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e X c CPN compact complex submanifold, dim¢ X = n.
e Je End(TX), J2 = —Id, induced complex structure

o The Fubini-Study metric grs of CPV restricts to a Kahler
metric ges on X :
wrs = grs(J-, -) € Q%(X,R) satisfies dwrs = 0.
@ The existence of a Kdhler metric has strong consequences on
the complex geometry of X, such as Hodge decomposition.

Remark

gFs is not canonical : GL(N + 1) G CPV preserves
[wrs] € H?(X,Z), but not wrs.

Question : Among Kahler metrics g € [wrs] (i.e. such that
w:=g(J-, )€ [wFs]), does there exist a canonical one?
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Uniformization Theorem : There exists a unique Kahler metric g
with constant scalar curvature (cscK), up to scale and Aut(X).

e For scal(g) > 0, this implies X =~ CP!.
e For scal(g) = 0, this implies X = C/A.
e For scal(g) < 0, this implies X =~ H/T.
By H?(X,Z) ~ 7, the cohomology class reduces to the scale.

e Assume A|wrs] = c1(X) for some X € R.
@ Then g € [wrs]| cscK iff g is Kdhler-Einstein : Ric(g) = Ag.

Theorem [Aubin, Yau,'78]

For A = 0, there exists a unique g € [wrs| Kahler-Einstein up to
Aut(X).

@ For A\ < 0, there are obstructions
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Theorem [Matsushima,'57, Futaki, '83]

If there exists g € —c1(X) Kahler-Einstein, then Aut(X) is
reductive, and the Futaki invariant Fut : Lie Aut(X) — C
vanishes.

@ Burns-De Bartolomeis, '88, showed that this is not sufficient
in general, using the stability of vector bundles.

Conjecture [Yau,'90]

The existence and uniqueness of g € [wrs] cscK on X is equivalent
to some stability condition on its complex-algebraic geometry.

e Tian, '97, Donaldson, '02, introduced the appropriate
condition, called K-stability.

Theorem [Chen-Donaldson-Sun, '15, Tian, '15]

The Conjecture is true for A[wrs] = c1(X), A < 0.
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e For X c CPN projective, the dual tautological line bundle
O(1) — CPN restricts to an ample line bundle L — X, and
we have [wrs] = ci(L).

Definition
Let L — X holomorphic line bundle, set LP := [®P and

Hp := {holomorphic sections of LP}, for all p € N.

L is called ample if for all p>> 0 and any basis s := {sj}J’-Vz"O of Hp,
the map

s : X — CPNe
x> [so(x) -+ sy, (x)],
is well-defined and an embedding.

e Furthemore, we have LP ~ 12O(1), so that %L;kg/_‘s € al(L).
(Recall ¢1(LP) = pai(L).)
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o Write H (1) := {Kahler metrics in c1(L)} and set
Bp := {bases of Hp}.

Theorem [Tian,'90]

The image of the Fubini-Study map

FS: B, — %q(L)
1
§s—> _L:gFS7
p

becomes dense as p — +00.

e FS: B, — H, 1) factorizes through the finite dimensional
space Herm(#,,) := {Hermitian inner products on H,}.

@ Question : Is there a finite-dimensional notion of a canonical
Kahler metric?



Balanced metrics

A Hermitian metric h on L — X is positive if its Chern curvature
Ry, defines a Kahler metric gy € H, (1) by wh := ‘é—?Rh €ci(L).




Balanced metrics

A Hermitian metric h on L — X is positive if its Chern curvature
Ry, defines a Kahler metric gy € H, (1) by wh := ‘é—?Rh €ci(L).

o Fact (Chern-Weil theory) : For all g € H (1), there exists a
positive Hermitian metric h on L such that g = gp.



Balanced metrics

A Hermitian metric h on L — X is positive if its Chern curvature
Ry, defines a Kahler metric gy € H, (1) by wh := FR;, €ci(L).

o Fact (Chern-Weil theory) : For all g € H (1), there exists a
positive Hermitian metric h on L such that g = gp.

e {Hermitian metric h on L} AL {Hermitian metric h? on LP}.



Balanced metrics

A Hermitian metric h on L — X is positive if its Chern curvature
Ry, defines a Kahler metric gy € H, (1) by wh := FR;, €ci(L).

o Fact (Chern-Weil theory) : For all g € H (1), there exists a
positive Hermitian metric h on L such that g = gp.

e {Hermitian metric h on L} AL {Hermitian metric h? on LP}.

@ Given v measure on X and h positive metric on L, set

L2(hP,v) = J hP(-,-) dv € Herm(H,,) .
X



Balanced metrics

A Hermitian metric h on L — X is positive if its Chern curvature
Ry defines a Kahler metric g, € H (1) by wp := FR;, €ci(L).

o Fact (Chern-Weil theory) : For all g € H (1), there exists a
positive Hermitian metric h on L such that g = gp.

e {Hermitian metric h on L} AL {Hermitian metric h? on LP}.

@ Given v measure on X and h positive metric on L, set

L2(hP,v) = f hP(-,-) dv € Herm(H,,) .
X

ghe € He,(1r) is v-balanced if gy = (S gFs for s € B, orthonormal
with respect to L?(hP, ).



Balanced metrics

A Hermitian metric h on L — X is positive if its Chern curvature
Ry defines a Kahler metric g, € H (1) by wp := FR;, €ci(L).

o Fact (Chern-Weil theory) : For all g € H (1), there exists a
positive Hermitian metric h on L such that g = gp.

e {Hermitian metric h on L} AL {Hermitian metric h? on LP}.
@ Given v measure on X and h positive metric on L, set
L2(hP,v) = f hP(-,-) dv € Herm(H,,) .
X

Definition

ghe € He,(1r) is v-balanced if gy = (S gFs for s € B, orthonormal
with respect to L?(hP,v).

ghe € He,(1r) is balanced if it is v4-balanced for dvy, := dvoly, .

&
|

0 %
)
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@ Balanced metrics belong to the finite dimensional image of
FS : Herm(Hp) — He (1)

Theorem [Donaldson,’01]

Assume Aut(X, L) discrete and let g € H, (1) cscK. Then there
exist a unique gp € H, (1) balanced for all p> 0, and

p—>+00

1
Egp - > 8w-

Corollary [Donaldson,'01]

If Aut(X, L) discrete and there exists go, € H, (1) cscK, then it is
the only one up to Aut(X,L).

@ Uniqueness of balanced metrics follows from standard moment
map techniques over Herm(#,,).

@ Key step in the resolution of Yau's conjecture.
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o Assume [* = det THO X, so that Acy(L) = ¢ (X).

Definition
8he € He,(1r) is canonically balanced if it is v4-balanced for

dvp = (i”2) 0 A+ A Og|2n dzi A - A dzy AdZL Ao A dZ,,

for any local holomorphic coordinates (zi,---z,) € U c X.

@ For A =0, the measure v := v}, is the measure induced by the
holomorphic volume form of X as a Calabi-Yau manifold.

@ In this case, v-balanced metrics are used by Donaldson,’09, as
numerical approximations of Ricci-flat metrics.

Theorem [l.-Kaminker-Polterovich-Shmoish, '20]

Asymptotic estimate of the rate of convergence of Donaldson's
approximation as p — +0co0.

@ This confirms the numerical prediction of Donaldson.
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Balanced metrics

Theorem [I.,'21]

Let goo € H, (1) Kahler-Einstein. Then there exists a unique
8p € Hc,(Lr) canonically balanced for all p>> 0, and

p——+0

1
;gp — > 8w

@ |.,'21 : analogous result for Kahler-Ricci solitons in the case
Fut # 0, giving a finite-dimensional proof of Tian-Zhu,'02, on
their uniqueness.

e BBGZ,'13, Berman-Witt-Nystrom, Takahashi,'15 :
convergence in the sense of currents, under some stability
assumptions.

e Takahashi,’21 : case Aut(X) discrete.

@ |.,'21 is based on Berezin-Toeplitz quantization.
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Berezin-Toeplitz quantization

o The Hilbert spaces (H,, L?(h?,v)) form a holomorphic
quantization of the symplectic manifold (X, wp).
@ p e N quantum number, and the regime p > 0 is the

. . « e —+00 .
semi-classical limit : Quantum P2TP, Classical.

The Berezin-Toeplitz coherent state I1,(x) € Herm(#H,,) at
x € X is the unique orthogonal projector such that

KerMy(x) = {se Hp | s(x) = 0}.

Proposition

There exists a unique function p, € C*(X,R), called the density
of states (or Bergman kernel), satisfying

Pp(X) <HP(X)51752>L2(hP,z/) = (51(x), 52(x)) e -
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Theorem [Boutet de Monvel-Sjéstrand,'75, Zelditch, Catlin,’98,

Dai-Liu-Ma,'06]
There exists b, € C*(X,R), r € N, such that for any k € N as
p — +0,
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Pp = pn Z p—r b, + O(pn—k) )
j=1

Furthermore, we have by dv = dvolg,, and in the case dv = dvolg,,
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Theorem [Boutet de Monvel-Sjéstrand,'75, Zelditch, Catlin,’98,

Dai-Liu-Ma,'06]
There exists b, € C*(X,R), r € N, such that for any k € N as
p — +0,
k—1
Pp = pn Z p—r b, + O(pn—k) )
j=1

Furthermore, we have by dv = dvolg,, and in the case dv = dvolg,,

1
bp=1 and b = gscal(w).

@ We have dim HP = SX Pp dv = pn VOI(X,(,U) + O(pnfl) .

. — 400
number of particles 2="=5 volume of phase space.
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Berezin-Toeplitz quantization

If s € B, is orthonormal with respect to L?(hP, v), then we have

hP = pp 13 hEs .
In particular, gpe € H (1r) is v-balanced iff pp, = constant.

Basic link with Donaldson,’01 : Assume that we have
8p € Hc,(1p) balanced for all level p>> 0 and that there exists
8w € Hey (1) such that %gp LmaszN gx. Then

1
p "pp=14-— 8np scal(w,) + O(p~2) = constant,

so that scal(gp) P2, scal(gy) = constant.
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Berezin-Toeplitz quantization

The Berezin-Toeplitz quantization T, : C*(X,R) — Herm(#,)
is defined on f € C*(X,R) by

)] = JX f(x)Np(x) pp(x) dv(x).

@ We have T,(1) =1Id and T,(f) >0 forall f >0
Berezin-Toeplitz quantization defines a POVM, which is the
basic tool of quantum measurement theory.

Definition
The Berezin symbol (or dequantization map)
op : Herm(H,) — C* (X, R) is defined on A € Herm(#,) and
x € X by
op(A)(x) = TrAM(x)]



Berezin-Toeplitz quantization

The Berezin transform is

By :=0p0T,:CP°(X,R) - C*(X,R).



Berezin-Toeplitz quantization

The Berezin transform is

By :=0p0T,:CP°(X,R) - C*(X,R).

@ This is a Markov operator, characterizing the uncertainty
introduced by Berezin-Toeplitz quantization.



Berezin-Toeplitz quantization

The Berezin transform is

By :=0p0T,:CP°(X,R) - C*(X,R).

@ This is a Markov operator, characterizing the uncertainty
introduced by Berezin-Toeplitz quantization.

Let f € C*(X,R). If s; € B is orthonormal with respect to
L?((et'h)P,v), then we have

d

dt’tZOL;‘tth — B,(f) hrs.



Berezin-Toeplitz quantization

The Berezin transform is

By :=0p0T,:CP°(X,R) - C*(X,R).

@ This is a Markov operator, characterizing the uncertainty
introduced by Berezin-Toeplitz quantization.

Let f € C*(X,R). If s; € B is orthonormal with respect to
L?((et'h)P,v), then we have

d

dt’tZOL;‘tth — B,(f) hrs.

@ Hence B, measures the speed of convergence towards a fixed
point of the map FS o L2 acting on FS(Herm(H,,)), i.e. a
v-balanced metric.
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e The spectral gap ~, := 1 — 71, measures the quantum noise
introduced by Berezin-Toeplitz quantization.

Theorem [I.-Kaminker-Polterovich-Shmoish,'20]
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Berezin-Toeplitz quantization

o Write Spec(Bp) =: {1 =70p=71p == Ykp = =0}
e The spectral gap ~, := 1 — 71, measures the quantum noise
introduced by Berezin-Toeplitz quantization.

Theorem [I.-Kaminker-Polterovich-Shmoish,'20]

Wa have the following estimate as p — +0,

AL

= O(p—2
fYP 47Tp + (p )7

where A\; > 0 is the first positive eigenvalue of the Riemannian
Laplacian A of (X, gn) acting on C*(X,R).

@ This is a global version of the Heisenberg uncertainty
principle at the semi-classical limit p — +oco0.

@ This allows to compute the asymptotic rate of convergence
the numerical approximations of Donaldson,’09.
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Berezin-Toeplitz quantization

@ When v = v}, depends on h, the operator S, defined by
%]tzob;h,:s = Sp(f) hrs as before does not coincide anymore
with the Berezin transform.

@ |.,'21 : Case of v} canonical measure.

Theorem [I.-Polterovich, 21]

For dv, = dvolg,, the spectral gap v, > 0 of (555, )1/2 satisfies
the following estimate as p — +o0

where p3 > 0 first positive eigenvalue of the operator D defined for
all f e C*(X,R) by Df := at|t o scal( gl ) -

@ Provides a new proof of Donaldson,'01.

@ |.-Polterovich,’21 : Case of stable vector bundles endowed with
Hermite-Einstein metrics, giving a new proof of Wang,'05.
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Quantum noise

@ We adapt a strategy of Lebeau-Michel,’10, on the spectral
gap of semi-classical random walks on Riemannian manifolds.

@ We use an estimate of Karabegov-Schlichenmaier,’01,

A _
By(f) = f—merO(P 2)[fes -

Proposition [IKPS,20]

For any L > 0 and m € N, there exists C,, > 0 such that for all
eigenfunction f € C*(X,R) of B, with associated eigenvalue
we[l,1—L/p] and all pe N, we have

[fllm < Camllfli, -

@ This allows to apply KS,'01, to estimate the eigenvalues B



Quantum noise

e Case dv, = dvolg, (IP,'21), : we use an estimate of
Ma-Marinescu,'12,
A 1 (/A2
Bo(f)=f——f — —D|)f+0(p3)|f|cs .
) = = ot s (5 = D) £+ O )il




Quantum noise

e Case dv, = dvolg, (IP,'21), : we use an estimate of
Ma-Marinescu,'12,

A 1 A2
f)=f——f — -D|f )[fles -

@ We then apply the same method to estimate the eigenvalues

of Sp 1= (1+A)1/2B,, (1+2 )1/2.

Amp Amp



Quantum noise

e Case dv, = dvolg, (IP,'21), : we use an estimate of
Ma-Marinescu,'12,
A 1 (A2
f)=f——f — -D|f “3)|fles -
Bolf) = f = g+ s (5 = D) £+ Ol

@ We then apply the same method to estimate the eigenvalues

of Sp 1= (1+A)1/2B,, (1+2 )1/2.

47p 4mp
e Case of a vector bundle E (IP,'21), : we introduce a Berezin
transform acting on C*(X,End(E)) by interpreting the
Berezin-Toeplitz quantization for vector bundles of
Ma-Marinescu,'07,'12, as the quantization of a symplectic
fibration.



The End

Thank you!



