\omega' \in \mathcal{S}_{[\omega]}$. Then \mathcal{A}_{ω} is (weakly) homotopic to $\mathcal{S}_{[\omega]}$.

McDuff's expansion

- Let \mathcal{A}_{ω} be the space of ω' -tamed almost complex structures, with $\omega' \in \mathcal{S}_{[\omega]}$. Then \mathcal{A}_{ω} is (weakly) homotopic to $\mathcal{S}_{[\omega]}$.
- This yields McDuff's homotopy fibration $G_{\omega} \to \text{Diff}_0(M) \to \mathcal{A}_{\omega}$, which is useful in studying Symp especially in connection with changes as ω is deformed.

McDuff's expansion

- Let \mathcal{A}_{ω} be the space of ω' -tamed almost complex structures, with $\omega' \in \mathcal{S}_{[\omega]}$. Then \mathcal{A}_{ω} is (weakly) homotopic to $\mathcal{S}_{[\omega]}$.
- This yields McDuff's homotopy fibration $G_{\omega} \to \text{Diff}_0(M) \to A_{\omega}$, which is useful in studying Symp especially in connection with changes as ω is deformed.
- The key is understanding the space of almost complex structures A_ω, and their changes through deformations.

McDuff's expansion

- Let \mathcal{A}_{ω} be the space of ω' -tamed almost complex structures, with $\omega' \in \mathcal{S}_{[\omega]}$. Then \mathcal{A}_{ω} is (weakly) homotopic to $\mathcal{S}_{[\omega]}$.
- This yields McDuff's homotopy fibration $G_{\omega} \to \text{Diff}_0(M) \to A_{\omega}$, which is useful in studying Symp especially in connection with changes as ω is deformed.
- The key is understanding the space of almost complex structures A_ω, and their changes through deformations.

- Definition. Curves-driven subsets of A_u: Let C be a collection of homology classes representable by J-holomorphic embedded curves. We call A_{u,C} the subset of all J ∈ A_u that admit embedded J-holomorphic representatives in a class A of positive codimension (nonregular) exactly when A ∈ C.
- These sets form co-oriented Fréchet suborbifolds of \mathcal{A}_u of (real) codimension $\Sigma \operatorname{cod}_{A_i}$. We call the top stratum \mathcal{A}_u^{top} the complement of these strata.

- Definition. Curves-driven subsets of A_u: Let C be a collection of homology classes representable by J-holomorphic embedded curves. We call A_{u,C} the subset of all J ∈ A_u that admit embedded J-holomorphic representatives in a class A of positive codimension (nonregular) exactly when A ∈ C.
- These sets form co-oriented Fréchet suborbifolds of \mathcal{A}_u of (real) codimension $\Sigma \operatorname{cod}_{A_i}$. We call the top stratum \mathcal{A}_u^{top} the complement of these strata.
- Minimal case (McDuff): For M^g_{μ,0}, A_μ = Π_iA_{μ,B-iF} Π A^{top}_μ(for all admissible i);

 $\frac{12}{24}$

- Definition. Curves-driven subsets of A_u: Let C be a collection of homology classes representable by J-holomorphic embedded curves. We call A_{u,C} the subset of all J ∈ A_u that admit embedded J-holomorphic representatives in a class A of positive codimension (nonregular) exactly when A ∈ C.
- These sets form co-oriented Fréchet suborbifolds of \mathcal{A}_u of (real) codimension $\Sigma \operatorname{cod}_{A_i}$. We call the top stratum \mathcal{A}_u^{top} the complement of these strata.
- Minimal case (McDuff): For M^g_{μ,0}, A_μ = Π_iA_{μ,B-iF} Π A^{top}_μ(for all admissible i);
- g > 0 one-point blow-up (B-Li, 2020) For $M_{\mu,1}^g$, $\mathcal{A}_{\mu} = \coprod_i \mathcal{A}_{\mu,B-iF} \coprod_j \mathcal{A}_{\mu,B-jF-E} \coprod \mathcal{A}_{\mu}^{top}$ (for all admissible i, j).

12 /

- Definition. Curves-driven subsets of A_u: Let C be a collection of homology classes representable by J-holomorphic embedded curves. We call A_{u,C} the subset of all J ∈ A_u that admit embedded J-holomorphic representatives in a class A of positive codimension (nonregular) exactly when A ∈ C.
- These sets form co-oriented Fréchet suborbifolds of \mathcal{A}_u of (real) codimension $\Sigma \operatorname{cod}_{A_i}$. We call the top stratum \mathcal{A}_u^{top} the complement of these strata.
- Minimal case (McDuff): For M^g_{μ,0}, A_μ = Π_iA_{μ,B-iF} Π A^{top}_μ(for all admissible i);
- g > 0 one-point blow-up (B-Li, 2020) For $M_{\mu,1}^g$, $\mathcal{A}_{\mu} = \coprod_i \mathcal{A}_{\mu,B-iF} \coprod_j \mathcal{A}_{\mu,B-jF-E} \coprod \mathcal{A}_{\mu}^{top}$ (for all admissible i, j).

Many points blow-up irrational: A_u is stratified but more sectional classes curves

In this case we cannot control very well the degenerations of the exceptional curves.

To accommodate that, we take an ad-hoc splitting of $\mathcal{A}_{u} = \mathcal{A}_{u}^{top} \cup \mathcal{A}_{B_{i}}^{2} \cup \mathcal{A}_{u,broken}^{2} \cup \mathcal{A}^{high}$.

section class	embedded exceptional	mild broken deg	deg
$B + kF - \sum E_i, \operatorname{cod} < 2$	\mathcal{A}_{u}^{top}	$\mathcal{A}^2_{u,broken}$	\mathcal{A}_u^{high}
$B + kF - \sum E_i, \operatorname{cod} = 2$	$\mathcal{A}^2_{u,B}$	\mathcal{A}_{u}^{high}	\mathcal{A}_u^{high}
$B + kF - \sum E_i, \operatorname{cod} > 2$	\mathcal{A}_{u}^{high}	\mathcal{A}_{u}^{high}	\mathcal{A}_u^{high}

Many points blow-up irrational: A_u is stratified but more sectional classes curves

In this case we cannot control very well the degenerations of the exceptional curves.

To accommodate that, we take an ad-hoc splitting of $\mathcal{A}_u = \mathcal{A}_u^{top} \cup \mathcal{A}_{B_i}^2 \cup \mathcal{A}_{u,broken}^2 \cup \mathcal{A}^{high}$.

section class	embedded exceptional	mild broken deg	deg
$B + kF - \sum E_i, \operatorname{cod} < 2$	\mathcal{A}_{u}^{top}	$\mathcal{A}^2_{u,broken}$	\mathcal{A}_u^{high}
$B + kF - \sum E_i, \operatorname{cod} = 2$	$\mathcal{A}^2_{u,B}$	\mathcal{A}_{u}^{high}	\mathcal{A}_u^{high}
$B+kF-\sum E_i, \operatorname{cod} > 2$	\mathcal{A}_{u}^{high}	\mathcal{A}_{u}^{high}	\mathcal{A}_u^{high}

 $\frac{13}{24}$

Inflation package, using McDuff, Buse, Li-Zhang

On M^4 with $b^+ = 1$, given a compatible pair (ω, J) and an embedded *J*-holomorphic curve *Z*, then exists an ω' in class $[\omega'] = [\omega] + tP.D.[Z], t \in [0, \lambda)$ with $\lambda = \infty$ if $[Z] \cdot [Z] \ge 0$ (McDuff 2000) and $\lambda = \frac{\omega(Z)}{[Z] \cdot [Z]}$, if $[Z] \cdot [Z] < 0$, (Buse, 2011) such that ω' is tamed by *J*. Moreover, using results of Li-Zhang, one can make ω' compatible with *J*.

Inflation package, using McDuff, Buse, Li-Zhang

On M^4 with $b^+ = 1$, given a compatible pair (ω, J) and an embedded *J*-holomorphic curve *Z*, then exists an ω' in class $[\omega'] = [\omega] + tP.D.[Z], t \in [0, \lambda)$ with $\lambda = \infty$ if $[Z] \cdot [Z] \ge 0$ (McDuff 2000) and $\lambda = \frac{\omega(Z)}{[Z] \cdot [Z]}$, if $[Z] \cdot [Z] < 0$, (Buse, 2011) such that ω' is tamed by *J*. Moreover, using results of Li-Zhang, one can make ω' compatible with *J*.

Key input: *J*-holomorphic curve results on irrational ruled surfaces

Theorem (Zhang, 2018)

Let any $M_{u,n}^g$, $g \ge 1$. Then for any tamed J,

- There is a unique curve in class F passing through a given point, forming a singular foliation; only finitely many fibers are singular.
- There is an exceptional holomorphic curve E either embedded or with rational reducible components.

Key input: *J*-holomorphic curve results on irrational ruled surfaces

Theorem (Zhang, 2018)

Let any $M_{u,n}^g$, $g \ge 1$. Then for any tamed J,

- There is a unique curve in class F passing through a given point, forming a singular foliation; only finitely many fibers are singular.
- There is an exceptional holomorphic curve E either embedded or with rational reducible components.
- Solution is an embedded curve in the class B + kF − ∑_i k_iE_i (k_i ∈ {0,1}) for some k ≤ g, as long as the curve has positive area.

Key input: *J*-holomorphic curve results on irrational ruled surfaces

Theorem (Zhang, 2018)

Let any $M_{u,n}^g$, $g \ge 1$. Then for any tamed J,

- There is a unique curve in class F passing through a given point, forming a singular foliation; only finitely many fibers are singular.
- There is an exceptional holomorphic curve E either embedded or with rational reducible components.
- there is an embedded curve in the class B + kF − ∑_i k_iE_i (k_i ∈ {0,1}) for some k ≤ g, as long as the curve has positive area.

Inflation process (McDuff): the minimal case

Inclusions of strata minimal case

Want:	$\mathcal{A}_{\mu,\mathcal{C}} \subset \mathcal{A}_{\mu+l,\mathcal{C}} orall I \ \mathcal{A}_{\mu}^{top} \subset \mathcal{A}_{\mu+l}^{top},$	$\mathcal{A}_{\mu,\mathcal{C}} \supset \mathcal{A}_{\mu+l,\mathcal{C}}$, when possible	$\mathcal{A}_{\mu}^{top} \supset \mathcal{A}_{\mu+l}^{top}.$
Inflate along	foliation with J -holomorphic F	embedded negative curve $C = B - kF$	embedded $B + qF, q \leq g$

Table: inflation process for
$$\mathcal{A}_{\mu} = \coprod_{\mathcal{C}} \mathcal{A}_{\mu,\mathcal{C}} \amalg_{\mu} \mathcal{A}_{\mu}^{top}$$

$$\mu = 0 \qquad B - F \qquad B - 2F \qquad B - 3F \qquad \cdots \qquad \cdots \qquad \mu \to \infty$$

Note: For each J there is a regular foliation by F used for the upward inflation.

16 24

Inflation process (McDuff): the minimal case

Inclusions of strata minimal case

Want:	$\mathcal{A}_{\mu,\mathcal{C}} \subset \mathcal{A}_{\mu+l,\mathcal{C}} orall I \ \mathcal{A}_{\mu}^{top} \subset \mathcal{A}_{\mu+l}^{top},$	$\mathcal{A}_{\mu,\mathcal{C}} \supset \mathcal{A}_{\mu+l,\mathcal{C}}$, when possible	$\mathcal{A}_{\mu}^{top} \supset \mathcal{A}_{\mu+l}^{top}.$
Inflate along	foliation with J -holomorphic F	embedded negative curve $C = B - kF$	embedded $B + qF, q \leq g$

Table: inflation process for
$$\mathcal{A}_{\mu} = \coprod_{\mathcal{C}} \mathcal{A}_{\mu,\mathcal{C}} \amalg \mathcal{A}_{\mu}^{top}$$

$$\mu = 0 \qquad B - F \qquad B - 2F \qquad B - 3F \qquad \cdots \qquad \mu \to \infty$$

Note: For each J there is a regular foliation by F used for the upward inflation.

16 24

Inflation process, Zhang's curves positively span the cone

(Zhang, 2018) Singular foliation for one-point blow-up: There's a singular foliation with *J*-holomorphic leaves, generic fibers in *F*, exactly one nodal fiber with two embedded components *E* and F - E.

Inflation process, Zhang's curves positively span the cone

(Zhang, 2018) Singular foliation for one-point blow-up: There's a singular foliation with *J*-holomorphic leaves, generic fibers in *F*, exactly one nodal fiber with two embedded components *E* and F - E.

decrease μ for $\mathcal{A}_{\mathcal{C}}$	class to inflate
B-kF-E	B - kF - E then E and $F - E$
B - kF	first inflate along $B - kF$, inflate along E or $F - E$
B - kF	Zigzag: inflate $B - kF$ stoping at $B - kF - E$, inflate along $F - E$ then $B - kF$.

Increase μ for any stratum, inflate F decrease μ for top stratum A_{top} , inflate B + pF.

$$\mu = 0$$

$$B = F$$

$$B = 2F$$

$$B = 3F$$

$$\mu \to \infty$$

$$\mu \to \infty$$

Inflation process, Zhang's curves positively span the cone

(Zhang, 2018) Singular foliation for one-point blow-up: There's a singular foliation with *J*-holomorphic leaves, generic fibers in *F*, exactly one nodal fiber with two embedded components *E* and F - E.

decrease μ for $\mathcal{A}_{\mathcal{C}}$	class to inflate
B-kF-E	B - kF - E then E and $F - E$
B - kF	first inflate along $B - kF$, inflate along E or $F - E$
B-kF	Zigzag: inflate $B - kF$ stoping at $B - kF - E$, inflate along $F - E$ then $B - kF$.

Increase μ for any stratum, inflate F decrease μ for top stratum A_{top} , inflate B + pF.

Inflation process, positively span of Zhang's curves

Direction	Strata	Class to inflate	Notes
In the same chamber	$\mathcal{A}^2_{u,\mathcal{C}}$	$B+xF-\sum E_i, E_i, F-E_i$	codim 2, emb. exp.
Within a chamber	$\mathcal{A}^2_{u,C,D}$	$B + xF - \sum E_i$, C, D, E_i , $F - E_i$	codim 2, broken exc.
Within a chamber	$\mathcal{A}_{u,open}$	$B + xF - \sum E_i, E_i, F - E_i$	top stratum, emb. exc.
Across to chambers with large μ	Any strata	F	foliation by F
Across to chambers with small μ	$\mathcal{A}_{u,\mathcal{C}}$ and $\mathcal{A}_{u,open}$	$B + xF - \sum E_i$	neg sect. class type inflation

Table: Inflation process for multiple-point blowup

18 / 24

Jun Li (University of Michigan/ Univiersity of Symplectomorphism groups of irrational ruled

Special case: many point blow-up with $\frac{1}{2}$ equal sizes

 \mathcal{A}_{u}^{high} is well understood in the $\left[\mu,1,\frac{1}{2},\cdots,\frac{1}{2}\right]$ case since the exceptional curves cannot degenerate for homological reasons.

section class	embedded exceptional	mild broken deg	deg
$B+kF-\sum E_i, \operatorname{cod} < 2$	\mathcal{A}^{top}	Ø	Ø
$B+kF-\sum E_i, \operatorname{cod}=2$	$\mathcal{A}^2_{u,B}$	Ø	Ø
$B+kF-\sum E_i, \operatorname{cod} > 2$	$\mathcal{A}_{u,B_i}^{high}$	Ø	Ø

Theorem (Recall from Main Theorem 1)

For $u = (\mu, 1, \frac{1}{2}, ..., \frac{1}{2})$, the homotopy type of $G_{\mu,n}^{g}$ is constant for $\frac{k}{2} < \mu \leq \frac{k+1}{2}$, for any integer $k \geq 2g$. Moreover as μ passes the half integer $\frac{k+1}{2}$, all the groups $\pi_i, i = 0, ..., 2k + 2g - 1$ do not change.

Special case: many point blow-up with $\frac{1}{2}$ equal sizes

 \mathcal{A}_{u}^{high} is well understood in the $\left[\mu, 1, \frac{1}{2}, \cdots, \frac{1}{2}\right]$ case since the exceptional curves cannot degenerate for homological reasons.

section class	embedded exceptional	mild broken deg	deg
$B+kF-\sum E_i, \operatorname{cod} < 2$	\mathcal{A}^{top}	Ø	Ø
$B+kF-\sum E_i, \operatorname{cod}=2$	$\mathcal{A}^2_{u,B}$	Ø	Ø
$B+kF-\sum E_i, \operatorname{cod} > 2$	$\mathcal{A}_{u,B_i}^{high}$	Ø	Ø

Theorem (Recall from Main Theorem 1)

For $u = (\mu, 1, \frac{1}{2}, ..., \frac{1}{2})$, the homotopy type of $G_{\mu,n}^{g}$ is constant for $\frac{k}{2} < \mu \leq \frac{k+1}{2}$, for any integer $k \geq 2g$. Moreover as μ passes the half integer $\frac{k+1}{2}$, all the groups $\pi_i, i = 0, ..., 2k + 2g - 1$ do not change.

24

Foliation, $\mathcal{A}_u \subset \mathcal{A}_{u'}$, and topological limit $G_{g,\infty}^n$.

1)In all cases: Foliations by F yield upwards inclusion $\mathcal{A}_u \subset \mathcal{A}_{u'}$ on any horizontal line; in turn these yield a topological limit when $\mu \to \infty$. This limit groups remember π_0 for any $G_{\mu,n}^g$ with $\mu > n, g$.

Foliation, $\mathcal{A}_u \subset \mathcal{A}_{u'}$, and topological limit $G_{g,\infty}^n$.

1)In all cases: Foliations by F yield upwards inclusion $\mathcal{A}_u \subset \mathcal{A}_{u'}$ on any horizontal line; in turn these yield a topological limit when $\mu \to \infty$. This limit groups remember π_0 for any $G_{\mu,n}^g$ with $\mu > n, g$.

2)In the minimal case there is a smooth model of the limit group: (MCDuff 2000) Let \mathcal{D} be the foliation preserving diff group of $\Sigma_g \times S^2$. There is a fibration sequence $\mathcal{D} \cap \text{Diff}_0(M) \to \text{Diff}_0(M) \to \text{Fol}_0$,

Foliation, $\mathcal{A}_u \subset \mathcal{A}_{u'}$, and topological limit $G_{g,\infty}^n$.

1)In all cases: Foliations by F yield upwards inclusion $\mathcal{A}_u \subset \mathcal{A}_{u'}$ on any horizontal line; in turn these yield a topological limit when $\mu \to \infty$. This limit groups remember π_0 for any $G_{\mu,n}^g$ with $\mu > n, g$.

2)In the minimal case there is a smooth model of the limit group: (MCDuff 2000) Let \mathcal{D} be the foliation preserving diff group of $\Sigma_g \times S^2$. There is a fibration sequence $\mathcal{D} \cap \text{Diff}_0(M) \to \text{Diff}_0(M) \to Fol_0$, and there is a surjective map with contractible fibers $\mathcal{A}_{\infty} = \bigcup_{\mu < \infty} \mathcal{A}_{\mu} \to Fol_0$ by taking J to the corresponding J-holomorphic

foliation.

1)In all cases: Foliations by F yield upwards inclusion $\mathcal{A}_{u} \subset \mathcal{A}_{u'}$ on any horizontal line; in turn these yield a topological limit when $\mu \to \infty$. This limit groups remember π_0 for any $G_{\mu,n}^{g}$ with $\mu > n, g$.

2)In the minimal case there is a smooth model of the limit group: (MCDuff 2000) Let \mathcal{D} be the foliation preserving diff group of $\Sigma_g \times S^2$. There is a fibration sequence $\mathcal{D} \cap \text{Diff}_0(M) \to \text{Diff}_0(M) \to Fol_0$, and there is a surjective map with contractible fibers $\mathcal{A}_{\infty} = \bigcup_{\mu < \infty} \mathcal{A}_{\mu} \to Fol_0$ by taking J to the corresponding J-holomorphic foliation. \mathcal{D} is connected, and therefore $G^0_{\mu,g}$ are connected for $\mu > g$. 3) for one-blowup or $[\mu, \frac{1}{2}, \cdots, \frac{1}{2}]$: 1)In all cases: Foliations by F yield upwards inclusion $\mathcal{A}_u \subset \mathcal{A}_{u'}$ on any horizontal line; in turn these yield a topological limit when $\mu \to \infty$. This limit groups remember π_0 for any $G_{\mu,n}^g$ with $\mu > n, g$.

2)In the minimal case there is a smooth model of the limit group: (MCDuff 2000) Let \mathcal{D} be the foliation preserving diff group of $\Sigma_g \times S^2$. There is a fibration sequence $\mathcal{D} \cap \text{Diff}_0(M) \to \text{Diff}_0(M) \to Fol_0$, and there is a surjective map with contractible fibers $\mathcal{A}_{\infty} = \bigcup_{\mu < \infty} \mathcal{A}_{\mu} \to Fol_0$ by taking J to the corresponding J-holomorphic foliation. \mathcal{D} is connected, and therefore $G^0_{\mu,g}$ are connected for $\mu > g$. 3) for one-blowup or $[\mu, \frac{1}{2}, \cdots, \frac{1}{2}]$:

Smooth models for $G_{\infty,1}^{g}$ and $G_{\infty,n}^{equal}$

In the case of one point blow up or blow ups with equal $\frac{1}{2}$ sizes Zhang's singular foliations have well behaved nodal fibers with two embedded components E and F - E. One can mimic McDuff's foliation space method, by taking spaces of well controlled singular foliations.

Smooth models for $G_{\infty,1}^{g}$ and $G_{\infty,n}^{equal}$

In the case of one point blow up or blow ups with equal $\frac{1}{2}$ sizes Zhang's singular foliations have well behaved nodal fibers with two embedded components E and F - E. One can mimic McDuff's foliation space method, by taking spaces of well controlled singular foliations. We will explain it in the one blow up case for simplicity:

$$Stab(Fol) \rightarrow \text{Diff}_0(M_g \# \overline{\mathbb{C}P^2}) \rightarrow Fol_0^{sing}.$$

 $G'_{\infty} = Stab(Fol)$ is the diffeomorphism group acting trivially on the homology, and acts fiberwise on the singular foliation, which fit into the commutative diagram

$$\begin{array}{cccc} M_g \# \overline{\mathbb{C}P^2} & \stackrel{\phi}{\to} & M_g \# \overline{\mathbb{C}P^2} \\ \downarrow & & \downarrow \\ (\Sigma_g, pt) & \stackrel{\phi'}{\to} & (\Sigma_g, pt). \end{array}$$

Geometria em Lisboa, 03/29/2022

Jun Li (University of Michigan/ Univiersity of Symplectomorphism groups of irrational ruled

Smooth models for $G_{\infty,1}^g$ and $G_{\infty,n}^{equal}$

In the case of one point blow up or blow ups with equal $\frac{1}{2}$ sizes Zhang's singular foliations have well behaved nodal fibers with two embedded components E and F - E. One can mimic McDuff's foliation space method, by taking spaces of well controlled singular foliations. We will explain it in the one blow up case for simplicity:

$$Stab(Fol) \rightarrow \text{Diff}_0(M_g \# \overline{\mathbb{C}P^2}) \rightarrow Fol_0^{sing}.$$

 $G'_{\infty} = Stab(Fol)$ is the diffeomorphism group acting trivially on the homology, and acts fiberwise on the singular foliation, which fit into the commutative diagram

$$\begin{array}{cccc} M_g \# \overline{\mathbb{C}P^2} & \stackrel{\phi}{\to} & M_g \# \overline{\mathbb{C}P^2} \\ \downarrow & & \downarrow \\ (\Sigma_g, pt) & \stackrel{\phi'}{\to} & (\Sigma_g, pt). \end{array}$$

Geometria em Lisboa, 03/29/2022

Jun Li (University of Michigan/ Univiersity of Symplectomorphism groups of irrational rule

Smooth models for $G_{\infty,1}^g$ and $G_{\infty,n}^{equal}$

In the case of one point blow up or blow ups with equal $\frac{1}{2}$ sizes Zhang's singular foliations have well behaved nodal fibers with two embedded components E and F - E. One can mimic McDuff's foliation space method, by taking spaces of well controlled singular foliations. We will explain it in the one blow up case for simplicity:

$$Stab(Fol) \rightarrow \text{Diff}_0(M_g \# \overline{\mathbb{C}P^2}) \rightarrow Fol_0^{sing}.$$

 $G'_{\infty} = Stab(Fol)$ is the diffeomorphism group acting trivially on the homology, and acts fiberwise on the singular foliation, which fit into the commutative diagram

$$\begin{array}{cccc} M_g \# \overline{\mathbb{C}P^2} & \stackrel{\phi}{\to} & M_g \# \overline{\mathbb{C}P^2} \\ \downarrow & & \downarrow \\ (\Sigma_g, pt) & \stackrel{\phi'}{\to} & (\Sigma_g, pt). \end{array}$$

Geometria em Lisboa, 03/29/2022

Jun Li (University of Michigan/ Univiersity of Symplectomorphism groups of irrational rule

$$\mathsf{Stab}(\mathsf{Fol}) o \mathsf{Diff}_0(\mathsf{M}_g \# \overline{\mathbb{C}P^2}) o \mathsf{Fol}_0^{\mathsf{sing}}$$

 $G'_{\infty} = Stab(Fol)$ is the diffeomorphism group acting trivially on the homology, and acts fiberwise on the singular foliation, which fit into the commutative diagram

$$egin{array}{rcl} M_g \# \overline{\mathbb{C}P^2} & \stackrel{\phi}{
ightarrow} & M_g \# \overline{\mathbb{C}P^2} \ \downarrow & & \downarrow \ (\Sigma_g, pt) & \stackrel{\phi'}{
ightarrow} & (\Sigma_g, pt). \end{array}$$

This "fibered" subgroup of the space of diffeomorphisms is not connected for g > 1; one can lift a Dehn twist around the fixed point.

$${\it Stab}({\it Fol}) o {\it Diff}_0({\it M_g} \# \overline{\mathbb{C}P^2}) o {\it Fol}_0^{sing}$$

 $G'_{\infty} = Stab(Fol)$ is the diffeomorphism group acting trivially on the homology, and acts fiberwise on the singular foliation, which fit into the commutative diagram

$$egin{array}{rcl} M_g \# \overline{\mathbb{C}P^2} & \stackrel{\phi}{
ightarrow} & M_g \# \overline{\mathbb{C}P^2} \ \downarrow & & \downarrow \ (\Sigma_g, pt) & \stackrel{\phi'}{
ightarrow} & (\Sigma_g, pt). \end{array}$$

This "fibered" subgroup of the space of diffeomorphisms is not connected for g > 1; one can lift a Dehn twist around the fixed point. This implies that for large enough u, $G_{u,1}^g$ and $G_{u,n}^{equal}$ are disconnected for $g \ge 2$.

$${\it Stab}({\it Fol}) o {\it Diff}_0({\it M_g} \# \overline{\mathbb{C}P^2}) o {\it Fol}_0^{sing}$$

 $G'_{\infty} = Stab(Fol)$ is the diffeomorphism group acting trivially on the homology, and acts fiberwise on the singular foliation, which fit into the commutative diagram

$$egin{array}{rcl} M_g \# \overline{\mathbb{C}P^2} & \stackrel{\phi}{
ightarrow} & M_g \# \overline{\mathbb{C}P^2} \ \downarrow & & \downarrow \ (\Sigma_g, pt) & \stackrel{\phi'}{
ightarrow} & (\Sigma_g, pt). \end{array}$$

This "fibered" subgroup of the space of diffeomorphisms is not connected for g > 1; one can lift a Dehn twist around the fixed point. This implies that for large enough u, $G_{u,1}^g$ and $G_{u,n}^{equal}$ are disconnected for $g \ge 2$.

Theorem (Main Theorem 2)

For any non-minimal ruled surface, there is a symplectic form such that there are exotic symplectomorphisms. That is, $\exists \phi \in Symp$ smoothly but not symplectically isotopic to the identity.
For any non-minimal ruled surface, there is a symplectic form such that there are exotic symplectomorphisms. That is, $\exists \phi \in Symp$ smoothly but not symplectically isotopic to the identity.

Genus=1 case (Shevchishin-Smirnov, 2017): For some $(\mathbb{T}^2 \times S^2 \# \mathbb{C}P^2, \omega)$, there exists an elliptic diffeomorphism, given by a loop in \mathcal{A}_{ω} generated by (-1) torus in B - E, that's not killed by $\pi_1 \text{Diff}_0$.

$Symp(M,\omega) \cap \text{Diff}_0(M) \to \text{Diff}_0(M) \to \mathcal{A}_\omega.$

Note only μ very small will this happen, and does not survive in the topological limit.

Q1: What is the geometric description of the Elliptic diffeomorphism?

For any non-minimal ruled surface, there is a symplectic form such that there are exotic symplectomorphisms. That is, $\exists \phi \in Symp$ smoothly but not symplectically isotopic to the identity.

Genus=1 case (Shevchishin-Smirnov, 2017): For some $(\mathbb{T}^2 \times S^2 \# \overline{\mathbb{C}P^2}, \omega)$, there exists an elliptic diffeomorphism, given by a loop in \mathcal{A}_{ω} generated by (-1) torus in B - E, that's not killed by $\pi_1 \text{Diff}_0$.

$$Symp(M, \omega) \cap \text{Diff}_0(M) \to \text{Diff}_0(M) \to \mathcal{A}_{\omega}.$$

Note only μ very small will this happen, and does not survive in the topological limit.

Q1: What is the geometric description of the Elliptic diffeomorphism?

Q2: Is there any relation to the fibered Dehn twists?

For any non-minimal ruled surface, there is a symplectic form such that there are exotic symplectomorphisms. That is, $\exists \phi \in Symp$ smoothly but not symplectically isotopic to the identity.

Genus=1 case (Shevchishin-Smirnov, 2017): For some $(\mathbb{T}^2 \times S^2 \# \overline{\mathbb{C}P^2}, \omega)$, there exists an elliptic diffeomorphism, given by a loop in \mathcal{A}_{ω} generated by (-1) torus in B - E, that's not killed by $\pi_1 \text{Diff}_0$.

$$Symp(M, \omega) \cap \text{Diff}_0(M) \to \text{Diff}_0(M) \to \mathcal{A}_{\omega}.$$

Note only μ very small will this happen, and does not survive in the topological limit.

Q1: What is the geometric description of the Elliptic diffeomorphism?

Q2: Is there any relation to the fibered Dehn twists?

For any non-minimal ruled surface, there is a symplectic form such that there are exotic symplectomorphisms. That is, $\exists \phi \in Symp$ smoothly but not symplectically isotopic to the identity.

Genus=1 case (Shevchishin-Smirnov, 2017): For some $(\mathbb{T}^2 \times S^2 \# \overline{\mathbb{C}P^2}, \omega)$, there exists an elliptic diffeomorphism, given by a loop in \mathcal{A}_{ω} generated by (-1) torus in B - E, that's not killed by $\pi_1 \text{Diff}_0$.

$$Symp(M, \omega) \cap \text{Diff}_0(M) \to \text{Diff}_0(M) \to \mathcal{A}_{\omega}.$$

Note only μ very small will this happen, and does not survive in the topological limit.

Q1: What is the geometric description of the Elliptic diffeomorphism?

Q2: Is there any relation to the fibered Dehn twists?

Thank You!

Geometria em Lisboa, 03/29/2022

24 / 24

Jun Li (University of Michigan/ Univiersity of Symplectomorphism groups of irrational rule