Berezin-Toeplitz quantization in the Yau-Tian-Donaldson program

Louis IOOS

Geometria em Lisboa seminar

22/02/2022

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Plan

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Balanced metrics

Balanced metrics

- Yau-Tian-Donaldson program
- Balanced metrics
- **O** Berezin-Toeplitz quantization

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

- Yau-Tian-Donaldson program
- **O Balanced metrics**
- **O** Berezin-Toeplitz quantization

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Quantum noise

- Balanced metrics
- Berezin-Toeplitz quantization

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Quantum noise

• $X \subset \mathbb{CP}^N$ compact complex submanifold, dim_C X = n.

• $X \subset \mathbb{CP}^N$ compact complex submanifold, dim_C X = n.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• $J \in \text{End}(TX)$, $J^2 = -\text{Id}$, induced complex structure

- $X \subset \mathbb{CP}^N$ compact complex submanifold, dim_{$\mathbb{C}} X = n$.</sub>
- $J \in \text{End}(TX)$, $J^2 = -\text{Id}$, induced complex structure
- The Fubini-Study metric g_{FS} of CP^N restricts to a Kähler metric g_{FS} on X :

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 $\omega_{FS} := g_{FS}(J \cdot, \cdot) \in \Omega^2(X, \mathbb{R})$ satisfies $d\omega_{FS} = 0$.

- $X \subset \mathbb{CP}^N$ compact complex submanifold, dim_{$\mathbb{C}} X = n$.</sub>
- $J \in \text{End}(TX)$, $J^2 = -\text{Id}$, induced complex structure
- The Fubini-Study metric g_{FS} of CP^N restricts to a Kähler metric g_{FS} on X :
 ω_{FS} := g_{FS}(J · , ·) ∈ Ω²(X, ℝ) satisfies dω_{FS} = 0.
- The existence of a Kähler metric has strong consequences on the complex geometry of *X*, such as Hodge decomposition.

- $X \subset \mathbb{CP}^N$ compact complex submanifold, dim_{$\mathbb{C}} X = n$.</sub>
- $J \in \text{End}(TX)$, $J^2 = -\text{Id}$, induced complex structure
- The Fubini-Study metric g_{FS} of CP^N restricts to a Kähler metric g_{FS} on X :
 - $\omega_{FS} := g_{FS}(J \cdot , \cdot) \in \Omega^2(X, \mathbb{R})$ satisfies $d\omega_{FS} = 0$.
- The existence of a Kähler metric has strong consequences on the complex geometry of *X*, such as Hodge decomposition.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Remark

 g_{FS} is not canonical : $GL(N + 1) \subseteq \mathbb{CP}^N$ preserves $[\omega_{FS}] \in H^2(X, \mathbb{Z})$, but not ω_{FS} .

- $X \subset \mathbb{CP}^N$ compact complex submanifold, dim_{$\mathbb{C}} X = n$.</sub>
- $J \in \text{End}(TX)$, $J^2 = -\text{Id}$, induced complex structure
- The Fubini-Study metric g_{FS} of CP^N restricts to a Kähler metric g_{FS} on X :
 - $\omega_{FS} := g_{FS}(J \cdot, \cdot) \in \Omega^2(X, \mathbb{R})$ satisfies $d\omega_{FS} = 0$.
- The existence of a Kähler metric has strong consequences on the complex geometry of *X*, such as Hodge decomposition.

Remark

 g_{FS} is not canonical : $GL(N + 1) \subseteq \mathbb{CP}^N$ preserves $[\omega_{FS}] \in H^2(X, \mathbb{Z})$, but not ω_{FS} .

Question : Among Kähler metrics $g \in [\omega_{FS}]$ (i.e. such that $\omega := g(J \cdot, \cdot) \in [\omega_{FS}]$), does there exist a canonical one?

Fundamental example : dim $_{\mathbb{C}} X = 1$

・ロト ・四ト ・ヨト ・ヨト ・ヨー うへで

Fundamental example : dim_{\mathbb{C}} X = 1

Uniformization Theorem : There exists a unique Kähler metric g with **constant scalar curvature** (cscK), up to scale and Aut(X).

Fundamental example : dim $_{\mathbb{C}}X = 1$

Uniformization Theorem : There exists a unique Kähler metric g with **constant scalar curvature** (cscK), up to scale and Aut(X).

• For scal(g) > 0, this implies $X \cong \mathbb{C}P^1$.

Fundamental example : dim_{\mathbb{C}} X = 1

Uniformization Theorem : There exists a unique Kähler metric g with **constant scalar curvature** (cscK), up to scale and Aut(X).

- For scal(g) > 0, this implies $X \cong \mathbb{C}P^1$.
- For scal(g) = 0, this implies $X \cong \mathbb{C}/\Lambda$.

Fundamental example : dim_{\mathbb{C}} X = 1

Uniformization Theorem : There exists a unique Kähler metric g with **constant scalar curvature** (cscK), up to scale and Aut(X).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □ □

- For scal(g) > 0, this implies $X \cong \mathbb{C}P^1$.
- For scal(g) = 0, this implies $X \cong \mathbb{C}/\Lambda$.
- For scal(g) < 0, this implies $X \cong \mathbb{H}/\Gamma$.

Fundamental example : dim $_{\mathbb{C}} X = 1$

Uniformization Theorem : There exists a unique Kähler metric g with **constant scalar curvature** (cscK), up to scale and Aut(X).

- For scal(g) > 0, this implies $X \cong \mathbb{C}P^1$.
- For scal(g) = 0, this implies $X \cong \mathbb{C}/\Lambda$.
- For scal(g) < 0, this implies $X \cong \mathbb{H}/\Gamma$.

By $H^2(X,\mathbb{Z}) \simeq \mathbb{Z}$, the cohomology class reduces to the scale.

< □ > < (四 > < (回 >) < (u >

Fundamental example : dim $_{\mathbb{C}} X = 1$

Uniformization Theorem : There exists a unique Kähler metric g with **constant scalar curvature** (cscK), up to scale and Aut(X).

- For scal(g) > 0, this implies $X \cong \mathbb{C}P^1$.
- For scal(g) = 0, this implies $X \cong \mathbb{C}/\Lambda$.
- For scal(g) < 0, this implies $X \cong \mathbb{H}/\Gamma$.

By $H^2(X,\mathbb{Z}) \simeq \mathbb{Z}$, the cohomology class reduces to the scale.

< □ > < (四 > < (回 >) < (u >

• Assume
$$\lambda[\omega_{FS}] = c_1(X)$$
 for some $\lambda \in \mathbb{R}$.

Fundamental example : dim_{\mathbb{C}} X = 1

Uniformization Theorem : There exists a unique Kähler metric g with **constant scalar curvature** (cscK), up to scale and Aut(X).

- For scal(g) > 0, this implies $X \cong \mathbb{C}P^1$.
- For scal(g) = 0, this implies $X \cong \mathbb{C}/\Lambda$.
- For scal(g) < 0, this implies $X \cong \mathbb{H}/\Gamma$.

By $H^2(X,\mathbb{Z})\simeq\mathbb{Z}$, the cohomology class reduces to the scale.

- Assume $\lambda[\omega_{FS}] = c_1(X)$ for some $\lambda \in \mathbb{R}$.
- Then $g \in [\omega_{FS}]$ cscK iff g is Kähler-Einstein : $\operatorname{Ric}(g) = \lambda g$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Fundamental example : dim $_{\mathbb{C}} X = 1$

Uniformization Theorem : There exists a unique Kähler metric g with **constant scalar curvature** (cscK), up to scale and Aut(X).

- For scal(g) > 0, this implies $X \cong \mathbb{C}P^1$.
- For scal(g) = 0, this implies $X \cong \mathbb{C}/\Lambda$.
- For scal(g) < 0, this implies $X \cong \mathbb{H}/\Gamma$.

By $H^2(X,\mathbb{Z}) \simeq \mathbb{Z}$, the cohomology class reduces to the scale.

- Assume $\lambda[\omega_{FS}] = c_1(X)$ for some $\lambda \in \mathbb{R}$.
- Then $g \in [\omega_{FS}]$ cscK iff g is Kähler-Einstein : $Ric(g) = \lambda g$.

Theorem [Aubin, Yau,'78]

For $\lambda \ge 0$, there exists a unique $g \in [\omega_{FS}]$ Kähler-Einstein up to Aut(X).

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Fundamental example : dim $_{\mathbb{C}} X = 1$

Uniformization Theorem : There exists a unique Kähler metric g with **constant scalar curvature** (cscK), up to scale and Aut(X).

- For scal(g) > 0, this implies $X \cong \mathbb{C}P^1$.
- For scal(g) = 0, this implies $X \cong \mathbb{C}/\Lambda$.
- For scal(g) < 0, this implies $X \cong \mathbb{H}/\Gamma$.

By $H^2(X,\mathbb{Z}) \simeq \mathbb{Z}$, the cohomology class reduces to the scale.

- Assume $\lambda[\omega_{FS}] = c_1(X)$ for some $\lambda \in \mathbb{R}$.
- Then $g \in [\omega_{FS}]$ cscK iff g is Kähler-Einstein : $Ric(g) = \lambda g$.

Theorem [Aubin, Yau,'78]

For $\lambda \ge 0$, there exists a unique $g \in [\omega_{FS}]$ Kähler-Einstein up to Aut(X).

• For $\lambda < 0$, there are obstructions

If there exists $g \in -c_1(X)$ Kähler-Einstein, then Aut(X) is reductive, and the **Futaki invariant** Fut : Lie $Aut(X) \rightarrow \mathbb{C}$ vanishes.

If there exists $g \in -c_1(X)$ Kähler-Einstein, then Aut(X) is reductive, and the **Futaki invariant** Fut : Lie $Aut(X) \rightarrow \mathbb{C}$ vanishes.

• Burns-De Bartolomeis, '88, showed that this is not sufficient in general, using the stability of vector bundles.

If there exists $g \in -c_1(X)$ Kähler-Einstein, then Aut(X) is reductive, and the **Futaki invariant** Fut : Lie $Aut(X) \rightarrow \mathbb{C}$ vanishes.

• Burns-De Bartolomeis, '88, showed that this is not sufficient in general, using the stability of vector bundles.

Conjecture [Yau,'90]

The existence and uniqueness of $g \in [\omega_{FS}]$ cscK on X is equivalent to some stability condition on its complex-algebraic geometry.

If there exists $g \in -c_1(X)$ Kähler-Einstein, then Aut(X) is reductive, and the **Futaki invariant** Fut : Lie $Aut(X) \rightarrow \mathbb{C}$ vanishes.

• Burns-De Bartolomeis, '88, showed that this is not sufficient in general, using the stability of vector bundles.

Conjecture [Yau,'90]

The existence and uniqueness of $g \in [\omega_{FS}]$ cscK on X is equivalent to some stability condition on its complex-algebraic geometry.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• Tian, '97, Donaldson, '02, introduced the appropriate condition, called **K-stability**.

If there exists $g \in -c_1(X)$ Kähler-Einstein, then Aut(X) is reductive, and the **Futaki invariant** Fut : Lie $Aut(X) \rightarrow \mathbb{C}$ vanishes.

• Burns-De Bartolomeis, '88, showed that this is not sufficient in general, using the stability of vector bundles.

Conjecture [Yau,'90]

The existence and uniqueness of $g \in [\omega_{FS}]$ cscK on X is equivalent to some stability condition on its complex-algebraic geometry.

<ロ> (四) (四) (三) (三)

• Tian, '97, Donaldson, '02, introduced the appropriate condition, called K-stability.

Theorem [Chen-Donaldson-Sun, '15, Tian, '15]

The Conjecture is true for $\lambda[\omega_{FS}] = c_1(X)$, $\lambda < 0$.

- **O Balanced metrics**
- Berezin-Toeplitz quantization

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Quantum noise

• For $X \subset \mathbb{CP}^N$ projective, the dual **tautological line bundle** $\mathcal{O}(1) \to \mathbb{CP}^N$ restricts to an **ample** line bundle $L \to X$, and we have $[\omega_{FS}] = c_1(L)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• For $X \subset \mathbb{CP}^N$ projective, the dual **tautological line bundle** $\mathcal{O}(1) \to \mathbb{CP}^N$ restricts to an **ample** line bundle $L \to X$, and we have $[\omega_{FS}] = c_1(L)$.

Definition

Let $L \to X$ holomorphic line bundle, set $L^p := L^{\otimes p}$ and $\mathcal{H}_p := \{\text{holomorphic sections of } L^p\}$, for all $p \in \mathbb{N}$.

• For $X \subset \mathbb{CP}^N$ projective, the dual **tautological line bundle** $\mathcal{O}(1) \to \mathbb{CP}^N$ restricts to an **ample** line bundle $L \to X$, and we have $[\omega_{FS}] = c_1(L)$.

Definition

Let $L \to X$ holomorphic line bundle, set $L^p := L^{\otimes p}$ and $\mathcal{H}_p := \{\text{holomorphic sections of } L^p\}$, for all $p \in \mathbb{N}$. L is called **ample** if for all $p \gg 0$ and any basis $\mathbf{s} := \{s_j\}_{j=0}^{N_p}$ of \mathcal{H}_p , the map

$$\iota_{\mathbf{s}}: X \longrightarrow \mathbb{CP}^{N_{p}}$$
$$x \longmapsto [s_{0}(x): \cdots : s_{N_{p}}(x)],$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

is well-defined and an embedding.

• For $X \subset \mathbb{CP}^N$ projective, the dual **tautological line bundle** $\mathcal{O}(1) \to \mathbb{CP}^N$ restricts to an **ample** line bundle $L \to X$, and we have $[\omega_{FS}] = c_1(L)$.

Definition

Let $L \to X$ holomorphic line bundle, set $L^p := L^{\otimes p}$ and $\mathcal{H}_p := \{\text{holomorphic sections of } L^p\}$, for all $p \in \mathbb{N}$. L is called **ample** if for all $p \gg 0$ and any basis $\mathbf{s} := \{s_j\}_{j=0}^{N_p}$ of \mathcal{H}_p , the map

$$\iota_{\mathbf{s}}: X \longrightarrow \mathbb{CP}^{N_{p}}$$
$$x \longmapsto [s_{0}(x): \cdots : s_{N_{p}}(x)],$$

is well-defined and an embedding.

• Furthemore, we have $L^p \simeq \iota_s^* \mathcal{O}(1)$, so that $\frac{1}{p} \iota_s^* g_{FS} \in c_1(L)$. (Recall $c_1(L^p) = p c_1(L)$.)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

• Write $\mathcal{H}_{c_1(L)} := \{ K \text{\" ahler metrics in } c_1(L) \}$ and set $\mathcal{B}_p := \{ \text{bases of } \mathcal{H}_p \}.$

• Write
$$\mathcal{H}_{c_1(L)} := \{ K \text{\" ahler metrics in } c_1(L) \}$$
 and set $\mathcal{B}_p := \{ \text{bases of } \mathcal{H}_p \}.$

Theorem [Tian,'90]

The image of the Fubini-Study map

$$FS: \mathcal{B}_p \longrightarrow \mathcal{H}_{c_1(L)}$$
$$\mathbf{s} \longmapsto \frac{1}{p} \iota_{\mathbf{s}}^* g_{FS} \in \mathcal{S}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

becomes dense as $p \to +\infty$.

• Write
$$\mathcal{H}_{c_1(L)} := \{ K \text{\" ahler metrics in } c_1(L) \}$$
 and set $\mathcal{B}_p := \{ \text{bases of } \mathcal{H}_p \}.$

Theorem [Tian,'90]

The image of the Fubini-Study map

$$FS: \mathcal{B}_p \longrightarrow \mathcal{H}_{c_1(L)}$$
$$\mathbf{s} \longmapsto \frac{1}{p} \iota_{\mathbf{s}}^* g_{FS}$$

becomes dense as $p \rightarrow +\infty$.

FS : B_p → H_{c1(L)} factorizes through the finite dimensional space Herm(H_p) := {Hermitian inner products on H_p}.

• Write
$$\mathcal{H}_{c_1(L)} := \{ K \text{\" ahler metrics in } c_1(L) \}$$
 and set $\mathcal{B}_p := \{ \text{bases of } \mathcal{H}_p \}.$

Theorem [Tian,'90]

The image of the Fubini-Study map

$$FS: \mathcal{B}_{p} \longrightarrow \mathcal{H}_{c_{1}(L)}$$
$$\mathbf{s} \longmapsto \frac{1}{p} \iota_{\mathbf{s}}^{*} g_{FS}$$

becomes dense as $p \rightarrow +\infty$.

- FS : B_p → H_{c1(L)} factorizes through the finite dimensional space Herm(H_p) := {Hermitian inner products on H_p}.
- **Question :** Is there a finite-dimensional notion of a canonical Kähler metric?

Definition

A Hermitian metric h on $L \to X$ is **positive** if its Chern curvature R_h defines a Kähler metric $g_h \in \mathcal{H}_{c_1(L)}$ by $\omega_h := \frac{\sqrt{-1}}{2\pi} R_h \in c_1(L)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Definition

A Hermitian metric h on $L \to X$ is **positive** if its Chern curvature R_h defines a Kähler metric $g_h \in \mathcal{H}_{c_1(L)}$ by $\omega_h := \frac{\sqrt{-1}}{2\pi} R_h \in c_1(L)$.

Fact (Chern-Weil theory) : For all g ∈ H_{c1(L)}, there exists a positive Hermitian metric h on L such that g = g_h.

A Hermitian metric h on $L \to X$ is **positive** if its Chern curvature R_h defines a Kähler metric $g_h \in \mathcal{H}_{c_1(L)}$ by $\omega_h := \frac{\sqrt{-1}}{2\pi} R_h \in c_1(L)$.

- Fact (Chern-Weil theory) : For all g ∈ H_{c1(L)}, there exists a positive Hermitian metric h on L such that g = g_h.
- {Hermitian metric h on L} $\xleftarrow{1:1}$ {Hermitian metric h^p on L^p }.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A Hermitian metric *h* on $L \to X$ is **positive** if its Chern curvature R_h defines a Kähler metric $g_h \in \mathcal{H}_{c_1(L)}$ by $\omega_h := \frac{\sqrt{-1}}{2\pi} R_h \in c_1(L)$.

- Fact (Chern-Weil theory) : For all g ∈ H_{c1(L)}, there exists a positive Hermitian metric h on L such that g = g_h.
- {Hermitian metric h on L} \longleftrightarrow {Hermitian metric h^p on L^p }.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Given ν measure on X and h positive metric on L, set $L^2(h^p,\nu) := \int_X h^p(\cdot,\cdot) \, d\nu \in \operatorname{Herm}(\mathcal{H}_p) \,.$

A Hermitian metric h on $L \to X$ is **positive** if its Chern curvature R_h defines a Kähler metric $g_h \in \mathcal{H}_{c_1(L)}$ by $\omega_h := \frac{\sqrt{-1}}{2\pi} R_h \in c_1(L)$.

- Fact (Chern-Weil theory) : For all g ∈ H_{c1(L)}, there exists a positive Hermitian metric h on L such that g = g_h.
- {Hermitian metric h on L} \longleftrightarrow {Hermitian metric h^p on L^p }.
- Given ν measure on X and h positive metric on L, set $L^2(h^p,\nu) := \int_X h^p(\cdot,\cdot) \, d\nu \in \operatorname{Herm}(\mathcal{H}_p) \,.$

Definition

 $g_{h^p} \in \mathcal{H}_{c_1(L^p)}$ is ν -balanced if $g_{h^p} = \iota_s^* g_{FS}$ for $\mathbf{s} \in \mathcal{B}_p$ orthonormal with respect to $L^2(h^p, \nu)$.

A Hermitian metric h on $L \to X$ is **positive** if its Chern curvature R_h defines a Kähler metric $g_h \in \mathcal{H}_{c_1(L)}$ by $\omega_h := \frac{\sqrt{-1}}{2\pi} R_h \in c_1(L)$.

- Fact (Chern-Weil theory) : For all g ∈ H_{c1(L)}, there exists a positive Hermitian metric h on L such that g = g_h.
- {Hermitian metric h on L} \longleftrightarrow {Hermitian metric h^p on L^p }.
- Given ν measure on X and h positive metric on L, set $L^2(h^p, \nu) := \int_X h^p(\cdot, \cdot) \, d\nu \in \operatorname{Herm}(\mathcal{H}_p)$.

Definition

 $g_{h^p} \in \mathcal{H}_{c_1(L^p)}$ is ν -balanced if $g_{h^p} = \iota_s^* g_{FS}$ for $\mathbf{s} \in \mathcal{B}_p$ orthonormal with respect to $L^2(h^p, \nu)$. $g_{h^p} \in \mathcal{H}_{c_1(L^p)}$ is balanced if it is ν_h -balanced for $d\nu_h := dvol_{g_h}$.

• Balanced metrics belong to the finite dimensional image of FS : Herm $(\mathcal{H}_p) \longrightarrow \mathcal{H}_{c_1(L)}$.

• Balanced metrics belong to the finite dimensional image of $FS : Herm(\mathcal{H}_p) \longrightarrow \mathcal{H}_{c_1(L)}.$

Theorem [Donaldson,'01]

Assume Aut(X, L) discrete and let $g_{\infty} \in \mathcal{H}_{c_1(L)}$ cscK. Then there exist a unique $g_p \in \mathcal{H}_{c_1(L^p)}$ balanced for all $p \gg 0$, and

$$\frac{1}{p}g_p \xrightarrow{p \to +\infty} g_\infty$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Balanced metrics belong to the finite dimensional image of $FS : Herm(\mathcal{H}_p) \longrightarrow \mathcal{H}_{c_1(L)}.$

Theorem [Donaldson,'01]

Assume Aut(X, L) discrete and let $g_{\infty} \in \mathcal{H}_{c_1(L)}$ cscK. Then there exist a unique $g_p \in \mathcal{H}_{c_1(L^p)}$ balanced for all $p \gg 0$, and

$$\frac{1}{p}g_p \xrightarrow{p \to +\infty} g_{\infty}$$

Corollary [Donaldson,'01]

If $\operatorname{Aut}(X, L)$ discrete and there exists $g_{\infty} \in \mathcal{H}_{c_1(L)}$ cscK, then it is the only one up to $\operatorname{Aut}(X, L)$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• Balanced metrics belong to the finite dimensional image of $FS : Herm(\mathcal{H}_p) \longrightarrow \mathcal{H}_{c_1(L)}.$

Theorem [Donaldson,'01]

Assume Aut(X, L) discrete and let $g_{\infty} \in \mathcal{H}_{c_1(L)}$ cscK. Then there exist a unique $g_p \in \mathcal{H}_{c_1(L^p)}$ balanced for all $p \gg 0$, and

$$\frac{1}{p}g_p \xrightarrow{p \to +\infty} g_\infty$$

Corollary [Donaldson,'01]

If $\operatorname{Aut}(X, L)$ discrete and there exists $g_{\infty} \in \mathcal{H}_{c_1(L)}$ cscK, then it is the only one up to $\operatorname{Aut}(X, L)$.

 Uniqueness of balanced metrics follows from standard moment map techniques over Herm(H_p).

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

• Balanced metrics belong to the finite dimensional image of $FS : Herm(\mathcal{H}_p) \longrightarrow \mathcal{H}_{c_1(L)}.$

Theorem [Donaldson,'01]

Assume Aut(X, L) discrete and let $g_{\infty} \in \mathcal{H}_{c_1(L)}$ cscK. Then there exist a unique $g_p \in \mathcal{H}_{c_1(L^p)}$ balanced for all $p \gg 0$, and

$$\frac{1}{p}g_p \xrightarrow{p \to +\infty} g_\infty$$

Corollary [Donaldson,'01]

If $\operatorname{Aut}(X, L)$ discrete and there exists $g_{\infty} \in \mathcal{H}_{c_1(L)}$ cscK, then it is the only one up to $\operatorname{Aut}(X, L)$.

 Uniqueness of balanced metrics follows from standard moment map techniques over Herm(H_p).

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

• Key step in the resolution of Yau's conjecture.

• Assume
$$L^{\lambda} = \det T^{(1,0)}X$$
, so that $\lambda c_1(L) = c_1(X)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Assume
$$L^{\lambda} = \det T^{(1,0)}X$$
, so that $\lambda c_1(L) = c_1(X)$.

Definition

 $g_{h^p} \in \mathcal{H}_{c_1(L^p)}$ is canonically balanced if it is ν_h -balanced for

 $d\nu_h := (i^{n^2}) |\partial_{z_1} \wedge \cdots \wedge \partial_{z_n}|^2_{h^{\lambda}} dz_1 \wedge \cdots \wedge dz_n \wedge d\overline{z}_1 \wedge \cdots \wedge d\overline{z}_n,$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

for any local holomorphic coordinates $(z_1, \cdots z_n) \in U \subset X$.

• Assume
$$L^{\lambda} = \det T^{(1,0)}X$$
, so that $\lambda c_1(L) = c_1(X)$.

Definition

 $g_{h^p} \in \mathcal{H}_{c_1(L^p)}$ is canonically balanced if it is ν_h -balanced for

$$d\nu_h := (i^{n^2}) |\partial_{z_1} \wedge \cdots \wedge \partial_{z_n}|^2_{h^{\lambda}} dz_1 \wedge \cdots \wedge dz_n \wedge d\overline{z}_1 \wedge \cdots \wedge d\overline{z}_n,$$

for any local holomorphic coordinates $(z_1, \cdots z_n) \in U \subset X$.

 For λ = 0, the measure ν := ν_h is the measure induced by the holomorphic volume form of X as a Calabi-Yau manifold.

• Assume
$$L^{\lambda} = \det T^{(1,0)}X$$
, so that $\lambda c_1(L) = c_1(X)$.

Definition

 $g_{h^p} \in \mathcal{H}_{c_1(L^p)}$ is canonically balanced if it is ν_h -balanced for

$$d\nu_h := (i^{n^2}) |\partial_{z_1} \wedge \cdots \wedge \partial_{z_n}|^2_{h^{\lambda}} dz_1 \wedge \cdots \wedge dz_n \wedge d\overline{z}_1 \wedge \cdots \wedge d\overline{z}_n,$$

for any local holomorphic coordinates $(z_1, \cdots z_n) \in U \subset X$.

- For λ = 0, the measure ν := ν_h is the measure induced by the holomorphic volume form of X as a Calabi-Yau manifold.
- In this case, ν-balanced metrics are used by Donaldson,'09, as numerical approximations of Ricci-flat metrics.

(日) (四) (문) (문) (문)

• Assume
$$L^{\lambda} = \det T^{(1,0)}X$$
, so that $\lambda c_1(L) = c_1(X)$.

Definition

 $g_{h^p} \in \mathcal{H}_{c_1(L^p)}$ is canonically balanced if it is ν_h -balanced for

$$d\nu_h := (i^{n^2}) |\partial_{z_1} \wedge \cdots \wedge \partial_{z_n}|^2_{h^{\lambda}} dz_1 \wedge \cdots \wedge dz_n \wedge d\bar{z}_1 \wedge \cdots \wedge d\bar{z}_n,$$

for any local holomorphic coordinates $(z_1, \cdots z_n) \in U \subset X$.

- For λ = 0, the measure ν := ν_h is the measure induced by the holomorphic volume form of X as a Calabi-Yau manifold.
- In this case, ν-balanced metrics are used by Donaldson,'09, as numerical approximations of Ricci-flat metrics.

Theorem [I.-Kaminker-Polterovich-Shmoish,'20]

Asymptotic estimate of the rate of convergence of Donaldson's approximation as $p \rightarrow +\infty$.

• Assume
$$L^{\lambda} = \det T^{(1,0)}X$$
, so that $\lambda c_1(L) = c_1(X)$.

Definition

 $g_{h^p} \in \mathcal{H}_{c_1(L^p)}$ is canonically balanced if it is ν_h -balanced for

$$d\nu_h := (i^{n^2}) |\partial_{z_1} \wedge \cdots \wedge \partial_{z_n}|^2_{h^{\lambda}} dz_1 \wedge \cdots \wedge dz_n \wedge d\bar{z}_1 \wedge \cdots \wedge d\bar{z}_n,$$

for any local holomorphic coordinates $(z_1, \cdots z_n) \in U \subset X$.

- For λ = 0, the measure ν := ν_h is the measure induced by the holomorphic volume form of X as a Calabi-Yau manifold.
- In this case, ν-balanced metrics are used by Donaldson,'09, as numerical approximations of Ricci-flat metrics.

크

Theorem [I.-Kaminker-Polterovich-Shmoish,'20]

Asymptotic estimate of the rate of convergence of Donaldson's approximation as $p \rightarrow +\infty$.

• This confirms the numerical prediction of Donaldson.

Theorem [I.,'21]

Let $g_{\infty} \in \mathcal{H}_{c_1(L)}$ Kähler-Einstein. Then there exists a unique $g_p \in \mathcal{H}_{c_1(L^p)}$ canonically balanced for all $p \gg 0$, and

$$\frac{1}{\rho}g_{\rho}\xrightarrow{p\to+\infty}g_{\infty}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let $g_{\infty} \in \mathcal{H}_{c_1(L)}$ Kähler-Einstein. Then there exists a unique $g_p \in \mathcal{H}_{c_1(L^p)}$ canonically balanced for all $p \gg 0$, and

$$\frac{1}{\rho}g_{\rho}\xrightarrow{\rho\to+\infty}g_{\infty}.$$

• I., '21 : analogous result for Kähler-Ricci solitons in the case Fut \neq 0, giving a finite-dimensional proof of Tian-Zhu, '02, on their uniqueness.

Let $g_{\infty} \in \mathcal{H}_{c_1(L)}$ Kähler-Einstein. Then there exists a unique $g_p \in \mathcal{H}_{c_1(L^p)}$ canonically balanced for all $p \gg 0$, and

$$\frac{1}{\rho}g_{\rho}\xrightarrow{p\to+\infty}g_{\infty}.$$

- I., '21 : analogous result for Kähler-Ricci solitons in the case Fut ≠ 0, giving a finite-dimensional proof of Tian-Zhu, '02, on their uniqueness.
- BBGZ, '13, Berman-Witt-Nyström, Takahashi,'15 : convergence in the sense of currents, under some stability assumptions.

Let $g_{\infty} \in \mathcal{H}_{c_1(L)}$ Kähler-Einstein. Then there exists a unique $g_p \in \mathcal{H}_{c_1(L^p)}$ canonically balanced for all $p \gg 0$, and

$$\frac{1}{\rho}g_{\rho}\xrightarrow{p\to+\infty}g_{\infty}.$$

- I., '21 : analogous result for Kähler-Ricci solitons in the case Fut ≠ 0, giving a finite-dimensional proof of Tian-Zhu, '02, on their uniqueness.
- BBGZ, '13, Berman-Witt-Nyström, Takahashi,'15 : convergence in the sense of currents, under some stability assumptions.
- Takahashi,'21 : case Aut(X) discrete.

Let $g_{\infty} \in \mathcal{H}_{c_1(L)}$ Kähler-Einstein. Then there exists a unique $g_p \in \mathcal{H}_{c_1(L^p)}$ canonically balanced for all $p \gg 0$, and

$$\frac{1}{\rho}g_{\rho}\xrightarrow{\rho\to+\infty}g_{\infty}.$$

- I., '21 : analogous result for Kähler-Ricci solitons in the case Fut ≠ 0, giving a finite-dimensional proof of Tian-Zhu, '02, on their uniqueness.
- BBGZ, '13, Berman-Witt-Nyström, Takahashi,'15 : convergence in the sense of currents, under some stability assumptions.
- Takahashi,'21 : case Aut(X) discrete.
- I.,'21 is based on Berezin-Toeplitz quantization.

- **•** Yau-Tian-Donaldson program
- Balanced metrics
- **O Berezin-Toeplitz quantization**

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Quantum noise

The Hilbert spaces (*H_p*, *L*²(*h^p*, *ν*)) form a holomorphic quantization of the symplectic manifold (*X*, ω_h).

The Hilbert spaces (*H_p*, *L*²(*h^p*, *ν*)) form a holomorphic quantization of the symplectic manifold (*X*, ω_h).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

p ∈ ℕ quantum number, and the regime *p* ≫ 0 is the semi-classical limit : Quantum ^{*p*→+∞} Classical.

- The Hilbert spaces (*H_p*, *L*²(*h^p*, *ν*)) form a holomorphic quantization of the symplectic manifold (*X*, ω_h).
- *p* ∈ N quantum number, and the regime *p* ≫ 0 is the semi-classical limit : Quantum ^{*p*→+∞} Classical.

Definition

The **Berezin-Toeplitz coherent state** $\Pi_p(x) \in \text{Herm}(\mathcal{H}_p)$ at $x \in X$ is the unique orthogonal projector such that

$$\operatorname{Ker} \Pi_p(x) = \left\{ s \in \mathcal{H}_p \mid s(x) = 0 \right\}.$$

(日) (四) (문) (문) (문)

- The Hilbert spaces (*H_p*, *L*²(*h^p*, *ν*)) form a holomorphic quantization of the symplectic manifold (*X*, ω_h).
- *p* ∈ N quantum number, and the regime *p* ≫ 0 is the semi-classical limit : Quantum ^{*p*→+∞} Classical.

Definition

The **Berezin-Toeplitz coherent state** $\Pi_p(x) \in \text{Herm}(\mathcal{H}_p)$ at $x \in X$ is the unique orthogonal projector such that

$$\operatorname{Ker} \Pi_p(x) = \left\{ s \in \mathcal{H}_p \mid s(x) = 0 \right\}.$$

Proposition

There exists a unique function $\rho_p \in C^{\infty}(X, \mathbb{R})$, called the **density** of states (or Bergman kernel), satisfying

$$\rho_{\mathcal{P}}(x) \langle \Pi_{\mathcal{P}}(x) s_1, s_2 \rangle_{L^2(h^p, \nu)} = \langle s_1(x), s_2(x) \rangle_{h^p} \,.$$

Theorem [Boutet de Monvel-Sjöstrand,'75, Zelditch, Catlin,'98, Dai-Liu-Ma,'06]

There exists $b_r \in \mathcal{C}^{\infty}(X, \mathbb{R}), r \in \mathbb{N}$, such that for any $k \in \mathbb{N}$ as $p \to +\infty$,

$$\rho_p = p^n \sum_{j=1}^{k-1} p^{-r} b_r + O(p^{n-k}).$$

Furthermore, we have $b_0 d\nu = dvol_{g_h}$, and in the case $d\nu = dvol_{g_h}$,

$$b_0 \equiv 1$$
 and $b_1 = \frac{1}{8\pi} \operatorname{scal}(\omega)$.

(日) (四) (문) (문) (문)

Theorem [Boutet de Monvel-Sjöstrand,'75, Zelditch, Catlin,'98, Dai-Liu-Ma,'06]

There exists $b_r \in \mathcal{C}^{\infty}(X, \mathbb{R}), r \in \mathbb{N}$, such that for any $k \in \mathbb{N}$ as $p \to +\infty$,

$$\rho_p = p^n \sum_{j=1}^{k-1} p^{-r} b_r + O(p^{n-k}).$$

Furthermore, we have $b_0 d\nu = dvol_{g_h}$, and in the case $d\nu = dvol_{g_h}$,

$$b_0 \equiv 1$$
 and $b_1 = \frac{1}{8\pi} \operatorname{scal}(\omega)$.

• We have dim $\mathcal{H}_p = \int_X \rho_p d\nu = p^n \operatorname{Vol}(X, \omega) + O(p^{n-1})$: number of particles $\xrightarrow{p \to +\infty}$ volume of phase space.

Proposition

If $\mathbf{s} \in \mathcal{B}_p$ is orthonormal with respect to $L^2(h^p, \nu)$, then we have

$$h^p = \rho_p \ \iota_s^* h_{FS} \, .$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Proposition

If $\mathbf{s} \in \mathcal{B}_p$ is orthonormal with respect to $L^2(h^p, \nu)$, then we have

$$h^p = \rho_p \ \iota_s^* h_{FS} \, .$$

(日) (四) (코) (코) (코) (코)

In particular, $g_{h^p} \in \mathcal{H}_{c_1(L^p)}$ is ν -balanced iff $\rho_p \equiv \text{constant}$.

Proposition

If $\mathbf{s} \in \mathcal{B}_p$ is orthonormal with respect to $L^2(h^p, \nu)$, then we have

$$h^p = \rho_p \ \iota_s^* h_{FS} \, .$$

(日) (四) (문) (문) (문)

In particular, $g_{h^p} \in \mathcal{H}_{c_1(L^p)}$ is ν -balanced iff $\rho_p \equiv \text{constant}$.

Basic link with Donaldson,'01: Assume that we have $g_p \in \mathcal{H}_{c_1(L^p)}$ balanced for all level $p \gg 0$ and that there exists $g_{\infty} \in \mathcal{H}_{c_1(L)}$ such that $\frac{1}{p}g_p \xrightarrow{p \to +\infty} g_{\infty}$.

Proposition

If $\mathbf{s} \in \mathcal{B}_p$ is orthonormal with respect to $L^2(h^p, \nu)$, then we have

$$h^p = \rho_p \ \iota_s^* h_{FS} \, .$$

In particular, $g_{h^p} \in \mathcal{H}_{c_1(L^p)}$ is ν -balanced iff $\rho_p \equiv \text{constant}$.

Basic link with Donaldson,'01 : Assume that we have $g_p \in \mathcal{H}_{c_1(L^p)}$ balanced for all level $p \gg 0$ and that there exists $g_{\infty} \in \mathcal{H}_{c_1(L)}$ such that $\frac{1}{p}g_p \xrightarrow{p \to +\infty} g_{\infty}$. Then

$$p^{-n}\rho_p = 1 + \frac{1}{8\pi p}\operatorname{scal}(\omega_p) + O(p^{-2}) \equiv \operatorname{constant},$$

so that $scal(g_p) \xrightarrow{p \to +\infty} scal(g_{\infty}) \equiv constant.$

Definition

The Berezin-Toeplitz quantization $T_p : C^{\infty}(X, \mathbb{R}) \to \text{Herm}(\mathcal{H}_p)$ is defined on $f \in C^{\infty}(X, \mathbb{R})$ by

$$T_{p}(f) := \int_{X} f(x) \Pi_{p}(x) \rho_{p}(x) d\nu(x).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition

The Berezin-Toeplitz quantization $T_p : C^{\infty}(X, \mathbb{R}) \to \text{Herm}(\mathcal{H}_p)$ is defined on $f \in C^{\infty}(X, \mathbb{R})$ by

$$T_{p}(f) := \int_{X} f(x) \Pi_{p}(x) \rho_{p}(x) d\nu(x).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• We have $T_p(1) = \mathrm{Id}$ and $T_p(f) \ge 0$ for all $f \ge 0$:

Definition

The Berezin-Toeplitz quantization $T_p : C^{\infty}(X, \mathbb{R}) \to \text{Herm}(\mathcal{H}_p)$ is defined on $f \in C^{\infty}(X, \mathbb{R})$ by

$$T_{p}(f) := \int_{X} f(x) \Pi_{p}(x) \rho_{p}(x) d\nu(x).$$

• We have $T_p(1) = \text{Id}$ and $T_p(f) \ge 0$ for all $f \ge 0$: Berezin-Toeplitz quantization defines a **POVM**, which is the basic tool of quantum measurement theory.

Definition

The Berezin-Toeplitz quantization $T_p : C^{\infty}(X, \mathbb{R}) \to \text{Herm}(\mathcal{H}_p)$ is defined on $f \in C^{\infty}(X, \mathbb{R})$ by

$$T_{p}(f) := \int_{X} f(x) \Pi_{p}(x) \rho_{p}(x) d\nu(x).$$

• We have $T_p(1) = \text{Id}$ and $T_p(f) \ge 0$ for all $f \ge 0$: Berezin-Toeplitz quantization defines a **POVM**, which is the basic tool of quantum measurement theory.

Definition

The **Berezin symbol** (or dequantization map) $\sigma_p : \operatorname{Herm}(\mathcal{H}_p) \to \mathcal{C}^{\infty}(X, \mathbb{R})$ is defined on $A \in \operatorname{Herm}(\mathcal{H}_p)$ and $x \in X$ by

$$\sigma_p(A)(x) := \operatorname{Tr}[A\Pi_p(x)].$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Definition

The Berezin transform is

$$\mathcal{B}_{p} := \sigma_{p} \circ T_{p} : \mathcal{C}^{\infty}(X, \mathbb{R}) \to \mathcal{C}^{\infty}(X, \mathbb{R}) \,.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Definition

The Berezin transform is

$$\mathcal{B}_{p} := \sigma_{p} \circ T_{p} : \mathcal{C}^{\infty}(X, \mathbb{R}) \to \mathcal{C}^{\infty}(X, \mathbb{R}) \,.$$

• This is a Markov operator, characterizing the uncertainty introduced by Berezin-Toeplitz quantization.

Definition

The Berezin transform is

$$\mathcal{B}_{p} := \sigma_{p} \circ T_{p} : \mathcal{C}^{\infty}(X, \mathbb{R}) \to \mathcal{C}^{\infty}(X, \mathbb{R}) \,.$$

• This is a Markov operator, characterizing the uncertainty introduced by Berezin-Toeplitz quantization.

Proposition

Let $f \in C^{\infty}(X, \mathbb{R})$. If $\mathbf{s}_t \in \mathcal{B}_p$ is orthonormal with respect to $L^2((e^{tf}h)^p, \nu)$, then we have

$$\frac{d}{dt}\Big|_{t=0}\iota_{\mathbf{s}_{t}}^{*}h_{FS}=\mathcal{B}_{p}(f)\ h_{FS}.$$

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

Definition

The Berezin transform is

$$\mathcal{B}_{p} := \sigma_{p} \circ T_{p} : \mathcal{C}^{\infty}(X, \mathbb{R}) \to \mathcal{C}^{\infty}(X, \mathbb{R}) \,.$$

• This is a Markov operator, characterizing the uncertainty introduced by Berezin-Toeplitz quantization.

Proposition

Let $f \in C^{\infty}(X, \mathbb{R})$. If $\mathbf{s}_t \in \mathcal{B}_p$ is orthonormal with respect to $L^2((e^{tf}h)^p, \nu)$, then we have

$$\frac{d}{dt}\Big|_{t=0}\iota_{\mathbf{s}_t}^*h_{FS}=\mathcal{B}_p(f)\ h_{FS}.$$

Hence B_p measures the speed of convergence towards a fixed point of the map FS ∘ L² acting on FS(Herm(H_p)), i.e. a ν-balanced metric.

• Write $\operatorname{Spec}(\mathcal{B}_p) =: \{1 = \gamma_{0,p} \ge \gamma_{1,p} \ge \cdots \ge \gamma_{k,p} \ge \cdots \ge 0\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Write $\operatorname{Spec}(\mathcal{B}_p) =: \{1 = \gamma_{0,p} \ge \gamma_{1,p} \ge \cdots \ge \gamma_{k,p} \ge \cdots \ge 0\}.$
- The spectral gap $\gamma_p := 1 \gamma_{1,p}$ measures the quantum noise introduced by Berezin-Toeplitz quantization.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Write $\operatorname{Spec}(\mathcal{B}_p) =: \{1 = \gamma_{0,p} \ge \gamma_{1,p} \ge \cdots \ge \gamma_{k,p} \ge \cdots \ge 0\}.$
- The spectral gap $\gamma_p := 1 \gamma_{1,p}$ measures the quantum noise introduced by Berezin-Toeplitz quantization.

Theorem [I.-Kaminker-Polterovich-Shmoish,'20]

Wa have the following estimate as $p \rightarrow +\infty$,

$$\gamma_{\boldsymbol{p}} = \frac{\lambda_1}{4\pi \boldsymbol{p}} + O(\boldsymbol{p}^{-2})\,,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $\lambda_1 > 0$ is the first positive eigenvalue of the Riemannian Laplacian Δ of (X, g_h) acting on $\mathcal{C}^{\infty}(X, \mathbb{R})$.

- Write $\operatorname{Spec}(\mathcal{B}_p) =: \{1 = \gamma_{0,p} \ge \gamma_{1,p} \ge \cdots \ge \gamma_{k,p} \ge \cdots \ge 0\}.$
- The spectral gap $\gamma_p := 1 \gamma_{1,p}$ measures the quantum noise introduced by Berezin-Toeplitz quantization.

Theorem [I.-Kaminker-Polterovich-Shmoish,'20]

Wa have the following estimate as $p \rightarrow +\infty$,

$$\gamma_{\boldsymbol{p}} = \frac{\lambda_1}{4\pi \boldsymbol{p}} + O(\boldsymbol{p}^{-2})\,,$$

where $\lambda_1 > 0$ is the first positive eigenvalue of the Riemannian Laplacian Δ of (X, g_h) acting on $\mathcal{C}^{\infty}(X, \mathbb{R})$.

This is a global version of the Heisenberg uncertainty principle at the semi-classical limit p → +∞.

- Write $\operatorname{Spec}(\mathcal{B}_p) =: \{1 = \gamma_{0,p} \ge \gamma_{1,p} \ge \cdots \ge \gamma_{k,p} \ge \cdots \ge 0\}.$
- The spectral gap $\gamma_p := 1 \gamma_{1,p}$ measures the quantum noise introduced by Berezin-Toeplitz quantization.

Theorem [I.-Kaminker-Polterovich-Shmoish,'20]

Wa have the following estimate as $p \rightarrow +\infty$,

$$\gamma_{p} = \frac{\lambda_1}{4\pi p} + O(p^{-2}) \,,$$

where $\lambda_1 > 0$ is the first positive eigenvalue of the Riemannian Laplacian Δ of (X, g_h) acting on $\mathcal{C}^{\infty}(X, \mathbb{R})$.

- This is a global version of the Heisenberg uncertainty principle at the semi-classical limit p → +∞.
- This allows to compute the asymptotic rate of convergence the numerical approximations of Donaldson, '09.

• When $\nu = \nu_h$ depends on h, the operator S_p defined by $\frac{d}{dt}\Big|_{t=0}\iota_{s_t}^*h_{FS} = S_p(f) h_{FS}$ as before does not coincide anymore with the Berezin transform.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• When $\nu = \nu_h$ depends on h, the operator S_p defined by $\frac{d}{dt}\Big|_{t=0}\iota_{s_t}^*h_{FS} = S_p(f) h_{FS}$ as before does not coincide anymore with the Berezin transform.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• I., '21 : Case of ν_h canonical measure.

- When $\nu = \nu_h$ depends on h, the operator S_p defined by $\frac{d}{dt}\Big|_{t=0}\iota_{s_t}^*h_{FS} = S_p(f) h_{FS}$ as before does not coincide anymore with the Berezin transform.
- I., '21 : Case of ν_h canonical measure.

Theorem [I.-Polterovich,'21]

For $d\nu_h = dvol_{g_h}$, the spectral gap $\gamma_p \ge 0$ of $(S_p^*S_p)^{1/2}$ satisfies the following estimate as $p \to +\infty$

$$\gamma_{p} = rac{\mu_{1}}{8\pi p^{2}} + O(p^{-3}) \, ,$$

where $\mu_1 > 0$ first positive eigenvalue of the operator D defined for all $f \in \mathcal{C}^{\infty}(X, \mathbb{R})$ by $Df := \frac{\partial}{\partial t} \Big|_{t=0} \operatorname{scal}(g_{e^{tf}h}^{TX})$.

《曰》 《聞》 《理》 《理》 三世

- When $\nu = \nu_h$ depends on h, the operator S_p defined by $\frac{d}{dt}\Big|_{t=0}\iota_{s_t}^*h_{FS} = S_p(f) h_{FS}$ as before does not coincide anymore with the Berezin transform.
- I., '21 : Case of ν_h canonical measure.

Theorem [I.-Polterovich,'21]

For $d\nu_h = dvol_{g_h}$, the spectral gap $\gamma_p \ge 0$ of $(S_p^*S_p)^{1/2}$ satisfies the following estimate as $p \to +\infty$

$$\gamma_{p} = \frac{\mu_{1}}{8\pi p^{2}} + O(p^{-3}) \,,$$

where $\mu_1 > 0$ first positive eigenvalue of the operator D defined for all $f \in \mathcal{C}^{\infty}(X, \mathbb{R})$ by $Df := \frac{\partial}{\partial t} \Big|_{t=0} \operatorname{scal}(g_{e^{tf}h}^{TX})$.

• Provides a new proof of Donaldson,'01.

- When $\nu = \nu_h$ depends on h, the operator S_p defined by $\frac{d}{dt}\Big|_{t=0}\iota_{s_t}^*h_{FS} = S_p(f) h_{FS}$ as before does not coincide anymore with the Berezin transform.
- I., '21 : Case of ν_h canonical measure.

Theorem [I.-Polterovich,'21]

For $d\nu_h = dvol_{g_h}$, the spectral gap $\gamma_p \ge 0$ of $(S_p^*S_p)^{1/2}$ satisfies the following estimate as $p \to +\infty$

$$\gamma_{p} = \frac{\mu_{1}}{8\pi p^{2}} + O(p^{-3}) \,,$$

where $\mu_1 > 0$ first positive eigenvalue of the operator D defined for all $f \in \mathcal{C}^{\infty}(X, \mathbb{R})$ by $Df := \frac{\partial}{\partial t} \Big|_{t=0} \operatorname{scal}(g_{e^{tf}h}^{TX})$.

- Provides a new proof of Donaldson,'01.
- I.-Polterovich, '21 : Case of stable vector bundles endowed with **Hermite-Einstein metrics**, giving a new proof of Wang, '05.

- Yau-Tian-Donaldson program
- Ø Bergman kernels
- **O** Moment map picture
- Berezin-Toeplitz quantization

O Quantum noise

• We adapt a strategy of Lebeau-Michel, '10, on the spectral gap of semi-classical random walks on Riemannian manifolds.

- We adapt a strategy of Lebeau-Michel,'10, on the spectral gap of semi-classical random walks on Riemannian manifolds.
- We use an estimate of Karabegov-Schlichenmaier,'01,

$$B_p(f) = f - \frac{\Delta}{4\pi p} f + O(p^{-2})|f|_{\mathcal{C}^4}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- We adapt a strategy of Lebeau-Michel, '10, on the spectral gap of semi-classical random walks on Riemannian manifolds.
- We use an estimate of Karabegov-Schlichenmaier,'01,

$$B_p(f) = f - \frac{\Delta}{4\pi p} f + O(p^{-2})|f|_{\mathcal{C}^4}.$$

Proposition [IKPS,'20]

For any L > 0 and $m \in \mathbb{N}$, there exists $C_m > 0$ such that for all eigenfunction $f \in \mathcal{C}^{\infty}(X, \mathbb{R})$ of B_p with associated eigenvalue $\mu \in [1, 1 - L/p]$ and all $p \in \mathbb{N}$, we have

 $||f||_{H^m} \leq C_m ||f||_{L_2}$.

< □ > < @ > < 注 > < 注 > ... 注 ... 注 ... 注 ...

- We adapt a strategy of Lebeau-Michel, '10, on the spectral gap of semi-classical random walks on Riemannian manifolds.
- We use an estimate of Karabegov-Schlichenmaier,'01,

$$B_p(f) = f - \frac{\Delta}{4\pi p} f + O(p^{-2})|f|_{\mathcal{C}^4}.$$

Proposition [IKPS,'20]

For any L > 0 and $m \in \mathbb{N}$, there exists $C_m > 0$ such that for all eigenfunction $f \in \mathcal{C}^{\infty}(X, \mathbb{R})$ of B_p with associated eigenvalue $\mu \in [1, 1 - L/p]$ and all $p \in \mathbb{N}$, we have

 $||f||_{H^m} \leq C_m ||f||_{L_2}$.

This allows to apply KS,'01, to estimate the eigenvalues

 Case dν_h = dvol_{g_h} (IP, '21), : we use an estimate of Ma-Marinescu, '12,

$$\mathcal{B}_{p}(f) = f - rac{\Delta}{4\pi p} f + rac{1}{8\pi p^{2}} \left(rac{\Delta^{2}}{2\pi} - D\right) f + O(p^{-3})|f|_{\mathcal{C}^{6}} \,.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 Case dν_h = dvol_{gh} (IP,'21), : we use an estimate of Ma-Marinescu,'12,

$$\mathcal{B}_{p}(f) = f - rac{\Delta}{4\pi p} f + rac{1}{8\pi p^{2}} \left(rac{\Delta^{2}}{2\pi} - D\right) f + O(p^{-3})|f|_{\mathcal{C}^{6}}.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• We then apply the same method to estimate the eigenvalues of $S_p := \left(1 + \frac{\Delta}{4\pi p}\right)^{1/2} \mathcal{B}_p \left(1 + \frac{\Delta}{4\pi p}\right)^{1/2}$.

 Case dν_h = dvol_{gh} (IP,'21), : we use an estimate of Ma-Marinescu,'12,

$$\mathcal{B}_p(f) = f - rac{\Delta}{4\pi p} f + rac{1}{8\pi p^2} \left(rac{\Delta^2}{2\pi} - D
ight) f + O(p^{-3}) |f|_{\mathcal{C}^6} \,.$$

- We then apply the same method to estimate the eigenvalues of $S_p := \left(1 + \frac{\Delta}{4\pi p}\right)^{1/2} \mathcal{B}_p \left(1 + \frac{\Delta}{4\pi p}\right)^{1/2}$.
- Case of a vector bundle E (IP,'21), : we introduce a Berezin transform acting on $C^{\infty}(X, \operatorname{End}(E))$ by interpreting the Berezin-Toeplitz quantization for vector bundles of Ma-Marinescu,'07,'12, as the quantization of a symplectic fibration.

Thank you!

