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How Do We Automate Math and Science?

- What is mathematical and scientific thinking?

« Pattern-matching, analogy, induction from examples

- Deductive reasoning

« Complicated feedback loops between induction and deduction

« Using a lot of previous knowledge - both for induction and deduction

+ We need to develop such methods on computers

« Are there any large corpora suitable for nontrivial deduction?
» Yes! Large libraries of formal proofs and theories

+ So let’s develop strong Al on them!
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What is Formal Mathematics?

+ Developed thanks to the Leibniz/Russell/Frege/Hilbert/... program
» Mathematics put on formal logic foundations (symbolic computation)
+ ... which btw. led also to the rise of computers (Turing/Church, 1930s)

« Formal math (1950/60s): combine formal foundations and the newly
available computers

+ De Bruijn, Milner, Trybulec, Boyer and Moore, Gordon, Huet, Paulson, ...
+ Automath, LCF, Mizar, NQTHM and ACL2, HOL, Coq, Isabelle, ...

« Conceptually very simple:

« Write all your axioms and theorems so that computer understands them
« Write all your inference rules so that computer understands them

« Use the computer to check that your proofs follow the rules

- Butin practice, it turns out not to be so simple

- Many approaches, still not mainstream, but big breakthroughs recently
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History and Motivation for Al/TP

Intuition vs Formal Reasoning — Poincaré vs Hilbert, Science & Method

« Turing’s 1950 paper: Learning Machines, learn Chess?, undecidability??
Lenat, Langley, etc: manually-written heuristics, learn Kepler laws,...

« Denzinger, Schulz, Goller, Fuchs — late 90’s, ATP-focused:

Learning from Previous Proof Experience

« My MSc (1998): Try ILP to learn rules and heuristics from IMPS/Mizar

« Since: Use large formal math (Big Proof) corpora: Mizar, Isabelle, HOL
... to combine/develop symbolic/statistical deductive/inductive ML/TP/AI
+ ... hammer-style methods, feedback loops, internal guidance, ...

More details — AGI'18 keynote: https://bit.1ly/3qifhg4

« Al vs DL: Ben Goertzel’s Prague talk: https://youtu.be/zt 2HSTUGBNS
Big Al visions: automate/verify math, science, law, (Leibniz, McCarthy, ..)
Practical impact: boost today’s large ITP verification projects
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https://bit.ly/3qifhg4
https://youtu.be/Zt2HSTuGBn8

Using Learning to Guide Theorem Proving

« high-level: pre-select lemmas from a large library, give them to ATPs

+ high-level: pre-select a good ATP strategy/portfolio for a problem

- high-level: pre-select good hints for a problem, use them to guide ATPs
« low-level: guide every inference step of ATPs (tableau, superposition)

« low-level: guide every kernel step of LCF-style ITPs

- mid-level: guide application of tactics in ITPs

« mid-level: invent suitable ATP strategies for classes of problems

« mid-level: invent suitable conjectures for a problem

- mid-level: invent suitable concepts/models for problems/theories
 proof sketches: explore stronger/related theories to get proof ideas

- theory exploration: develop interesting theories by conjecturing/proving
- feedback loops: (dis)prove, learn from it, (dis)prove more, learn more, ...
- autoformalization: (semi-)automate translation from IATEX to formal
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Large AI/TP Datasets

« Mizar / MML / MPTP — since 2003

« MPTP Challenge (2006), MPTP2078 (2011), Mizar40 (2013)

« Isabelle (and AFP) — since 2005

« Flyspeck (including core HOL Light and Multivariate) — since 2012
+ HOL4 — since 2014, CakeML — 2017, GRUNGE — 2019

« Coq - since 2013/2016

+ ACL2 — 20147

« Lean?, Stacks?, Arxiv?, ProofWiki?, ...
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Demos

+ ENIGMA/hammer proofs of Pythagoras : https://bit.1ly/2MVPAn7
(more at http://grid0l.ciirc.cvut.cz/~mptp/enigma-ex.pdf) and
simplified Carmichael https://bit.1y/30GBdRz,

» 3-phase ENIGMA: https://bit.1ly/3C0Lwa8s,
https://bit.ly/3BWQR6K

» Long trig proof from 1k axioms: https://bit.1ly/2YZ00gX

« Hammering demo: http://grid0l.ciirc.cvut.cz/~mptp/out4.ogv

- TacticToe on HOL4:
http://grid0l.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv

« Tactician for Coq:
https://blaauwbroek.eu/papers/cicm2020/demo.mp4,
https://cog-tactician.github.io/demo.html

« Inf2formal over HOL Light:
http://grid0l.ciirc.cvut.cz/~mptp/demo.ogv

+ QSynt: Al rediscovers the Fermat primality test:
https://www.youtube.com/watch?v=240ejR9wsXs
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High-level ATP guidance: Premise Selection

- Early 2003: Can existing ATPs be used over the freshly translated Mizar
library?

- About 80000 nontrivial math facts at that time —impossible to use them all

« Is good premise selection for proving a new conjecture possible at all?

« Oris it a mysterious power of mathematicians? (Penrose)

» Today: Premise selection is not a mysterious property of mathematicians!

+ Reasonably good algorithms started to appear (more below).

Extensive human (math) knowledge obsolete?? (cf. Watson, Debater, ..)

Since 2004 (my PhD): many examples of nontrivial alternative proofs
proposed by the Als - in Mizar, Flyspeck, Isabelle, ..

- The premise selection algorithms see wider than humans
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Today’s AI-ATP systems (x-Hammers)

Current Goal First Order Problem
A A
‘K\--_____—_——_",,/’ ‘g\_~_~_______—__",,//

Proof Assistant ITP Proof *Hammer ATP Proof ATP
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Today’s AI-ATP systems (x-Hammers)

Current Goal First Order Problem
A A
v v

ITP Proof ATP Proof

Proof Assistant *Hammer ATP

How much can it do?
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Today’s AI-ATP systems (x-Hammers)

Current Goal First Order Problem
A A
‘K\\§~_______———_—’,// ‘g\\‘_________—__”,//

Proof Assistant ITP Proof *Hammer ATP Proof ATP

How much can it do?
» Mizar / MML — MizAR
« Isabelle (Auth, Jinja) — Sledgehammer
« Flyspeck (including core HOL Light and Multivariate) — HOL(y)Hammer
« HOL4 (Gauthier and Kaliszyk)
+ CogHammer (Czajka and Kaliszyk) - about 40% on Coq standard library
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Today’s AI-ATP systems (x-Hammers)

Current Goal First Order Problem
A A
‘K\--_____—_——_",,/’ ‘g\_~_~_______—__",,//

Proof Assistant ITP Proof *Hammer ATP Proof ATP

How much can it do?
» Mizar / MML — MizAR
« Isabelle (Auth, Jinja) — Sledgehammer
« Flyspeck (including core HOL Light and Multivariate) — HOL(y)Hammer
« HOL4 (Gauthier and Kaliszyk)
+ CogHammer (Czajka and Kaliszyk) - about 40% on Coq standard library

~ 40-45% success rate (close to 60% on Mizar as of 2021)
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Premise Selection and Hammer Methods

- Many syntactic features (symbols, walks in the parse trees)

» More semantic features encoding

- term matching/unification, validity in models, latent semantics (LSI)
« Distance-weighted k-nearest neighbor, SVMs, Naive Bayes

- Gradient boosted decision trees (GBDTs - XGBoost, LightGBM)

+ Neural models: CNNs, RNNs/Attention/Transformers/GPT, GNNs

« As of 2020, tough competition between GBDTs, GNNs and
RNNs/Transformers (and relatives)

» K-NN still very good, Olsak’s logic-aware GNN probably best

« RNNs/Transformers good at stateful premise selection (Piotrowski
2019,2020)

« Ensemble methods combining the different predictors help a lot
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Premise Selection and Hammer Methods

« Learning in a binary setting from many alternative proofs

« Interleaving many learning and proving runs (MaLARea loop) to get
positives/negatives (ATPBoost - Piotrowski 2018)

« Matching and transferring concepts and theorems between libraries
(Gauthier & Kaliszyk) — allows “superhammers”, conjecturing, and more

« Lemmatization — extracting and considering millions of low-level lemmas
and learning from their proofs

« Hammers combined with guided tactical search: TacticToe (Gauthier -
HOL4) and its later relatives
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High-level feedback loops — MALARea, ATPBoost

» Machine Learner for Autom. Reasoning (2006) — infinite hammering

- feedback loop interleaving ATP with learning premise selection

« both syntactic and semantic features for characterizing formulas:

- evolving set of finite (counter)models in which formulas evaluated

« winning AI/ATP benchmarks (MPTPChallenge, CASC 2008/12/13/18)
ATPBoost (Piotrowski) - recent incarnation focusing on multiple proofs

v
initial settings
solve problems ]

(ATP)

<_all proved? >— stop
.'
learn
| from proofs (ML)

( premise
selections (ML)

L 1
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Number of proved theorems

Prove-and-learn loop on MPTP2078 data set

L

1100-
1000-
900- 0O OO0 —0=-0—0—0--0—0—0=-0—0
Method
o= kNN
800~ =o= XGB_simple
=o= XGB_short
700- =o= XGB_negmin_1
=e= XGB_negmin_all
@~ XGB_negmin_rand
600~
500-
400-

Round
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Number of all found proofs

Prove-and-learn loop on MPTP2078 data set

7000~
6000 -
Method
o= kNN
5000 -
o= XGB_simple
=o= XGB_short
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Round
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Number of theorems
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Number of found proofs per theorem at the end of the loop
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Low-level: Statistical Guidance of Connection Tableau

+ learn guidance of every clausal inference in connection tableau (leanCoP)
- set of first-order clauses, extension and reduction steps

- proof finished when all branches are closed

« a lot of nondeterminism, requires backtracking

« lterative deepening used in leanCoP to ensure completeness

+ good for learning — the tableau compactly represents the proof state

Clauses:

Closed Connection Tableau: P(a)
¢ P(x) / |
c2: R(x,y) vV -P(x) Vv Qy) R(a, b) -P(a) Q(b)
s : S(x) v -Q(b) / \
¢ ~8(x) vV ~Q(x) -R(a,b) Q(b) S(b)  —Q(b)
s 1 ~Q(x) vV ~R(a, x) / N\ / N\

cs - = R(a,x) v Q(x) —Q(b) -R(a,b) ~S(b) -Q(b)
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Statistical Guidance of Connection Tableau

» MaLeCoP (2011): first prototype Machine Learning Connection Prover
- extension rules chosen by naive Bayes trained on good decisions

- training examples: tableau features plus the name of the chosen clause
- initially slow: off-the-shelf learner 1000 times slower than raw leanCoP
 20-time search shortening on the MPTP Challenge

 second version: 2015, with C. Kaliszyk

« both prover and naive Bayes in OCAML, fast indexing

« Fairly Efficient MaLeCoP = FEMaLeCoP

+ 15% improvement over untrained leanCoP on the MPTP2078 problems
- using iterative deepening - enumerate shorter proofs before longer ones
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Statistical Guidance of Connection Tableau — rICoP

« 2018: stronger learners via C interface to OCAML (boosted trees)
- remove iterative deepening, the prover can go arbitrarily deep

+ added Monte-Carlo Tree Search (MCTS)

- MCTS search nodes are sequences of clause application

+ a good heuristic to explore new vs exploit good nodes:

InN

i

% Yeop- (UCT - Kocsis, Szepesvari 2006)

« learning both policy (clause selection) and value (state evaluation)

« clauses represented not by names but also by features (generalize!)
- binary learning setting used: | proof state | clause features |

- mostly term walks of length 3 (trigrams), hashed into small integers
« many iterations of proving and learning
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Tree Example
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Statistical Guidance of Connection Tableau — rICoP

+ On 32k Mizar40 problems using 200k inference limit
+ nonlearning CoPs:

System leanCoP  bare prover rlCoP no policy/value (UCT only)
Training problems proved 10438 4184 7348

Testing problems proved 1143 431 804

Total problems proved 11581 4615 8152

- rlICoP with policy/value after 5 proving/learning iters on the training data
+ 1624/1143 = 42.1% improvement over leanCoP on the testing problems

lteration 1 2 3 4 5 6 7 8

Training proved 12325 13749 14155 14363 14403 14431 14342 14498
Testing proved 1354 1519 1566 1595 1624 1586 1582 1591
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More trees

# (tableau starting
atom)
(r=0.3099)
n=1182

p-022 p-035 RelStr(c1)
3 r=0.2889

upper(c1)
Subset(union(c2),carrier(c1))

p=0.17
r=0.2554 . ,
t(c2,powerset(carrier(c1’

36 more MCTS tree levels until proved
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Recent CoP Mutants: FLoP, GNN, RNN, lazyCoP

- FLoP — Finding Longer Proofs (Zombori et al, 2019)

« Curriculum Learning used for connection tableau over Robinson
Arithmetic

« addition and multiplication learned perfectly from 1 x 1 = 1
+ headed towards learning algorithms/decision procedures from math data

- currently black-box, combinations with symbolic methods (ILP) our next
target

- Using RNNs for better tableau encoding, prediction of actions ...

- ... even guessing (decoding) next tableau literals (Piotrowski 2020)

» plCoP (Zombori 20), GNN-CoP (Olsak 20), lazyCoP (Rawson)

« Zombori: learning new explainable Prolog actions (tactics) from proofs
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ENIGMA: Guiding the Best ATPs like E Prover

« harder for learning than tableau

« the proof state are two large heaps of clauses processed/unprocessed
« 2017: ENIGMA - manual feature engineering (Jakubuv & JU 2017)

« 2017: Deep guidance (neural nets) (Loos et al. 2017)

- both learn on E’s proof search traces, put classifier in E

- positive examples: given clauses used in the proof

 negative examples: given clauses not used in the proof
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ENIGMA: Guiding the Best ATPs like E Prover

-

« ENIGMA (Jan Jakubuv 2017) el

- Fast/hashed feature extraction followed by fast/sparse linear classifier

- about 80% improvement on the AIM benchmark

- Deep guidance: convolutional nets - too slow to be competitive

« ENIGMA-NG: better features and ML, gradient-boosted trees, tree NNs
« NNs made competitive in real-time, boosted trees still best

+ 2020: fast GNN added (Olsak, Jakubuv), now competitive with GBDTs

» However very different: the GNN scores many clauses (context and
query) simultaneously in a large graph
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Feedback loop for ENIGMA on Mizar data

« Done on 57880 Mizar problems recently
 Serious ML-guidance breakthrough applied to the best ATPs

- Ultimately a 70% improvement over the original strategy in 2019
» From 14933 proofs to 25397 proofs (all 10s CPU - no cheating)
« Went up to 40k in more iterations and 60s time in 2020

Similar to rlCoP - interleave proving and learning of ENIGMA guidance

S |[SoM] seM|SoM) SeaMl|SoME SeMZ|SOM] Se M
solved | 14933 16574 20366 | 21564 22839 | 22413 23467 | 22910 23753
8% | +0% | +10.5% +35.8% | +43.8% +52.3% | +49.4% +56.5% | +52.8%  +58.4
S+ +0 | +4364 46215 | +7774 48414 | +8407  +8964 | +8822  +9274
S— -0 | 2723 782 | -1143  -508 | -927  -430 | -845  -454

| SoMd, semMd, | Somd semMi

solved | 24159 24701 25100 25397

% +61.1%  +64.8% | +68.0%  +70.0%

S+ +9761 +10063 | +10476  +10647

S— -535 -295 -309 -183
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Neural Clause Selection in Vampire (M. Suda)

Deepire: Similar to ENIGMA:
« build a classifier for recognizing good clauses
+ good are those that appeared in past proofs

Deepire’s contributions:
- Learn from clause derivation trees only
Not looking at what it says, just who its ancestors were.
« Integrate using layered clause queues
A smooth improvement of the base clause selection strategy.
« Tree Neural Networks: constant work per derived clause
A signature agnostic approach
« Delayed evaluation trick (not all derived need to be evaluated)

Preliminary Evaluation on Mizar “57880”
+ Learn from 63595 proofs of 23071 problems (three 30s runs)
« Deepire solves 26217 (i.e. +4054) problems in a single 10s run
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TacticToe: mid-level ITP Guidance (Gauthier'17,18)

« TTT learns from human and its own tactical HOL4 proofs
 No translation or reconstruction needed - native tactical proofs
+ Fully integrated with HOL4 and easy to use
« Similar to riCoP: policy/value learning for applying tactics in a state
- However much more technically challenging - a real breakthrough:
« tactic and goal state recording
« tactic argument abstraction
« absolutization of tactic names
* nontrivial evaluation issues
« these issues have often more impact than adding better learners

« policy: which tactic/parameters to choose for a current goal?

- value: how likely is this proof state succeed?

+ 66% of HOL4 toplevel proofs in 60s (better than a hammer!)

« similar recent work for Isabelle (Nagashima 2018), HOL Light (Google)
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Tactician: Tactical Guidance for Coq (Blaauwbroek’20)

« Tactical guidance of Coq proofs
+ Technically very challenging to do right - the Coq internals again nontrivial

+ 39.3% on the Coq standard library, 56.7% in a union with CogHammer
(orthogonal)

« Fast approximate hashing for k-NN makes a lot of difference
+ Speed more important than better learners
« Fully integrated with Coq, should work for any development

« User friendly, installation friendly, integration friendly and maintenance
friendly

 Took several years, but could become a very common tool for Coq
formalizers
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Symbolic Rewriting with NNs

- Recurrent NNs with attention good at the inf2formal task
« Piotrowski 2018/19: Experiments with using RNNs for symbolic rewriting
« We can learn rewrite rules from sufficiently many data

+ 80-90% success on AIM datasets, 70-99% on normalizing polynomials

+ again, complements symbolic methods like ILP that suffer on big data

- in 2019 similar tasks taken up by Facebook - integration, etc.
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Symbolic Rewriting Datasets

Table: Examples in the AIM data set.

Rewrite rule: || Before rewriting: | After rewriting:

b(s(e,vl),e)=vl

k(b(s(e,vl),e),v0) k(vl,vO0)
o (V0,e)=V0

t(v0,o(vl,o(v2,e))) t(v0,o(vl,v2))

Table: Examples in the polynomial data set.

Before rewriting: \ After rewriting:

(x = (x + 1)) + 1 x "2+ x+1
(2 »y) + 1+ (y »vy) y T2+ 2 xy +1
(x + 2) = ((2 » x) + 1) + (v + 1)

2 xx 72+ 5 %xx+y+ 3
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RL for Normalization and Synthesis Tasks

« Gauthier’'19,20:

« Tree Neural Nets and RL (MCTS, policy/value) for:

« Guiding normalization in Robinson arithmetic

« Guiding synthesis of combinators for a given lambda expression

+ Guiding synthesis of a diophantine equation characterizing a given set

+ Quite encouraging results with a good curriculum (LPAR, CICM)

« Motivated by his TacticToe: argument synthesis and conjecturing is the
big missing piece

 Unlike Piotrowski’s RNNs/transformers, the results are series of
applications of correct/explainable rules

+ Gauthier’s deep RL framework verifies the whole series (proof) in HOL4

« 2022: OEIS invention from scratch - 50k sequences discovered:
https://www.youtube.com/watch?v=240ejR9wsXs
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https://www.youtube.com/watch?v=24oejR9wsXs

RL for Normalization and Synthesis Tasks - teaser

« J. Piepenbrock (to be submitted): greatly improved RL for a
+ Gauthier’s normalization in Robinson arithmetic
« Achieved good performance also on the polynomial normalization tasks

- Achieves performance similar to a top equational prover on the AIM
problems

« Exciting: again, this is all in the verifiable/explainable proof format

33/53



More on Conjecturing in Mathematics

Targeted: generate intermediate lemmas (cuts) for a harder conjecture

- Unrestricted (theory exploration):

Creation of interesting conjectures based on the previous theory

+ One of the most interesting activities mathematicians do (how?)

Higher-level Al/reasoning task - can we learn it?

- If so, we have solved math:

- ... just (recursively) divide Fermat into many subtasks ...

... and conquer (I mean: hammer) them away
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A bit of conjecturing history

« The topic goes back at least to Lenat (AM) and Fajtlowicz (Graffiti)

- Combined with automated theorem proving by Colton et al. in early
2000s (HR)

« Theory exploration for Isabelle by Johansson et al (Hipster)
+ Several learning-based/neural approaches by our groups since 2015:

- Based mainly on learning analogies and informalization followed by
probabilistic/neural disambiguation ...

+ ... Gauthier, Kaliszyk, Chvalovsky, Piotrowski, Goertzel, Wang, Brown, JU
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Conjecturing and Proof Synthesis by Neural Language

models

- Karpathy’15 - RNN experiments with generating fake Math over Stacks

« | have tried to use that for formal math in 2016 but it looked weak

« GPT (-2,3) looks stronger

- Renewed experiments in 2020 on:

 All Mizar articles, stripped of comments and concatenated together (78M)
« Articles with added context/disambiguation (156M) (types, names, thesis)
» TPTP proofs of 28271 Mizar/MPTP theorems by E/ENIGMA (658M)

- Just the conjecture and premises needed for the 28271 proofs printed in
prefix notation

+ Quite interesting results, server for Mizar authors
« Quickly taken up by others on HOL, Isabelle, MetaMath ...
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Can you find the flaw(s) in this fake GPT-2 proof?

@ Applications Places & ™ @ 41471GHz¥  Wed 1502 Wed 15:02

emacs@dell

File Edit Options Buffers Tools Index Mizar Hide/Show Help
RR B - «Undo L

:: generated theorem with "proof"
theorem Th23: :: STIRL2 1:23
for X, Y being finite set st not X is empty & X c=Y
S&card X =cardY holds X =Y
proof
let X, Y be finite set ;
:: thesis: not X is empty & X c=Y & card X = card Y implies X =Y
assume that
Al: not Xis empty and A2: Xc=Yand A3:card X =card Y ;
i thesis: X =Y
card (Y \ X) = (card Y) - (card X) by Al, A3, CARD 2:44;
then A4: card (Y \ X) = ((card Y) - 1) - (card X) by CARD_1:30;
X =Y\XbyA2, A3, Th22;
hence X =Y by A4, XBOOLE_0O:def 10;
:: thesis: verum
end;

- card_tst.miz 99% L2131 (Mizar Errors:13 hs Undo-Tree) |

Figure: Fake full declarative GPT-2 “proof” - typechecks!
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Mizar autocompletion server in action

@ Applications Places &

SisjefEEex|slnlela|

< C @ Notsecure | grido1.ciirc.cvut.cz:5500 Q

NUMDEr O SaMples (ewer 1s Taster)

3

Temperature (lower is less chaotic)

1.0

Length of output (shorter is faster)

30

Generate

Sample 1

theorem Tho: :: CARD_1:333
for M, N being Cardinal holds card M c=MV N
proof

let M, N be Cardinal;

Sample 2

theorem Tho: :: CARD_1:333

for M, N being Cardinal holds M ** Nis Cardinal
proof

let M, N be Cardinal; :_thesis: M ** Nis Cardinal
cf(

Sample 3
theorem ThO: :: CARD_1:333
for M, N being Cardinal holds Sum (M --> N) c= M ** N

proof
let M, N be Cardinal; :_thesis: Sum (M

thesis: card M c= M V/

github)

Figure: MGG - Mizar Gibberish Generator. 38/53



Proving the conditioned completions - MizAR hammer

© Applications Places &

emacs@dell
File Edit Options Buffers Tools Index Mizar Hide/Show Help
BERG Save &Undo L]

begin

for M, N being Cardinal holds card M c= MV N by XBOOLE_1:7,CARD_3:44,CARD_1:7,CARD_1:3; ::

for X, Y being finite set st not X is empty & X c=Y & card X = card Y holds X =Y by CARD_FIN:1; ::

for M, N being Cardinal holds
(Min N iff card M c= N ) by Unsolved; :: [ATP details]

for M, N being Cardinal holds
(Min N iff card M in N') by CARD_3:44,CARD_1:9; :: [ATP details]

for M, N being Cardinal holds Sum (M --> N) = M *' N by CARD_2:65; :: [ATP details]

for M, N being Cardinal holds M A (union N) in N by Unsolved; :: [ATP details]

for M, N being Cardinal holds M ** N = N ** M by ATP-Unsolved; :: [ATP details]

-i--- card_tst.miz 3% L47 (Mizar Errors:2 hs Undo-Tree)

Wed 14:42 Wed 14:42

[ATP details]

[ATP details]

Wrote /home/urban/mizwrk/7.13.01_4.181.1147/tst8/card_tst.miz

39/493



A correct conjecture that was too hard to prove

+ Kinyon and Stanovsky (algebraists) confirmed that this cut is valid:

theorem Thl0: :: GROUPP_1:10
for G being finite Group for N being normal Subgroup of G st
N is Subgroup of center G & G ./. N is cyclic holds G is commutative

The generalization that avoids finiteness:

for G being Group for N being normal Subgroup of G st
N is Subgroup of center G & G ./. N is cyclic holds G is commutative
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Gibberish Generator Provoking Algebraists

Group conjecture - josef

e RHURIHEHEH el e

Lgoogl cossmse
= MM Gmail Q  Search mail
¢« B e o ¢ T ® : o
Michael Kinyon <mkkinyon @gmal com> TheMay 28, 541PM e da §

10 David, Ales, Petr, Bob, Jan, Karel, me ~

Yes, this is a standard exercise in undergraduate first courses in abstract algebra. The proof is easy. If | were giving way too much of a hint to students, | would
say something like this: fix a in G such that GIN is generated by the coset aN. Every element of G can be wrilten in the form ai n for integer i and some n in N. [/]
Multiply two such elements together and check that they commure.

So your conjecturer (1hat's a difficull word to say) did a goad job.
+

David Stanovsky <david stanovsky@amailcom> ThyMay 28, 5:02PM  fr da
10 me, Michael, Ales, Petr, Bob, Jan, Karel +

Hi, that's a two-line proof, although certainly not an obvious one (a
classical exercise at the beginning of a group theory course)

Denote aN the generator of GIN, hence G is a union of all a®iN, i in Z
Take g,1in G, write them as. Sy wilh xy in N, and
caleulate gh=arixay=a{i+j}y=hg, because x are central
Finiteness makes no simpification of the proof. Th18 you mention
holds for infnite groups if you replace Nat be integers. ILis being
used in my argument.

'l

F
@
(]
»
>
5
o
°
-
a
9

Figure: First successes in making mathematicians comment on Al.
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More cuts

« In total 33100 in this experiment
» Ca 9k proved by trained ENIGMA
« Some are clearly false, yet quite natural to ask:

theorem :: SINCOS10:17
sec is increasing on [0, pi/2)

leads to conjecturing the following:

Every differentiable function is increasing.
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Neural Autoformalization (Wang et al., 2018)

+ generate ca 1M Latex/Mizar pairs based on Bancerek’s work

- train neural seg-to-seq translation models (Luong — NMT)

- evaluate on about 100k examples

« many architectures tested, some work much better than others

- very important latest invention: attention in the seqg-to-seq models

« more data very important for neural training — our biggest bottleneck (you
can help!)

+ Recent addition: unsupervised methods (Lample et all 2018) — no need
for aligned data!
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Neural Autoformalization data

Rendered IATEX fXCYCZthenXCZ
Mizar

X c=Y & Y c= Z implies X c= Z;
Tokenized Mizar
X c=Y & Y c= Z implies X c= Z ;
IATEX
If $X \subseteq Y \subseteq Z$, then $X \subseteq z$.

Tokenized ATEX

If $ X \subseteqg Y \subseteqg Z $ , then $ X \subseteq Z $ .
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Neural Autoformalization results

Parameter  Final Test Final Test Identical Identical
Perplexity BLEU Statements (%) No-overlap (%)

128 Units 3.06 411 40121 (38.12% 6458 (13.43%)

256 Units 1.59 64.2 63433 (60.27% 19685 (40.92%)

1024 Units  1.51 61.6 69179 (65.73% 22978 (47.77%)

)
)
512 Units 1.6 67.9 66361 (63.05%) 21506 (44.71%)
)
2048 Units  2.02 60 59637 (56.66%) 16284 (33.85%)
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Neural Fun — Performance after Some Training

Rendered
IATEX
Input IKTEX

Correct

Snapshot-
1000
Snapshot-
2000
Snapshot-
3000
Snapshot-
4000
Snapshot-
5000
Snapshot-
6000
Snapshot-
7000

Suppose sg is convergent and sy is convergent . Then lim(sg+S7) = lim Sg+ lim s7

Suppose $ { s _ { 8 } } $ is convergent and $ { s _ { 7 } }

$ is convergent . Then $ \mathop { \rm lim } ( { s _ { 8 }
}y {4+ 1Y {s_ {71} } ) \mathrel { = } \mathop { \rm lim }
{s_{81}} {+} \mathop { \rm lim } { s _ { 7} } §

seql is convergent & seqg2 is convergent implies lim ( seql
+ seqg2 ) = ( lim seql ) + ( lim seqg2 ) ;
x in dom f implies ( x xy ) (£ | (x| (y | (y | y)
)y )y =(x [ (y !l (y |l CylLy))y)y)y):i

seq 1is summable implies seq is summable ;

seq 1s convergent & lim seq = Oc implies seq = seq ;

seq is convergent & lim seqg = lim seq implies seqgl + seg2
is convergent ;

seqgl is convergent & lim seg2 = lim seqg2 implies lim_inf
seql = lim_inf seq2 ;

seq is convergent & lim seq = lim seq implies segl + seg2
is convergent ;

seq 1s convergent & seg9 is convergent implies
lim ( seq + seq9 ) = ( lim seq ) + ( lim seq9 ) ;
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Unsupervised NMT Fun on Short Formulas

len <% a *> =1 ;

assume i < len q ;

len <x g *> =1 ;

s
s
1
1

= apply ( v2 ,
i+ 1) =tt

(
+ j <= len v2 ;
+ 3

let i1 be Nat

i
assume v is_applicable_to t ;
let t be type of T

vl ast t

(

+ 0 <= len v2 + 1 ;

7

a ast t in downarrow t

t9

in types a ;

a ast t <=t ;

A is_applicable_to

Ca
u
F
GG
a
no
u
v
v
X

rrier ( £ ) c=
in B or u in {
win w & F

y in rng HH
* L = Z_ZerolLC
t uin { v } ;
<> v o
-w=vl - wl ;
+w=vl + wl ;
in A & y in A ;

len <x a x> =1 ;

i < len g ;

len <x g *> =1 ;

s = apply (v2 , vl ) . t ;

(i+1) =¢taul . (1 +1

s
1 + j <= len v2 ;

1+ 3Jj+0<=1lenv2 + 1 ;

i is_at_least_length_of p ;
not v is applicable ;
is_orientedpath_of vl , v2
*x’ in downarrow t ;

‘2 in types a ;

*! <=t ;

is applicable ;

support ppf n c= B

u in B or u in { v } ;
F.win F & F . w in I ;

GO . y in rng ( H1 ./. vy ) ;
a = L = ZerolLC (V) ;

oot

u >> v ;

u <> v ;

vw = vl - wl ;
v+ w=vl + wl ;

assume [ x , y ] in A ;

’

T

7
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Thanks and Advertisement

« Thanks for your attention!

AITP — Artificial Intelligence and Theorem Proving

« September 4-9, 2022, Aussois, France, aitp-conference.org

« ATP/ITP/Math vs Al/Machine-Learning people, Computational linguists
« Discussion-oriented and experimental - submit a talk abstract!

+ Grown to 80 people in 2019

« Will be hybrid in 2022 as in 2021
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