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Yau-Tian-Donaldson program

X Ă CPN compact complex submanifold, dimC X “ n.

J P EndpTX q, J2 “ ´Id, induced complex structure
The Fubini-Study metric gFS of CPN restricts to a Kähler
metric gFS on X :
ωFS :“ gFSpJ ¨ , ¨ q P Ω2pX ,Rq satisfies dωFS “ 0.

The existence of a Kähler metric has strong consequences on
the complex geometry of X , such as Hodge decomposition.

Remark
gFS is not canonical : GLpN ` 1q ü CPN preserves
rωFSs P H2pX ,Zq, but not ωFS .

Question : Among Kähler metrics g P rωFSs (i.e. such that
ω :“ gpJ ¨ , ¨ q P rωFSs), does there exist a canonical one ?
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Yau-Tian-Donaldson program

Fundamental example : dimC X “ 1

Uniformization Theorem : There exists a unique Kähler metric g
with constant scalar curvature (cscK), up to scale and AutpX q.

For scalpgq ą 0, this implies X – CP1.
For scalpgq “ 0, this implies X – C{Λ.
For scalpgq ă 0, this implies X – H{Γ.

By H2pX ,Zq » Z, the cohomology class reduces to the scale.

Assume λrωFSs “ c1pX q for some λ P R.
Then g P rωFSs cscK iff g is Kähler-Einstein : Ricpgq “ λg .

Theorem [Aubin, Yau,’78]
For λ ě 0, there exists a unique g P rωFSs Kähler-Einstein up to
AutpX q.

For λ ă 0, there are obstructions
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Yau-Tian-Donaldson program

Theorem [Matsushima,’57, Futaki, ’83]
If there exists g P ´c1pX q Kähler-Einstein, then AutpX q is
reductive, and the Futaki invariant Fut : Lie AutpX q Ñ C
vanishes.

Burns-De Bartolomeis, ’88, showed that this is not sufficient
in general, using the stability of vector bundles.

Conjecture [Yau,’90]
The existence and uniqueness of g P rωFSs cscK on X is equivalent
to some stability condition on its complex-algebraic geometry.

Tian, ’97, Donaldson, ’02, introduced the appropriate
condition, called K-stability.

Theorem [Chen-Donaldson-Sun, ’15, Tian, ’15]
The Conjecture is true for λrωFSs “ c1pX q, λ ă 0.
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Balanced metrics

For X Ă CPN projective, the dual tautological line bundle
Op1q Ñ CPN restricts to an ample line bundle L Ñ X , and
we have rωFSs “ c1pLq.

Definition
Let L Ñ X holomorphic line bundle, set Lp :“ Lbp and
Hp :“ tholomorphic sections of Lpu, for all p P N.
L is called ample if for all p " 0 and any basis s :“ tsju

Np
j“0 of Hp,

the map

ιs : X ÝÑ CPNp

x ÞÝÑ rs0pxq : ¨ ¨ ¨ : sNppxqs ,

is well-defined and an embedding.

Furthemore, we have Lp » ι˚s Op1q, so that 1
p ι
˚
s gFS P c1pLq.

(Recall c1pLpq “ p c1pLq.)
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Balanced metrics

Write Hc1pLq :“ tKähler metrics in c1pLqu and set
Bp :“ tbases of Hpu.

Theorem [Tian,’90]
The image of the Fubini-Study map

FS : Bp ÝÑ Hc1pLq

s ÞÝÑ 1
p ι
˚
s gFS ,

becomes dense as p Ñ `8.

FS : Bp Ñ Hc1pLq factorizes through the finite dimensional
space HermpHpq :“ tHermitian inner products on Hpu.
Question : Is there a finite-dimensional notion of a canonical
Kähler metric ?
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Balanced metrics

Definition
A Hermitian metric h on L Ñ X is positive if its Chern curvature
Rh defines a Kähler metric gh P Hc1pLq by ωh :“

?
´1

2π Rh P c1pLq.

Fact (Chern-Weil theory) : For all g P Hc1pLq, there exists a
positive Hermitian metric h on L such that g “ gh.
tHermitian metric h on Lu 1:1

ÐÑ tHermitian metric hp on Lpu.
Given ν measure on X and h positive metric on L, set

L2php, νq :“
ż

X
hpp¨, ¨q dν P HermpHpq .

Definition
ghp P Hc1pLpq is ν-balanced if ghp “ ι˚s gFS for s P Bp orthonormal
with respect to L2php, νq.
ghp P Hc1pLpq is balanced if it is νh-balanced for dνh :“ dvolgh .
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Definition
ghp P Hc1pLpq is ν-balanced if ghp “ ι˚s gFS for s P Bp orthonormal
with respect to L2php, νq.
ghp P Hc1pLpq is balanced if it is νh-balanced for dνh :“ dvolgh .



Balanced metrics

Balanced metrics belong to the finite dimensional image of
FS : HermpHpq ÝÑ Hc1pLq.

Theorem [Donaldson,’01]
Assume AutpX , Lq discrete and let g8 P Hc1pLq cscK. Then there
exist a unique gp P Hc1pLpq balanced for all p " 0, and

1
p gp

pÑ`8
ÝÝÝÝÝÑ g8 .

Corollary [Donaldson,’01]
If AutpX , Lq discrete and there exists g8 P Hc1pLq cscK, then it is
the only one up to AutpX , Lq.

Uniqueness of balanced metrics follows from standard moment
map techniques over HermpHpq.
Key step in the resolution of Yau’s conjecture.
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Balanced metrics
Assume Lλ “ det T p1,0qX , so that λc1pLq “ c1pX q.

Definition
ghp P Hc1pLpq is canonically balanced if it is νh-balanced for

dνh :“ pi n2
q |Bz1 ^ ¨ ¨ ¨ ^ Bzn |

2
hλ dz1 ^ ¨ ¨ ¨ ^ dzn ^ dz̄1 ^ ¨ ¨ ¨ ^ dz̄n ,

for any local holomorphic coordinates pz1, ¨ ¨ ¨ znq P U Ă X .

For λ “ 0, the measure ν :“ νh is the measure induced by the
holomorphic volume form of X as a Calabi-Yau manifold.
In this case, ν-balanced metrics are used by Donaldson,’09, as
numerical approximations of Ricci-flat metrics.

Theorem [I.-Kaminker-Polterovich-Shmoish,’20]
Asymptotic estimate of the rate of convergence of Donaldson’s
approximation as p Ñ `8.

This confirms the numerical prediction of Donaldson.
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Balanced metrics

Theorem [I.,’21]
Let g8 P Hc1pLq Kähler-Einstein. Then there exists a unique
gp P Hc1pLpq canonically balanced for all p " 0, and

1
p gp

pÑ`8
ÝÝÝÝÝÑ g8 .

I.,’21 : analogous result for Kähler-Ricci solitons in the case
Fut ‰ 0, giving a finite-dimensional proof of Tian-Zhu,’02, on
their uniqueness.
BBGZ,’13, Berman-Witt-Nyström, Takahashi,’15 :
convergence in the sense of currents, under some stability
assumptions.
Takahashi,’21 : case AutpX q discrete.
I.,’21 is based on Berezin-Toeplitz quantization.
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Berezin-Toeplitz quantization
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Berezin-Toeplitz quantization

The Hilbert spaces pHp, L2php, νqq form a holomorphic
quantization of the symplectic manifold pX , ωhq.

p P N quantum number, and the regime p " 0 is the
semi-classical limit : Quantum pÑ`8

ÝÝÝÝÑ Classical.

Definition
The Berezin-Toeplitz coherent state Πppxq P HermpHpq at
x P X is the unique orthogonal projector such that

Ker Πppxq “ ts P Hp | spxq “ 0u .

Proposition
There exists a unique function ρp P C8pX ,Rq, called the density
of states (or Bergman kernel), satisfying

ρppxq 〈Πppxqs1, s2〉L2php ,νq “ 〈s1pxq, s2pxq〉hp .
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Berezin-Toeplitz quantization

Theorem [Boutet de Monvel-Sjöstrand,’75, Zelditch, Catlin,’98,
Dai-Liu-Ma,’06]
There exists br P C8pX ,Rq, r P N, such that for any k P N as
p Ñ `8,

ρp “ pn
k´1
ÿ

j“1
p´r br ` Oppn´kq .

Furthermore, we have b0 dν “ dvolgh , and in the case dν “ dvolgh ,

b0 ” 1 and b1 “
1
8π scalpωq .

We have dim Hp “
ş

X ρp dν “ pn VolpX , ωq ` Oppn´1q :
number of particles pÑ`8

ÝÝÝÝÑ volume of phase space.
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Berezin-Toeplitz quantization

Proposition
If s P Bp is orthonormal with respect to L2php, νq, then we have

hp “ ρp ι
˚
s hFS .

In particular, ghp P Hc1pLpq is ν-balanced iff ρp ” constant.

Basic link with Donaldson,’01 : Assume that we have
gp P Hc1pLpq balanced for all level p " 0 and that there exists
g8 P Hc1pLq such that 1

p gp
pÑ`8
ÝÝÝÝÑ g8. Then

p´nρp “ 1` 1
8πp scalpωpq ` Opp´2q ” constant ,

so that scalpgpq
pÑ`8
ÝÝÝÝÑ scalpg8q ” constant.
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Berezin-Toeplitz quantization

Definition
The Berezin-Toeplitz quantization Tp : C8pX ,Rq Ñ HermpHpq
is defined on f P C8pX ,Rq by

Tppf q :“
ż

X
f pxqΠppxq ρppxq dνpxq .

We have Tpp1q “ Id and Tppf q ě 0 for all f ě 0 :

Berezin-Toeplitz quantization defines a POVM, which is the
basic tool of quantum measurement theory.

Definition
The Berezin symbol (or dequantization map)
σp : HermpHpq Ñ C8pX ,Rq is defined on A P HermpHpq and
x P X by

σppAqpxq :“ TrrAΠppxqs .
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Berezin-Toeplitz quantization

Definition
The Berezin transform is

Bp :“ σp ˝ Tp : C8pX ,Rq Ñ C8pX ,Rq .

This is a Markov operator, characterizing the uncertainty
introduced by Berezin-Toeplitz quantization.

Proposition
Let f P C8pX ,Rq. If st P Bp is orthonormal with respect to
L2ppetf hqp, νq, then we have

d
dt

ˇ

ˇ

ˇ

t“0
ι˚st hFS “ Bppf q hFS .

Hence Bp measures the speed of convergence towards a fixed
point of the map FS ˝ L2 acting on FSpHermpHpqq, i.e. a
ν-balanced metric.
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Berezin-Toeplitz quantization

Write SpecpBpq “: t1 “ γ0,p ě γ1,p ě ¨ ¨ ¨ ě γk,p ě ¨ ¨ ¨ ě 0u.

The spectral gap γp :“ 1´ γ1,p measures the quantum noise
introduced by Berezin-Toeplitz quantization.

Theorem [I.-Kaminker-Polterovich-Shmoish,’20]
Wa have the following estimate as p Ñ `8,

γp “
λ1
4πp ` Opp´2q ,

where λ1 ą 0 is the first positive eigenvalue of the Riemannian
Laplacian ∆ of pX , ghq acting on C8pX ,Rq.

This is a global version of the Heisenberg uncertainty
principle at the semi-classical limit p Ñ `8.
This allows to compute the asymptotic rate of convergence
the numerical approximations of Donaldson,’09.
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Berezin-Toeplitz quantization
When ν “ νh depends on h, the operator Sp defined by
d
dt
ˇ

ˇ

t“0ι
˚
st hFS “ Sppf q hFS as before does not coincide anymore

with the Berezin transform.

I.,’21 : Case of νh canonical measure.

Theorem [I.-Polterovich,’21]

For dνh “ dvolgh , the spectral gap γp ě 0 of pS˚p Spq
1{2 satisfies

the following estimate as p Ñ `8

γp “
µ1

8πp2 ` Opp´3q ,

where µ1 ą 0 first positive eigenvalue of the operator D defined for
all f P C8pX ,Rq by D f :“ B

Bt
ˇ

ˇ

t“0 scalpg
TX
etf hq .

Provides a new proof of Donaldson,’01.
I.-Polterovich,’21 : Case of stable vector bundles endowed with
Hermite-Einstein metrics, giving a new proof of Wang,’05.
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Quantum noise

We adapt a strategy of Lebeau-Michel,’10, on the spectral
gap of semi-classical random walks on Riemannian manifolds.

We use an estimate of Karabegov-Schlichenmaier,’01,

Bppf q “ f ´ ∆
4πp f ` Opp´2q|f |C4 .

Proposition [IKPS,’20]
For any L ą 0 and m P N, there exists Cm ą 0 such that for all
eigenfunction f P C8pX ,Rq of Bp with associated eigenvalue
µ P r1, 1´ L{ps and all p P N, we have

}f }Hm ď Cm}f }L2 .

This allows to apply KS,’01, to estimate the eigenvalues �
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Quantum noise

Case dνh “ dvolgh (IP,’21), : we use an estimate of
Ma-Marinescu,’12,

Bppf q “ f ´ ∆
4πp f ` 1

8πp2

ˆ

∆2

2π ´ D
˙

f ` Opp´3q|f |C6 .

We then apply the same method to estimate the eigenvalues
of Sp :“

´

1` ∆
4πp

¯1{2
Bp

´

1` ∆
4πp

¯1{2
.

Case of a vector bundle E (IP,’21), : we introduce a Berezin
transform acting on C8pX ,EndpE qq by interpreting the
Berezin-Toeplitz quantization for vector bundles of
Ma-Marinescu,’07,’12, as the quantization of a symplectic
fibration.
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The End

Thank you !


