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How Do We Automate Math and Science?

� What is mathematical and scientific thinking?
� Pattern-matching, analogy, induction from examples
� Deductive reasoning
� Complicated feedback loops between induction and deduction
� Using a lot of previous knowledge - both for induction and deduction

� We need to develop such methods on computers
� Are there any large corpora suitable for nontrivial deduction?
� Yes! Large libraries of formal proofs and theories
� So let’s develop strong AI on them!
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What is Formal Mathematics?

� Developed thanks to the Leibniz/Russell/Frege/Hilbert/... program
� Mathematics put on formal logic foundations (symbolic computation)
� ... which btw. led also to the rise of computers (Turing/Church, 1930s)
� Formal math (1950/60s): combine formal foundations and the newly

available computers
� De Bruijn, Milner, Trybulec, Boyer and Moore, Gordon, Huet, Paulson, ...
� Automath, LCF, Mizar, NQTHM and ACL2, HOL, Coq, Isabelle, ...
� Conceptually very simple:
� Write all your axioms and theorems so that computer understands them
� Write all your inference rules so that computer understands them
� Use the computer to check that your proofs follow the rules
� But in practice, it turns out not to be so simple
� Many approaches, still not mainstream, but big breakthroughs recently
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History and Motivation for AI/TP

� Intuition vs Formal Reasoning – Poincaré vs Hilbert, Science & Method
� Turing’s 1950 paper: Learning Machines, learn Chess?, undecidability??
� Lenat, Langley, etc: manually-written heuristics, learn Kepler laws,...
� Denzinger, Schulz, Goller, Fuchs – late 90’s, ATP-focused:
� Learning from Previous Proof Experience
� My MSc (1998): Try ILP to learn rules and heuristics from IMPS/Mizar
� Since: Use large formal math (Big Proof) corpora: Mizar, Isabelle, HOL
� ... to combine/develop symbolic/statistical deductive/inductive ML/TP/AI
� ... hammer-style methods, feedback loops, internal guidance, ...
� More details – AGI’18 keynote: https://bit.ly/3qifhg4
� AI vs DL: Ben Goertzel’s Prague talk: https://youtu.be/Zt2HSTuGBn8
� Big AI visions: automate/verify math, science, law, (Leibniz, McCarthy, ..)
� Practical impact: boost today’s large ITP verification projects
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Using Learning to Guide Theorem Proving

� high-level: pre-select lemmas from a large library, give them to ATPs
� high-level: pre-select a good ATP strategy/portfolio for a problem
� high-level: pre-select good hints for a problem, use them to guide ATPs
� low-level: guide every inference step of ATPs (tableau, superposition)
� low-level: guide every kernel step of LCF-style ITPs
� mid-level: guide application of tactics in ITPs
� mid-level: invent suitable ATP strategies for classes of problems
� mid-level: invent suitable conjectures for a problem
� mid-level: invent suitable concepts/models for problems/theories
� proof sketches: explore stronger/related theories to get proof ideas
� theory exploration: develop interesting theories by conjecturing/proving
� feedback loops: (dis)prove, learn from it, (dis)prove more, learn more, ...
� autoformalization: (semi-)automate translation from LATEX to formal
� ...
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Large AI/TP Datasets

� Mizar / MML / MPTP – since 2003
� MPTP Challenge (2006), MPTP2078 (2011), Mizar40 (2013)
� Isabelle (and AFP) – since 2005
� Flyspeck (including core HOL Light and Multivariate) – since 2012
� HOL4 – since 2014, CakeML – 2017, GRUNGE – 2019
� Coq – since 2013/2016
� ACL2 – 2014?
� Lean?, Stacks?, Arxiv?, ProofWiki?, ...

7 / 53



Demos

� ENIGMA/hammer proofs of Pythagoras : https://bit.ly/2MVPAn7
(more at http://grid01.ciirc.cvut.cz/~mptp/enigma-ex.pdf) and
simplified Carmichael https://bit.ly/3oGBdRz,

� 3-phase ENIGMA: https://bit.ly/3C0Lwa8,
https://bit.ly/3BWqR6K

� Long trig proof from 1k axioms: https://bit.ly/2YZ0OgX
� Hammering demo: http://grid01.ciirc.cvut.cz/~mptp/out4.ogv
� TacticToe on HOL4:
http://grid01.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv

� Tactician for Coq:
https://blaauwbroek.eu/papers/cicm2020/demo.mp4,
https://coq-tactician.github.io/demo.html

� Inf2formal over HOL Light:
http://grid01.ciirc.cvut.cz/~mptp/demo.ogv

� QSynt: AI rediscovers the Fermat primality test:
https://www.youtube.com/watch?v=24oejR9wsXs
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High-level ATP guidance: Premise Selection

� Early 2003: Can existing ATPs be used over the freshly translated Mizar
library?

� About 80000 nontrivial math facts at that time – impossible to use them all
� Is good premise selection for proving a new conjecture possible at all?
� Or is it a mysterious power of mathematicians? (Penrose)
� Today: Premise selection is not a mysterious property of mathematicians!
� Reasonably good algorithms started to appear (more below).
� Extensive human (math) knowledge obsolete?? (cf. Watson, Debater, ..)
� Since 2004 (my PhD): many examples of nontrivial alternative proofs

proposed by the AIs - in Mizar, Flyspeck, Isabelle, ..
� The premise selection algorithms see wider than humans
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Today’s AI-ATP systems (?-Hammers)

Proof Assistant ?Hammer ATP

Current Goal First Order Problem

ITP Proof ATP Proof
.

How much can it do?

� Mizar / MML – MizAR
� Isabelle (Auth, Jinja) – Sledgehammer
� Flyspeck (including core HOL Light and Multivariate) – HOL(y)Hammer
� HOL4 (Gauthier and Kaliszyk)
� CoqHammer (Czajka and Kaliszyk) - about 40% on Coq standard library

� 40-45% success rate (close to 60% on Mizar as of 2021)
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Premise Selection and Hammer Methods

� Many syntactic features (symbols, walks in the parse trees)
� More semantic features encoding
� term matching/unification, validity in models, latent semantics (LSI)
� Distance-weighted k-nearest neighbor, SVMs, Naive Bayes
� Gradient boosted decision trees (GBDTs - XGBoost, LightGBM)
� Neural models: CNNs, RNNs/Attention/Transformers/GPT, GNNs
� As of 2020, tough competition between GBDTs, GNNs and

RNNs/Transformers (and relatives)
� K-NN still very good, Olsak’s logic-aware GNN probably best
� RNNs/Transformers good at stateful premise selection (Piotrowski

2019,2020)
� Ensemble methods combining the different predictors help a lot
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Premise Selection and Hammer Methods

� Learning in a binary setting from many alternative proofs
� Interleaving many learning and proving runs (MaLARea loop) to get

positives/negatives (ATPBoost - Piotrowski 2018)
� Matching and transferring concepts and theorems between libraries

(Gauthier & Kaliszyk) – allows “superhammers”, conjecturing, and more
� Lemmatization – extracting and considering millions of low-level lemmas

and learning from their proofs
� Hammers combined with guided tactical search: TacticToe (Gauthier -

HOL4) and its later relatives
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High-level feedback loops – MALARea, ATPBoost
� Machine Learner for Autom. Reasoning (2006) – infinite hammering
� feedback loop interleaving ATP with learning premise selection
� both syntactic and semantic features for characterizing formulas:
� evolving set of finite (counter)models in which formulas evaluated
� winning AI/ATP benchmarks (MPTPChallenge, CASC 2008/12/13/18)
� ATPBoost (Piotrowski) - recent incarnation focusing on multiple proofs
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Low-level: Statistical Guidance of Connection Tableau

� learn guidance of every clausal inference in connection tableau (leanCoP)
� set of first-order clauses, extension and reduction steps
� proof finished when all branches are closed
� a lot of nondeterminism, requires backtracking
� Iterative deepening used in leanCoP to ensure completeness
� good for learning – the tableau compactly represents the proof state

Clauses:

c1 : P(x)

c2 : R(x ; y) _ :P(x) _Q(y)

c3 : S(x) _ :Q(b)

c4 : :S(x) _ :Q(x)

c5 : :Q(x) _ :R(a; x)

c6 : :R(a; x) _Q(x)

Closed Connection Tableau: P(a)

R(a; b)

:R(a; b) Q(b)

:Q(b) :R(a; b)

:P(a) Q(b)

S(b)

:S(b) :Q(b)

:Q(b)
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Statistical Guidance of Connection Tableau

� MaLeCoP (2011): first prototype Machine Learning Connection Prover
� extension rules chosen by naive Bayes trained on good decisions
� training examples: tableau features plus the name of the chosen clause
� initially slow: off-the-shelf learner 1000 times slower than raw leanCoP
� 20-time search shortening on the MPTP Challenge
� second version: 2015, with C. Kaliszyk
� both prover and naive Bayes in OCAML, fast indexing
� Fairly Efficient MaLeCoP = FEMaLeCoP
� 15% improvement over untrained leanCoP on the MPTP2078 problems
� using iterative deepening - enumerate shorter proofs before longer ones
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Statistical Guidance of Connection Tableau – rlCoP

� 2018: stronger learners via C interface to OCAML (boosted trees)
� remove iterative deepening, the prover can go arbitrarily deep
� added Monte-Carlo Tree Search (MCTS)
� MCTS search nodes are sequences of clause application
� a good heuristic to explore new vs exploit good nodes:

wi

ni
+ c � pi �

s
lnN
ni

(UCT - Kocsis, Szepesvari 2006)

� learning both policy (clause selection) and value (state evaluation)
� clauses represented not by names but also by features (generalize!)
� binary learning setting used: | proof state | clause features |
� mostly term walks of length 3 (trigrams), hashed into small integers
� many iterations of proving and learning
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Tree Example

r=0.3489
n=1000

p=0.37
r=0.0218

n=287

p=0.70
r=0.0000

n=166

p=0.13
r=0.0000

n=25

p=0.18
r=0.0000

n=74

p=0.11
r=0.0000

n=6

p=0.12
r=0.0000

n=22

p=0.16
r=0.0000

n=39

p=0.30
r=0.1225

n=121

p=0.19
r=0.0000

n=14

p=0.81
r=0.1330

n=107

0.63
r=0.4805

n=713

�
p=0.31

0.18
r=0.3649

n=385

1.00
r=0.3649

n=385

�
p=0.31

0.14
r=0.3562

n=278

...

...
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Statistical Guidance of Connection Tableau – rlCoP

� On 32k Mizar40 problems using 200k inference limit
� nonlearning CoPs:

System leanCoP bare prover rlCoP no policy/value (UCT only)
Training problems proved 10438 4184 7348
Testing problems proved 1143 431 804
Total problems proved 11581 4615 8152

� rlCoP with policy/value after 5 proving/learning iters on the training data
� 1624=1143 = 42:1% improvement over leanCoP on the testing problems

Iteration 1 2 3 4 5 6 7 8

Training proved 12325 13749 14155 14363 14403 14431 14342 14498
Testing proved 1354 1519 1566 1595 1624 1586 1582 1591
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More trees

r=0.3099
n=1182

p=0.24
r=0.3501

n=536

p=0.21
r=0.1859

n=28...
p=0.10

r=0.2038
n=9...

p=0.13
r=0.2110

n=14...
p=0.14

r=0.2384
n=21...

p=0.14
r=0.3370

n=181...
p=0.20

r=0.3967
n=279

p=0.30
r=0.1368

n=14...
p=0.15

r=0.0288
n=2...

p=0.56
r=0.4135

n=262

p=0.66
r=0.4217

n=247

36 more MCTS tree levels until proved

p=0.18
r=0.2633

n=8...
p=0.17

r=0.2554
n=6...

p=0.08
r=0.1116

n=3...

p=0.19
r=0.2289

n=58...
p=0.22

r=0.1783
n=40...

p=0.35
r=0.2889

n=548...

# (tableau starting
atom)

RelStr(c1)

upper(c1)

Subset(union(c2),carrier(c1))

Subset(c2,powerset(carrier(c1))
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Recent CoP Mutants: FLoP, GNN, RNN, lazyCoP

� FLoP – Finding Longer Proofs (Zombori et al, 2019)
� Curriculum Learning used for connection tableau over Robinson

Arithmetic
� addition and multiplication learned perfectly from 1 � 1 = 1
� headed towards learning algorithms/decision procedures from math data
� currently black-box, combinations with symbolic methods (ILP) our next

target
� Using RNNs for better tableau encoding, prediction of actions ...
� ... even guessing (decoding) next tableau literals (Piotrowski 2020)
� plCoP (Zombori 20), GNN-CoP (Olsak 20), lazyCoP (Rawson)
� Zombori: learning new explainable Prolog actions (tactics) from proofs
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ENIGMA: Guiding the Best ATPs like E Prover

� harder for learning than tableau
� the proof state are two large heaps of clauses processed/unprocessed
� 2017: ENIGMA - manual feature engineering (Jakubuv & JU 2017)
� 2017: Deep guidance (neural nets) (Loos et al. 2017)
� both learn on E’s proof search traces, put classifier in E
� positive examples: given clauses used in the proof
� negative examples: given clauses not used in the proof
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ENIGMA: Guiding the Best ATPs like E Prover

� ENIGMA (Jan Jakubuv 2017)
� Fast/hashed feature extraction followed by fast/sparse linear classifier
� about 80% improvement on the AIM benchmark
� Deep guidance: convolutional nets - too slow to be competitive
� ENIGMA-NG: better features and ML, gradient-boosted trees, tree NNs
� NNs made competitive in real-time, boosted trees still best
� 2020: fast GNN added (Olsak, Jakubuv), now competitive with GBDTs
� However very different: the GNN scores many clauses (context and

query) simultaneously in a large graph
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Feedback loop for ENIGMA on Mizar data

� Similar to rlCoP - interleave proving and learning of ENIGMA guidance
� Done on 57880 Mizar problems recently
� Serious ML-guidance breakthrough applied to the best ATPs
� Ultimately a 70% improvement over the original strategy in 2019
� From 14933 proofs to 25397 proofs (all 10s CPU - no cheating)
� Went up to 40k in more iterations and 60s time in 2020

S S �M0
9 S �M0

9 S �M1
9 S �M1

9 S �M2
9 S �M2

9 S �M3
9 S �M3

9
solved 14933 16574 20366 21564 22839 22413 23467 22910 23753
S% +0% +10.5% +35.8% +43.8% +52.3% +49.4% +56.5% +52.8% +58.4
S+ +0 +4364 +6215 +7774 +8414 +8407 +8964 +8822 +9274
S� -0 -2723 -782 -1143 -508 -927 -430 -845 -454

S �M3
12 S �M3

12 S �M3
16 S �M3

16
solved 24159 24701 25100 25397
S% +61.1% +64.8% +68.0% +70.0%
S+ +9761 +10063 +10476 +10647
S� -535 -295 -309 -183
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Neural Clause Selection in Vampire (M. Suda)

Deepire: Similar to ENIGMA:
� build a classifier for recognizing good clauses
� good are those that appeared in past proofs

Deepire’s contributions:
� Learn from clause derivation trees only

Not looking at what it says, just who its ancestors were.
� Integrate using layered clause queues

A smooth improvement of the base clause selection strategy.
� Tree Neural Networks: constant work per derived clause
� A signature agnostic approach
� Delayed evaluation trick (not all derived need to be evaluated)

Preliminary Evaluation on Mizar “57880”
� Learn from 63595 proofs of 23071 problems (three 30s runs)
� Deepire solves 26217 (i.e. +4054) problems in a single 10s run
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TacticToe: mid-level ITP Guidance (Gauthier’17,18)

� TTT learns from human and its own tactical HOL4 proofs
� No translation or reconstruction needed - native tactical proofs
� Fully integrated with HOL4 and easy to use
� Similar to rlCoP: policy/value learning for applying tactics in a state
� However much more technically challenging - a real breakthrough:

� tactic and goal state recording
� tactic argument abstraction
� absolutization of tactic names
� nontrivial evaluation issues
� these issues have often more impact than adding better learners

� policy: which tactic/parameters to choose for a current goal?
� value: how likely is this proof state succeed?
� 66% of HOL4 toplevel proofs in 60s (better than a hammer!)
� similar recent work for Isabelle (Nagashima 2018), HOL Light (Google)
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Tactician: Tactical Guidance for Coq (Blaauwbroek’20)

� Tactical guidance of Coq proofs
� Technically very challenging to do right - the Coq internals again nontrivial
� 39.3% on the Coq standard library, 56.7% in a union with CoqHammer

(orthogonal)
� Fast approximate hashing for k-NN makes a lot of difference
� Speed more important than better learners
� Fully integrated with Coq, should work for any development
� User friendly, installation friendly, integration friendly and maintenance

friendly
� Took several years, but could become a very common tool for Coq

formalizers
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Symbolic Rewriting with NNs

� Recurrent NNs with attention good at the inf2formal task
� Piotrowski 2018/19: Experiments with using RNNs for symbolic rewriting
� We can learn rewrite rules from sufficiently many data
� 80-90% success on AIM datasets, 70-99% on normalizing polynomials
� again, complements symbolic methods like ILP that suffer on big data
� in 2019 similar tasks taken up by Facebook - integration, etc.
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Symbolic Rewriting Datasets

Table: Examples in the AIM data set.

Rewrite rule: Before rewriting: After rewriting:
b(s(e,v1),e)=v1 k(b(s(e,v1),e),v0) k(v1,v0)
o(V0,e)=V0 t(v0,o(v1,o(v2,e))) t(v0,o(v1,v2))

Table: Examples in the polynomial data set.

Before rewriting: After rewriting:
(x * (x + 1)) + 1 x ˆ 2 + x + 1
(2 * y) + 1 + (y * y) y ˆ 2 + 2 * y + 1
(x + 2) * ((2 * x) + 1) + (y + 1) 2 * x ˆ 2 + 5 * x + y + 3
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RL for Normalization and Synthesis Tasks

� Gauthier’19,20:
� Tree Neural Nets and RL (MCTS, policy/value) for:
� Guiding normalization in Robinson arithmetic
� Guiding synthesis of combinators for a given lambda expression
� Guiding synthesis of a diophantine equation characterizing a given set
� Quite encouraging results with a good curriculum (LPAR, CICM)
� Motivated by his TacticToe: argument synthesis and conjecturing is the

big missing piece
� Unlike Piotrowski’s RNNs/transformers, the results are series of

applications of correct/explainable rules
� Gauthier’s deep RL framework verifies the whole series (proof) in HOL4
� 2022: OEIS invention from scratch - 50k sequences discovered:
https://www.youtube.com/watch?v=24oejR9wsXs
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RL for Normalization and Synthesis Tasks - teaser

� J. Piepenbrock (to be submitted): greatly improved RL for
� Gauthier’s normalization in Robinson arithmetic
� Achieved good performance also on the polynomial normalization tasks
� Achieves performance similar to a top equational prover on the AIM

problems
� Exciting: again, this is all in the verifiable/explainable proof format
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More on Conjecturing in Mathematics

� Targeted: generate intermediate lemmas (cuts) for a harder conjecture
� Unrestricted (theory exploration):
� Creation of interesting conjectures based on the previous theory
� One of the most interesting activities mathematicians do (how?)
� Higher-level AI/reasoning task - can we learn it?
� If so, we have solved math:
� ... just (recursively) divide Fermat into many subtasks ...
� ... and conquer (I mean: hammer) them away
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A bit of conjecturing history

� The topic goes back at least to Lenat (AM) and Fajtlowicz (Graffiti)
� Combined with automated theorem proving by Colton et al. in early

2000s (HR)
� Theory exploration for Isabelle by Johansson et al (Hipster)
� Several learning-based/neural approaches by our groups since 2015:
� Based mainly on learning analogies and informalization followed by

probabilistic/neural disambiguation ...
� ... Gauthier, Kaliszyk, Chvalovsky, Piotrowski, Goertzel, Wang, Brown, JU
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Conjecturing and Proof Synthesis by Neural Language
models

� Karpathy’15 - RNN experiments with generating fake Math over Stacks
� I have tried to use that for formal math in 2016 but it looked weak
� GPT (-2,3) looks stronger
� Renewed experiments in 2020 on:
� All Mizar articles, stripped of comments and concatenated together (78M)
� Articles with added context/disambiguation (156M) (types, names, thesis)
� TPTP proofs of 28271 Mizar/MPTP theorems by E/ENIGMA (658M)
� Just the conjecture and premises needed for the 28271 proofs printed in

prefix notation
� Quite interesting results, server for Mizar authors
� Quickly taken up by others on HOL, Isabelle, MetaMath ...
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Can you find the flaw(s) in this fake GPT-2 proof?

Figure: Fake full declarative GPT-2 “proof” - typechecks!
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Mizar autocompletion server in action

Figure: MGG - Mizar Gibberish Generator. 38 / 53



Proving the conditioned completions - MizAR hammer

Figure: Mizar hammer ATP completions on the conditional completions.
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A correct conjecture that was too hard to prove

� Kinyon and Stanovsky (algebraists) confirmed that this cut is valid:

theorem Th10: :: GROUPP_1:10
for G being finite Group for N being normal Subgroup of G st
N is Subgroup of center G & G ./. N is cyclic holds G is commutative

The generalization that avoids finiteness:

for G being Group for N being normal Subgroup of G st
N is Subgroup of center G & G ./. N is cyclic holds G is commutative
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Gibberish Generator Provoking Algebraists

Figure: First successes in making mathematicians comment on AI.
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More cuts

� In total 33100 in this experiment
� Ca 9k proved by trained ENIGMA
� Some are clearly false, yet quite natural to ask:

theorem :: SINCOS10:17
sec is increasing on [0, pi/2)

leads to conjecturing the following:

Every differentiable function is increasing.
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Neural Autoformalization (Wang et al., 2018)

� generate ca 1M Latex/Mizar pairs based on Bancerek’s work
� train neural seq-to-seq translation models (Luong – NMT)
� evaluate on about 100k examples
� many architectures tested, some work much better than others
� very important latest invention: attention in the seq-to-seq models
� more data very important for neural training – our biggest bottleneck (you

can help!)
� Recent addition: unsupervised methods (Lample et all 2018) – no need

for aligned data!
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Neural Autoformalization data

Rendered LATEX If X � Y � Z , then X � Z .
Mizar

X c= Y & Y c= Z implies X c= Z;

Tokenized Mizar

X c= Y & Y c= Z implies X c= Z ;

LATEX

If $X \subseteq Y \subseteq Z$, then $X \subseteq Z$.

Tokenized LATEX

If $ X \subseteq Y \subseteq Z $ , then $ X \subseteq Z $ .
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Neural Autoformalization results

Parameter Final Test
Perplexity

Final Test
BLEU

Identical
Statements (%)

Identical
No-overlap (%)

Training
Time
(hrs.)

128 Units 3.06 41.1 40121 (38.12%) 6458 (13.43%) 1
256 Units 1.59 64.2 63433 (60.27%) 19685 (40.92%) 3
512 Units 1.6 67.9 66361 (63.05%) 21506 (44.71%) 5
1024 Units 1.51 61.6 69179 (65.73%) 22978 (47.77%) 11
2048 Units 2.02 60 59637 (56.66%) 16284 (33.85%) 31

45 / 53



Neural Fun – Performance after Some Training

Rendered
LATEX

Suppose s8 is convergent and s7 is convergent . Then lim(s8+s7) = lim s8+ lim s7

Input LATEX Suppose $ { s _ { 8 } } $ is convergent and $ { s _ { 7 } }
$ is convergent . Then $ \mathop { \rm lim } ( { s _ { 8 }
} { + } { s _ { 7 } } ) \mathrel { = } \mathop { \rm lim }
{ s _ { 8 } } { + } \mathop { \rm lim } { s _ { 7 } } $ .

Correct seq1 is convergent & seq2 is convergent implies lim ( seq1
+ seq2 ) = ( lim seq1 ) + ( lim seq2 ) ;

Snapshot-
1000

x in dom f implies ( x * y ) * ( f | ( x | ( y | ( y | y )
) ) ) = ( x | ( y | ( y | ( y | y ) ) ) ) ) ;

Snapshot-
2000

seq is summable implies seq is summable ;

Snapshot-
3000

seq is convergent & lim seq = 0c implies seq = seq ;

Snapshot-
4000

seq is convergent & lim seq = lim seq implies seq1 + seq2
is convergent ;

Snapshot-
5000

seq1 is convergent & lim seq2 = lim seq2 implies lim_inf
seq1 = lim_inf seq2 ;

Snapshot-
6000

seq is convergent & lim seq = lim seq implies seq1 + seq2
is convergent ;

Snapshot-
7000

seq is convergent & seq9 is convergent implies
lim ( seq + seq9 ) = ( lim seq ) + ( lim seq9 ) ;
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Unsupervised NMT Fun on Short Formulas

len <* a *> = 1 ;
assume i < len q ;
len <* q *> = 1 ;
s = apply ( v2 , v1 ast t ) ;
s . ( i + 1 ) = tt . ( i + 1 )
1 + j <= len v2 ;
1 + j + 0 <= len v2 + 1 ;
let i be Nat ;
assume v is_applicable_to t ;
let t be type of T ;
a ast t in downarrow t ;
t9 in types a ;
a ast t <= t ;
A is_applicable_to t ;
Carrier ( f ) c= B
u in B or u in { v } ;
F . w in w & F . w in I ;
GG . y in rng HH ;
a * L = Z_ZeroLC ( V ) ;
not u in { v } ;
u <> v ;
v - w = v1 - w1 ;
v + w = v1 + w1 ;
x in A & y in A ;

len <* a *> = 1 ;
i < len q ;
len <* q *> = 1 ;
s = apply ( v2 , v1 ) . t ;
s . ( i + 1 ) = tau1 . ( i + 1 )
1 + j <= len v2 ;
1 + j + 0 <= len v2 + 1 ;
i is_at_least_length_of p ;
not v is applicable ;
t is_orientedpath_of v1 , v2 , T ;
a *’ in downarrow t ;
t ‘2 in types a ;
a *’ <= t ;
A is applicable ;
support ppf n c= B
u in B or u in { v } ;
F . w in F & F . w in I ;
G0 . y in rng ( H1 ./. y ) ;
a * L = ZeroLC ( V ) ;
u >> v ;
u <> v ;
vw = v1 - w1 ;
v + w = v1 + w1 ;
assume [ x , y ] in A ;
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Thanks and Advertisement

� Thanks for your attention!
� AITP – Artificial Intelligence and Theorem Proving
� September 4–9, 2022, Aussois, France, aitp-conference.org
� ATP/ITP/Math vs AI/Machine-Learning people, Computational linguists
� Discussion-oriented and experimental - submit a talk abstract!
� Grown to 80 people in 2019
� Will be hybrid in 2022 as in 2021
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